磁粉、压缩粉末芯、两者的制备方法与流程

文档序号:20935109发布日期:2020-06-02 19:18阅读:247来源:国知局
磁粉、压缩粉末芯、两者的制备方法与流程

本公开涉及磁粉、压缩粉末芯以及两者的制备方法。



背景技术:

通常,磁性材料用于诸如电感器、马达芯和变压器芯的各种装置中。

电气装置中包括的磁芯(诸如转子和定子)是通过将加工后的钢片材堆叠、固定并集成为多个层而制备的。

最近,已提议使磁粉经受高压成型,以制备芯。经由磁粉的高压成型制备芯的方法的优点在于非常容易制备各种形状的芯。

用于制备芯的磁粉是指当被施加电力时具有磁性能的粉末。磁粉通常基于铁基软磁性颗粒。可以通过经由喷射法或粉碎法将铁基材料形成为粉末形式并且通过适当地处理该粉末形式来制备磁粉。

磁粉的形状通常为具有均匀粒径的球形形状。

然而,为了将磁粉成形为球形形状,需要精密的条件和复杂的工艺。因此,用于将磁粉制备成球形形状的工艺是精密且昂贵的。

另外,使用球形粉末制成的芯具有由于其组织不致密而导致其耐久性差的问题。

另外,涉及结晶粉末和非晶粉末在其中彼此混合的混合粉末芯的技术是众所周知的。混合粉末芯可以用于电气和电子部件(诸如电感器)。然而,由于混合粉末芯中包含的结晶粉末与非晶粉末的高温性能之间的差异,因此无法对混合粉末芯应用高温烧结工艺。因此,混合粉末芯可能不适用于需要强耐久性(诸如耐振性)的马达。



技术实现要素:

本公开的一个目的是提供可以以低成本制备并具有改善的磁通密度的新型磁粉。

另外,本公开的另一目的是提供一种用于制备具有高度致密的组织和高强度的马达芯的新型磁粉。

此外,本公开的另一目的是提供一种以低成本容易地制备新的磁粉的方法。

本公开的目的不限于上述目的。从下面的描述中可以理解并且从本公开的实施方式中可以更清楚地理解本公开的上文未提及的其它目的和优点。另外,将容易地认识到,可以通过如权利要求中公开的特征及其组合来实现本公开的目的和优点。

为了提供可以以低成本制备并且与传统磁粉相比具有改进的磁通密度的新的磁粉,根据本公开的磁粉包含板状颗粒,该板状颗粒的在以下关系式1中定义的长宽比等于或大于4:

[关系式1]

长宽比=板状颗粒的长边的长度/板状颗粒的短边的长度。

为了提供用于制备具有高度致密的组织和高强度的马达芯的新型磁粉,根据本公开的磁粉还可以包含直径为1μm或更小的球形颗粒。

另外,为了提供一种容易以低成本制备新的磁粉的方法,根据本公开的磁粉的制备方法可以包括以下步骤:将包含磁性原料的浆料转化成液滴;以及将该液滴喷射到旋转板上,以制备板状颗粒。

本公开的效果可以如下,但可以不限于此。

根据本公开的磁粉可以包含具有特定长宽比的板状颗粒,并因此可以以低成本制备,并且可以具有改善的磁通密度。

此外,根据本公开的磁粉还可以包含直径为1μm或更小的球形颗粒,从而使得能够制备具有高度致密的组织并且具有高强度的马达芯。

此外,根据本公开的磁粉的制备方法可以以相对简单的方式制备板状颗粒,从而容易以低成本制备新的磁粉。

附图说明

图1示出了根据本公开的磁粉中的板状颗粒的sem图像。

图2示意性地例示了用于制备根据本公开的板状颗粒的设备。

图3是例示制备根据本公开的压缩粉末芯的过程中的压缩和烧结工艺的示意图。

具体实施方式

为了图示的简单和清楚起见,附图中的要素不一定按比例绘制。不同附图中的相同附图标记表示相同或相似的元件,并因此执行相似的功能。此外,在本公开的以下详细描述中,阐述了许多具体细节以便提供对本公开的透彻理解。然而,将理解,可以在不具有这些具体细节的情况下实践本公开。在其它情况下,未详细描述公知的方法、过程、部件和电路,以免不必要地模糊本公开的各个方面。

下文进一步例示和描述了各个实施方式的实施例。将理解,本文的描述不旨在将权利要求限制为所描述的特定实施方式。相反,旨在覆盖可以被包括在本公开的如所附权利要求限定的精神和范围内的替代例、修改例和等同例。

本文使用的术语仅出于描述特定实施方式的目的,并且不旨在对本公开进行限制。如本文所使用的,单数形式“一”和“一个”也旨在包括复数形式,除非上下文另外明确指出。还将理解,当在本说明书中使用时,术语“包含”(“comprises”)、“包含”(“comprising”)、“包括”(“includes”)和“包括”(“including”)指定存在所述特征、整数、操作、元件和/或部件,但是不排除存在或增加一个或更多个其它特征、整数、操作、元件、部件和/或其部分。如本文所使用的,术语“和/或”包括相关联的所列项目中的一个或更多个的任何和所有组合。诸如在要素列表之前的“至少一者”的表达可以修改整个要素列表,并且可以不修改列表中的个体要素。

将理解,尽管术语“第一”、“第二”、“第三”等在本文中可以用于描述各种元件、部件、区域、层和/或部分,但是这些元件、部件、区域、层和/或部分不应受到这些术语的限制。这些术语用于将一个元件、部件、区域、层或部分与另一元件、部件、区域、层或部分区分开。因此,在不脱离本公开的精神和范围的情况下,下文描述的第一元件、部件、区域、层或部分可以被称为第二元件、部件、区域、层或部分。

另外,还将理解,当第一元件或层被称为存在于第二元件或层“上”或“下”时,第一元件可以直接设置在第二元件上或第二元件下,或者可以间接设置在第二元件上或第二元件下,其中第三元件或层设置在第一元件或层与第二元件或层之间。将理解,当元件或层被称为“连接至”或“联接至”另一元件或层时,该元件或层可以直接在其它元件或层上、连接至或联接至其它元件或层,或者可以存在一个或更多个中间元件或层。另外,还将理解,当元件或层被称为在两个元件或层“之间”时,它可以是两个元件或层之间的唯一元件或层,或者还可以存在一个或更多个中间元件或层。

除非另有定义,否则本文所使用的包括技术和科学术语在内的所有术语具有与本发明构思所属领域的普通技术人员通常所理解的相同含义。还将理解,诸如在常用词典中定义的那些术语应被解释为具有与其在相关技术背景中的含义相一致的含义,并且除非本文明确定义,否则将不会以理想化或过度正式的意义进行解释。。

在下文中,将详细描述根据本公开的磁粉、压缩粉末芯以及两者的制备方法。

<磁粉>

根据本公开的磁粉包含板状颗粒,该板状颗粒的在以下关系式1中定义的长宽比等于或大于4。

[关系式1]

长宽比=板状颗粒的长边的长度/板状颗粒的短边的长度。

与包含球形颗粒的磁粉相比,包含板状颗粒的磁粉具有形状磁各向异性。因此,当沿面方向对齐时,包含板状颗粒的磁粉可以具有改善的磁通密度。

根据本公开的板状颗粒可以具有约为4或更大的长宽比。当板状颗粒的长宽比小于4时,粒径的均匀性可能增加,这可能引起无法获得所需的形状磁各向异性的问题。

根据本公开的磁粉的材料未被特别限制。然而,板状颗粒可以优选地由结晶材料制成,使得根据本公开的磁粉可以应用于马达芯。

在一个实施例中,板状颗粒可以用选自由纯铁、羰基铁、fe-si-cr基合金、fe-ni基合金、fe-co基合金、fe-v基合金、fe-al基合金、fe-si基合金和fe-si-al基合金构成的组的至少一者制成。

在一个实施例中,根据本公开的磁粉可以包含预定量的具有小直径的球形颗粒,以提供具有致密组织和高强度的马达芯。

球形颗粒可以对板状颗粒沿面方向堆叠时产生的未占用空间的部分进行填充。

球形颗粒的直径可以为1μm或更小,并且更优选为0.5μm或更小。当球形颗粒的直径超过1μm时,这可能阻碍板状颗粒沿面方向的对齐。

<磁粉的制备方法>

如上所述,根据本公开的磁粉包含板状颗粒。本公开提供了一种容易以低成本制备板状颗粒的方法。

参照图2,根据本公开的磁粉的制备方法可以包括:将包含磁性原料的浆料10转化成液滴11;以及将液滴11喷射到旋转板130上,以制备板状颗粒。

首先,根据本公开的磁粉的制备方法包括将包含磁性原料的浆料10转化成液滴11。

原料未被特别限制。在一个实施例中,原料可以包括选自由纯铁、羰基铁、fe-si-cr基合金、fe-ni基合金、fe-co基合金、fe-v基合金、fe-al基合金、fe-si基合金和fe-si-al基合金构成的组的至少一者。

参照图2,在根据本公开的一个实施方式中,可以将浆料10引入到炉110中,然后,浆料10可以穿过出口120被转化成液滴11。

在另一实施例中,包括原料的浆料的制备方法、将浆料转化成液滴的方法以及喷射液滴的方法未被特别限制,并且可以使用各种已知方法进行。

接下来,根据本公开的磁粉的制备方法包括将液滴11喷射到旋转板130上,以制备板状颗粒。

液滴11可以被喷射到旋转板130上。液滴11可以在板130上固化并且可以被转化成板状颗粒。

板130旋转。在一个实施例中,板可以具有预定的倾斜度。可以根据需要适当选择倾斜度。

<压缩粉末芯>

接下来,可以通过对包含如上所述的板状颗粒的磁粉进行压制成型和烧结来制备根据本公开的压缩粉末芯。如上所述,板状颗粒具有由以下关系式1定义的为4或更大的长宽比。

[关系式1]

长宽比=板状颗粒的长边的长度/板状颗粒的短边的长度。

可以通过对沿面方向堆叠的板状颗粒的叠层进行压制成型并烧结来制备根据本公开的压缩粉末芯,并因此可以具有非常致密的组织和优异的强度。

如上所述,根据本公开的磁粉的材料未被特别限制。磁粉的材料可以优选地由结晶材料制成,使得根据本公开的磁粉可以应用于马达芯。

在一个实施例中,板状颗粒可以用选自由纯铁、羰基铁、fe-si-cr基合金、fe-ni基合金、fe-co基合金、fe-v基合金、fe-al基合金、fe-si基合金和fe-si-al基合金构成的组的至少一者制成。

在一个实施例中,根据本公开的磁粉可以包含预定量的具有小直径的球形颗粒,以提供具有致密组织和高强度的马达芯。

球形颗粒可以对板状颗粒沿面方向堆叠时产生的未占用空间的部分进行填充。

球形颗粒的直径可以为1μm或更小,并且更优选为0.5μm或更小。当球形颗粒的直径超过1μm时,这可能阻碍板状颗粒沿面方向的对齐。

<压缩粉末芯的制备方法>

接下来,根据本公开的压缩粉末芯的制备方法可以包括以下步骤:对包含具有以下关系式1中定义的为4或更大的长宽比的板状颗粒的磁粉进行压制,从而获得成型产品;以及对该成型产品进行烧结:

[关系式1]

长宽比=板状颗粒的长边的长度/板状颗粒的短边的长度。

根据本公开的压缩粉末芯的制备方法包括对包含板状颗粒的磁粉进行压制,从而获得成型产品。成型产品可以是压缩粉末芯。

参照图3的(a),可以看出,板状颗粒沿面方向对齐并经受压力成形,以制备成型产品。

该工艺中的磁粉可以使用根据本公开的相同的磁粉。磁粉可以优选包含结晶材料,并且还可以包含直径为1μm或更小的球形颗粒。

接下来,根据本公开的压缩粉末芯的制备方法包括对成型产品进行烧结。

参照图3的(b),可以通过对压制成型产品施加高温热量来对该压制成型产品进行烧结。高温烧结可以在1100℃至1400℃的温度范围内进行1至3小时。烧结持续时间或温度未被特别限制。根据本公开的高温烧结可以采用已知的烧结方法。

在下文中将描述本公开的具体实施例。

<实施例>

1.本公开的实施例1

(1)磁粉的制备

制备由羰基铁组成的结晶磁性材料。通过将97质量份的磁性材料、2.5质量份的由丙烯酸树脂和酚醛树脂组成的绝缘粘合剂以及0.5质量份的由硬脂酸锌组成的润滑剂与作为溶剂的水混合来获得浆料。。

使用图2所示的设备100将所获得的浆料喷射到板上,以获得板状颗粒。板状颗粒中的各个板状颗粒的长宽比在5至6的范围内。长宽比被测量成从sem图像中随机提取的五个颗粒的长宽比的平均值。

(2)压制成型

将获得的磁粉填充到模具中,并在其中以1gpa至2gpa的表面压力被模压,以获得成型产品,该成型产品具有外径为20mm、内径为12mm并且厚度为3mm的环形状。

(3)热处理和烧结

将获得的成型产品放置在包含氮气气流气氛的炉中。炉的温度以每分钟2℃的速率从室温上升至600℃。然后,所获得的成型产品经受2小时的热处理。之后,以每分钟2℃的速率将温度升高至1300℃。然后,成型产品在1300℃下经受2小时的热处理,从而获得压缩粉末芯。

2.本公开的实施例2

本公开的实施例2的浆料的80%由板状颗粒组成,而其20%由球形颗粒组成,以获得板状颗粒和球形颗粒在其中彼此混合的混合磁粉。然后,通过对混合磁粉应用与本公开的实施例1相同的成型、热处理和烧结工艺,来获得根据本公开的实施例2的压缩粉末芯。

就此而言,球形颗粒从由羰基铁制成的结晶磁性材料获得,并使用喷射干燥器设备制备。

3.对比例1

对比例1的浆料的整体由用球形颗粒制成的磁粉构成。通过对全部具有球形颗粒的磁粉应用与本公开的实施例1相同的成型和烧结工艺,来获得根据对比例1的压缩粉末芯。

球形颗粒从由羰基铁制成的结晶磁性材料获得,并使用喷射干燥器设备制备。

<磁性能的测量>

对所获得的根据本公开的实施例1和2以及对比例1的压缩粉末芯的磁通密度进行测量。通过使用磁滞曲线仪(aetechronb-h曲线示踪器)获得磁滞曲线值并通过根据磁滞曲线计算磁通密度,来对各个芯的磁通密度进行测量。

本公开的实施例1和2中的各个实施例的磁通密度为1.8t(特斯拉),而对比例1的磁通密度为1.7t(特斯拉)。因此,可以看出,与使用传统磁粉的芯相比,使用根据本公开的磁粉的芯具有改善的磁通密度。

应当理解,前述实施方式在所有方面都是例示性的,而不是限制性的。此外,本公开的范围将由所附权利要求而不是前述描述来指示。此外,所附权利要求的含义和范围以及从等效构思得出的所有改变和修改都应被解释为被包括在本公开的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1