一种室温超短沟道硒化铂太赫兹探测器的制作方法

文档序号:21253427发布日期:2020-06-26 21:45阅读:533来源:国知局
一种室温超短沟道硒化铂太赫兹探测器的制作方法

本专利涉及一种室温超短沟道硒化铂太赫兹探测器,具体指利用倾角蒸镀法形成超短沟道和非对称金属天线结构,利用位于天线中间的超窄狭缝实现太赫兹电场增强,当太赫兹照射时,非对称的电极产生赛贝克电动势驱动载流子定向运动,产生光伏信号,实现对太赫兹辐射的室温探测,对新鲜树叶的太赫兹无损成像和对封装在信封中的金属钥匙透射成像。



背景技术:

太赫兹波(terahertz,thz)的频率通常认为位于0.1~10thz(波长3毫米~30微米)之间,处于于毫米波和红外线之间。太赫兹研究是电子学和光子学交叉的交叉学科。一直以来,高功率、稳定输出的固态太赫兹源和高速、高灵敏度的太赫兹探测器的研究困难重重,限制了太赫兹技术的发展和应用,常常被称为的thz空白(terahertzgap)。

太赫兹光子特点与应用:(a)太赫兹光子能量(特征值为4mev)低、透射性好,由于太赫兹波的光子能量很低,它穿透物质时,不容易发生电离;又因为太赫兹光子对很多非极性分子透射性好,所以可用来进行对人体的成像或者无损检测,相比较x射线检测,对生命活体的损伤的大大降低。(b)指纹谱特征,太赫兹波段与很多大分子的振动、转动的特征频率重合,所以很多物质在太赫兹波段都有明显的共振吸收峰,这种指纹谱特征可以用来进行物质检测,如毒品的检测、dna探测等。(c)太赫兹波的时域频谱稳定性好,信噪比高于傅立叶变换红外光谱技术,这使得太赫兹波非常适用于成像应用。(d)太赫兹波段相干性好、覆盖范围广,是下一代无线通信的有利备选波段。

实现太赫兹技术的应用与突破,一个关键就是制备高速度、高灵敏度、高稳定性和室温工作的太赫兹波探测器,因此发展高效光电转化的室温探测器就成为当前太赫兹探测和太赫兹成像研究的核心课题。目前,量子阱太赫兹探测遇到了很大困难,主要是因为太赫兹的光子能量小于热扰动的能量,很容易达到饱和;在场效应晶体管中利用等离激元过阻尼振荡的方法探测效率还不够高。在商用的太赫兹波探测器中,热释电探测器的响应速度比较慢,响应时间一般是毫秒量级;热辐射计一般需要比较低的工作温度;肖特基二极管的工作频率在亚太赫兹波段并且需要十分复杂的加工工艺。

二维材料的出现为太赫兹探测提供了新的备选方案。其具有表面积大,悬挂键少、带隙可调等优势受到青睐和广泛的关注。其中,硒化铂是一种ⅱ型狄拉克半金属材料,具有载流子迁移率大、带隙随层数变化可调、极强的稳定性和拓扑性质丰富等特点。这种材料与带有超窄狭缝的非对称蝶形天线相结合,可以实现对太赫兹电场的聚焦增强和高效耦合和转化,为新型的太赫兹探测器的研究提供了良好的平台。



技术实现要素:

本专利提出一种室温超短沟道硒化铂太赫兹探测器,实现了硒化铂器件在室温太赫兹灵敏探测和无损透射成像等领域的应用。上述专利将硒化铂材料和带有超窄狭缝的非对称蝶形天线(bow-tieantenna)相结合,该探测器利用位于天线中间的超窄狭缝实现太赫兹电场增强,在室温下利用非对称的金属电极产生赛贝克电动势驱动载流子定向运动,从而产生光伏信号,实现对太赫兹辐射的灵敏探测,对新鲜树叶的无损透射成像和对封装在纸袋中的金属钥匙透射成像。

本专利指一种室温超短沟道硒化铂太赫兹探测器及制备方法,所述探测器的结构自下而上为:第一层是衬底1、第二层是氧化层2、第三层是硒化铂3、以及搭在硒化铂上的铬金蝶形天线4、钛金蝶形天线7和与天线相连接的金属电极一5、金属电极二6。

所述的衬底1为高阻硅衬底,电阻率大于10000欧姆·米;

所述的氧化层2为二氧化硅;

所述的硒化铂3厚度为30-50纳米;

所述的铬金蝶形天线4,下层金属为铬,上层金属为金;

所述的金属电极一5和金属电极二6为复合金属电极,下层金属为铬,上层金属为金;

所述的钛金蝶形天线7,下层金属为钛,上层金属为金。

本专利指一种室温超短沟道硒化铂太赫兹探测器及制备方法,所述器件制备包括以下步骤:

1)通过微机械剥离方法将硒化铂3转移至氧化层2的表面;

2)采用紫外光刻技术,结合电子束蒸发及传统剥离工艺制备铬金蝶形天线4、金属电极一5和金属电极二6;

3)采用倾角蒸镀法(tilted-angleevaporationtechnique)在铬金蝶形天线和部分硒化铂上覆盖钛金,形成超短沟道和非对称金属天线。

本专利专利的优点在于:

1)采用高阻硅作为衬底,有效地减少低阻的硅衬底对太赫兹的反射,提高了探测器的光吸收和光电转化效率。

2)采用硒化铂作为导电沟道材料,硒化铂具有载流子迁移率高、带隙可调和高稳定性等优点,可实现宽频、高速的太赫兹探测。

3)采用带有超窄狭缝的非对称蝶形天线结构,实现太赫兹电场的聚焦增强和提高了器件的光电转化能力。

4)利用本探测器可实现在室温下对新鲜树叶的无损成像,也可以对封装在信封中的金属钥匙成像,为实现室温太赫兹探测器广泛应用提供可行的探索方案。

附图说明

图1为本专利硒化铂薄层太赫兹探测器件结构单元的侧视示意图;

图中:1衬底、2氧化层、3硒化铂、4铬金蝶形天线、5金属电极一、6金属电极二、7钛金蝶形天线。

图2为硒化铂太赫兹探测器件测试的实验装置示意图;

图3为硒化铂太赫兹探测器在室温下斩波频率1khz,0.12thz的工作频率下响应波形图;

图4为硒化铂太赫兹探测器在室温下斩波频率1khz,0.29thz的工作频率下响应波形图;

图5为硒化铂太赫兹探测器太赫兹波极化方向的响应图;

图6为硒化铂太赫兹探测器空气中放置半年后的响应图;

图7是硒化铂太赫兹探测器沟道硒化铂材料的拉曼响应随时间的变化图。

具体实施方式:

以下结合附图对本专利的具体实施方式作详细说明:

本专利研制了一种超超短沟道室温硒化铂太赫兹探测器。该探测器采用了带有超窄狭缝的非对称蝶形天线结构。太赫兹光照射时,赛贝克电动势驱动硒化铂内载流子定向运动,实现室温快速的太赫兹的探测。该探测器具有高速、宽频、高响应、高稳定性等优点,可以在室温下对树叶进行无电离损伤成像,也可以对封装在纸袋中的金属钥匙透射成像。

具体步骤如下:

1.衬底选择

选用高阻硅作为衬底,电阻率大于10000欧姆·米。

2.用热氧化法在衬底上制备氧化层

3.硒化铂制备和转移

用机械剥离的方法将硒化铂转移到氧化层上,硒化铂厚度30纳米到50纳米。

4.硒化铂天线和电极的制备

采用紫外光刻技术,结合电子束蒸发技术制备铬金蝶形天线和金属电极,下层金属为铬,上层金属为金;结合传统剥离工艺剥离金属膜,获得铬金天线和复合金属电极。

5.利用倾角蒸镀法在已经做好的天线上蒸镀一层钛金电极并覆盖部分硒化铂,制备钛金电极同时形成超短沟道。

6.硒化铂太赫兹探测器的光电表征和成像实验。如图3所示,这是实验室自己搭建的太赫兹光电表征和成像系统,太赫兹源是由微波源和倍频器、放大器构成,频率范围是0.02-0.3thz。将经过电磁斩波调制的太赫兹辐射通过离轴抛面镜聚焦到探测器件上,探测器件产生的光电流信号首先经过前置放大器(sr570)放大,然后输入示波器进行波形显示,同时输入给锁相放大器(sr830)进行信号提取,全过程都由计算机通过集成的软件系统进行操控。测试结果表明:

a)当硒化铂的厚度为30纳米,沟道长度为100纳米。在功率密度为1毫瓦每平方厘米的太赫兹波照射下,可实现100纳安的光电流。

b)当硒化铂的厚度为40纳米,沟道长度为100纳米。在功率密度为1毫瓦每平方厘米的太赫兹波照射下,可实现120纳安的光电流。

c)当硒化铂的厚度为50纳米,沟道长度为100纳米。在功率密度为1毫瓦每平方厘米的太赫兹波照射下,可实现200纳安的光电流。

本专利中探测器结构的参数在一定范围里变化时,硒化铂室温太赫兹波探测器都有很好的探测太赫兹波,测试结果表明,器件具有良好的偏振特性,器件的响应时间可以达到1微秒,在0.29thz时响应率可以达到200v/w,噪声等效功率低于100pw/hz0.5,并初步实现了偏置电压下响应幅度的调控,可有效的对太赫兹波进行室温探测。器件可实现室温下对新鲜树叶清晰成像,也可以实现对封装在信封中的金属钥匙透射成像,在太赫兹探测和成像领域有广泛的应用价值。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1