SnO2基同质结自驱动紫外光光电探测器及其制备方法与流程

文档序号:23310306发布日期:2020-12-15 11:41阅读:165来源:国知局
SnO2基同质结自驱动紫外光光电探测器及其制备方法与流程

本发明涉及紫外光光电探测器,尤其涉及一种sno2基同质结自驱动紫外光光电探测器及其制备方法。



背景技术:

sno2作为一种典型的直接带隙宽禁带半导体材料,其禁带宽度达到了3.6ev,因此对可见光具有很高的透过性,并且相比于其他的一些宽禁带半导体材料来说sno2具有更稳定的物理化学性质,更高的机械强度以及更大的电子迁移率等诸多优势,在紫外光电领域具有巨大的应用潜力。近年来,在紫外探测领域,基于sno2的msm型紫外探测器件被成功的制备出来。然而,基于sno2的msm型光电探测器通常光响应速度慢,有严重的持续光电导效应,并且需要在外加偏压条件下工作,从而导致器件有较大的暗电流。

针对目前sno2基msm紫外光光电探测器的响应速度慢、持续光电导效应严重,暗电流较大的缺陷,有必要对现有的sno2基msm型紫外光光电探测器进行改进。



技术实现要素:

有鉴于此,本发明提出了一种sno2基同质结自驱动紫外光光电探测器及其制备方法,以解决现有技术中存在响应速度慢、暗电流高的技术问题。

第一方面,本发明提供了一种sno2基同质结自驱动紫外光光电探测器,包括:

衬底;

n-nbsno2薄膜层,位于所述衬底表面;

mg掺杂p型导电mgsno2薄膜层,位于所述n-nbsno2薄膜层远离所述衬底一侧的表面,所述mg掺杂p型导电mgsno2薄膜层在所述n-nbsno2薄膜层表面的正投影不完全覆盖所述n-nbsno2薄膜层;

第一金属电极层,位于所述mg掺杂p型导电mgsno2薄膜层远离衬底一侧的表面;

第二金属电极层,位于所述n-nbsno2薄膜层远离所述衬底一侧且未被所述mg掺杂p型导电mgsno2薄膜层覆盖的表面。

可选的,所述的sno2基同质结自驱动紫外光光电探测器,所述第一金属电极层和所述第二金属电极层均为金电极层或铝电极层。

可选的,所述的sno2基同质结自驱动紫外光光电探测器,还包括n-sno2薄膜层,所述n-sno2薄膜层位于位于所述n-nbsno2薄膜层远离衬底一侧的表面,所述n-sno2薄膜层在所述n-nbsno2薄膜层表面的正投影不完全覆盖所述n-nbsno2薄膜层,所述mg掺杂p型导电mgsno2薄膜层位于所述n-sno2薄膜层远离所述衬底一侧的表面。

第二方面,本发明还提供了一种sno2基同质结自驱动紫外光光电探测器的制备方法,包括以下步骤:

提供一衬底;

提供nbsno2陶瓷靶材和mgsno2陶瓷靶材;

利用所述nbsno2陶瓷靶材在所述衬底表面制备n-nbsno2薄膜层;

利用所述mgsno2陶瓷靶材在所述n-nbsno2薄膜层远离衬底一侧的表面制备镁掺杂p型导电mgsno2薄膜层,所述镁掺杂p型导电mgsno2薄膜层不完全覆盖所述n-nbsno2薄膜层;

在所述镁掺杂p型导电mgsno2薄膜层远离衬底一侧的表面制备第一金属电极层;

在n-nbsno2薄膜层远离衬底一侧且未被所述mg掺杂p型导电mgsno2薄膜层覆盖的表面制备第二金属电极层。

可选的,所述的sno2基同质结自驱动紫外光光电探测器的制备方法,利用所述nbsno2陶瓷靶材在所述衬底表面制备n-nbsno2薄膜层具体包括:将所述衬底置于脉冲激光沉积系统真空腔体中,并将衬底加热至700℃再向真空腔体中通入氧气,调节生长室压强为2pa,利用nbsno2陶瓷靶材采用脉冲激光烧蚀的方法在衬底上制备得到n-nbsno2薄膜层。

可选的,所述的sno2基同质结自驱动紫外光光电探测器的制备方法,利用所述mgsno2陶瓷靶材在所述nbsno2薄膜层远离衬底一侧的表面制备镁掺杂p型导电mgsno2薄膜层包括:将衬底置于脉冲激光沉积系统真空腔体中,并将衬底加热至700℃再向真空腔体中通入氧气,调节生长室压强为2pa,利用mgsno2陶瓷靶材采用脉冲激光烧蚀的方法在衬底上制备得到镁掺杂p型导电mgsno2薄膜层。

可选的,所述的sno2基同质结自驱动紫外光光电探测器的制备方法,利用所述nbsno2陶瓷靶材在所述衬底表面制备n-nbsno2薄膜层后,还包括利用sno2陶瓷靶材在所述n-nbsno2薄膜层远离衬底一侧的表面制备n-sno2薄膜层,所述n-sno2薄膜层在所述n-nbsno2薄膜层表面的正投影不完全覆盖所述n-nbsno2薄膜层,然后利用所述mgsno2陶瓷靶材在所述n-sno2薄膜层远离衬底一侧的表面制备镁掺杂p型导电mgsno2薄膜层;

其中,n-sno2薄膜层的制备方法具体为:将衬底置于脉冲激光沉积系统真空腔体中,并将衬底加热至700℃再向真空腔体中通入氧气,调节生长室压强为2pa,利用sno2陶瓷靶材采用脉冲激光烧蚀的方法在衬底上制备得到n-sno2薄膜层。

可选的,所述的sno2基同质结自驱动紫外光光电探测器的制备方法,所述nbsno2陶瓷靶材的制备方法包括:

将sno2粉末和nb2o5粉末混合后中加入水进行球磨,之后干燥;

将混合粉末压制成nbsno2陶瓷坯片,在真空管式炉中,于温度为700~1300℃下对nbsno2陶瓷坯片进行烧结即得nbsno2靶材。

可选的,所述的sno2基同质结自驱动紫外光光电探测器的制备方法,所述mgsno2陶瓷靶材的制备方法包括:

将sno2粉末和mgo粉末混合后中加入水进行球磨,之后干燥;

将混合粉末压制成mgsno2陶瓷坯片,在真空管式炉中,于温度为700~1300℃下对mgsno2陶瓷坯片进行烧结即得mgsno2靶材。

可选的,所述的sno2基同质结自驱动紫外光光电探测器的制备方法,所述sno2陶瓷靶材的制备方法包括:

将sno2粉末加入水进行球磨之后干燥;

将sno2粉末压制成sno2陶瓷坯片,在真空管式炉中,于温度为700~1300℃下对sno2陶瓷坯片进行烧结即得sno2靶材。

本发明的一种sno2基同质结自驱动紫外光光电探测器及其制备方法相对于现有技术具有以下有益效果:

(1)本发明的sno2基同质结自驱动紫外光光电探测器,n-nbsno2薄膜层作为导电底电极层,mg掺杂p型导电mgsno2薄膜层与n-nbsno2薄膜层之间构成pn结,mg掺杂p型导电mgsno2薄膜层作为空穴传输层,具有高的重复性与稳定性,与传统的msm型探测器相比具有极低的暗电流、极低的功耗以及极快的响应速度,可以在零偏压下自驱动工作;

(2)本发明的sno2基同质结自驱动紫外光光电探测器,还包括n-sno2薄膜层,mg掺杂p型导电mgsno2薄膜层与n-sno2薄膜层之间构成pn结,mg掺杂p型导电mgsno2薄膜层作为空穴传输层,具有高的重复性与稳定性,与传统的msm型探测器相比具有极低的暗电流、极低的功耗以及极快的响应速度,可以在零偏压下自驱动工作;同时,n-sno2薄膜层的加入阻止了nb元素的扩散,使其不能扩散进入p型导电mgsno2薄膜层作为施主杂质,n-sno2薄膜层作为半本征层可以扩大耗尽区宽度,使pn结表现出更好的整流特性;

(3)本发明的sno2基同质结自驱动紫外光光电探测器,是一种光伏型半导体光电探测器,其特点是不需要外加电源,从而使器件工作时拥有极低的暗电流,当光辐射产生非平衡载流子时,pn结内建电场会快速将空穴与电子分开并传输到电极两端,产生光电流,从而使器件有极快的光响应速度;

(4)本发明的sno2基同质结自驱动紫外光光电探测器,采用常规的脉冲激光沉积技术生长,设备和操作工艺简单,易于控制。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例1的sno2基同质结自驱动紫外光光电探测器的结构示意图;

图2为本发明实施例1的sno2基同质结自驱动紫外光光电探测器的制备方法的工艺流程图;

图3为本发明的实施例2的sno2基同质结自驱动紫外光光电探测器的结构示意图;

图4为本发明实施例1制备得到的sno2基同质结自驱动紫外光光电探测器在黑暗条件下以及290nm光照下的电流电压曲线图;

图5为本发明实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在黑暗条件下的电流电压曲线图;

图6为本发明实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在0a电流偏置下,打开290nm紫外光光照下响应速度图;

图7为本发明实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在0a电流偏置下,关闭290nm紫外光光照下响应速度图;

图8为本发明实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在0v偏压下,290nm紫外光光照下的时间电流曲线图;

图9为本发明实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在0v偏压下,对不同波长的光响应度曲线图。

具体实施方式

下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。

实施例1

如图1所示,本发明提供了一种sno2基同质结自驱动紫外光光电探测器,包括:

衬底1;

n-nbsno2薄膜层2,位于衬底1表面;

mg掺杂p型导电mgsno2薄膜层3,位于n-nbsno2薄膜层2远离衬底一侧的表面,mg掺杂p型导电mgsno2薄膜层3在n-nbsno2薄膜层2表面的正投影不完全覆盖n-nbsno2薄膜层2;

第一金属电极层4,位于mg掺杂p型导电mgsno2薄膜层3远离衬底1一侧的表面;

第二金属电极层5,位于n-nbsno2薄膜层2远离衬底1一侧且未被mg掺杂p型导电mgsno2薄膜层3覆盖的表面。

需要说明的是,本申请实施例中,衬底1包括c面蓝宝石衬底或玻璃衬底、硅或石英玻璃衬底、gan/蓝宝石(硅)衬底等,蓝宝石衬底其主要成分是氧化铝(al2o3),具体的,本申请实施例中衬底选用c面蓝宝石衬底。

需要说明的是,本申请实施例中,n-nbsno2薄膜层2中n-nbsno2指的是n型nbsno2薄膜层。实际中n-nbsno2薄膜层2还可以用n型sbsno2薄膜、fsno2薄膜等替换。

本申请实施例中,mg掺杂p型导电mgsno2薄膜层3位于n-nbsno2薄膜层2远离衬底1一侧的表面,具体的,将n-nbsno2薄膜层2表面分为左右相等的两部分,mg掺杂p型导电mgsno2薄膜层3在n-nbsno2薄膜层2表面的正投影与n-nbsno2薄膜层2表面的左侧的部分重合,而n-nbsno2薄膜层2表面的右侧的部分则完全暴露。

本申请实施例中,第一金属电极层4采用铝电极层,第二金属电极层5也采用铝电极层,镁掺杂p型导电mgsno2薄膜层3与第一金属电极层4之间为欧姆接触,n-nbsno2薄膜层2与第二金属电极层5之间为欧姆接触。

本申请的sno2基同质pn结,具体的mg掺杂p型导电mgsno2薄膜层3与n-nbsno2薄膜层2之间构成pn结,mg掺杂p型导电mgsno2薄膜层3作为空穴传输层,具有高的重复性与稳定性,与传统的msm型探测器相比具有极低的暗电流、极低的功耗以及极快的响应速度,可以在零偏压下自驱动工作。

基于同一发明构思,本申请实施例还提供了上述sno2基同质结自驱动紫外光光电探测器的制备方法,如图2所示,包括以下步骤:

s1、提供一衬底;

s2、提供nbsno2陶瓷靶材和mgsno2陶瓷靶材;

s3、利用nbsno2陶瓷靶材在衬底表面制备n-nbsno2薄膜层;

s4、利用mgsno2陶瓷靶材在n-nbsno2薄膜层远离衬底一侧的表面制备镁掺杂p型导电mgsno2薄膜层,镁掺杂p型导电mgsno2薄膜层不完全覆盖所述n-nbsno2薄膜层;

s5、在镁掺杂p型导电mgsno2薄膜层远离衬底一侧的表面制备第一金属电极层;

s6、在n-nbsno2薄膜层远离衬底一侧且未被mg掺杂p型导电mgsno2薄膜层覆盖的表面制备第二金属电极层。

具体的,本申请实施例中,nbsno2陶瓷靶材的制备方法包括:称取摩尔比为198:2的sno2和nb2o5粉末置于球磨罐中得到混合粉末,然后向混合粉末中加入质量为混合粉末质量60%的去离子水进行球磨8小时;将球磨后的混合粉末放入真空干燥箱中于温度为120℃下,干燥8小时;然后向干燥后的混合粉末中加入质量为干燥后的混合粉末质量3%的无水乙醇,研磨搅拌均匀,得到混合粘结在一起的陶瓷坯料,并在压片机中于压强为4mpa压成厚度为3mm的nbsno2陶瓷坯片;在氧气氛围中,于真空管式炉中,在1200℃下对得到的nbsno2陶瓷坯片进行烧结,得到nbsno2陶瓷靶材。

具体的,本申请实施例中,mgsno2陶瓷靶材的制备方法包括:称取摩尔比为96:4的sno2和mgo粉末置于球磨罐中得到混合粉末,然后向混合粉末中加入质量为混合粉末质量60%的去离子水进行球磨8小时;将球磨后的混合粉末放入真空干燥箱中于温度为120℃下,干燥8小时;然后向干燥后的混合粉末中加入质量为干燥后的混合粉末质量3%的无水乙醇,研磨搅拌均匀,得到混合粘结在一起的陶瓷坯料,并在压片机中于压强为4mpa压成厚度为3mm的mgsno2陶瓷坯片;在氧气氛围中,于真空管式炉中,在1200℃下对得到的mgsno2陶瓷坯片进行烧结,得到mgsno2陶瓷靶材。

以下进一步说明sno2基同质结自驱动紫外光光电探测器的制备方法,具体的,取c面蓝宝石为薄膜生长的衬底,对衬底依次用丙酮、无水乙醇、去离子水清洗15分钟,之后用高纯氮气吹干,得到干净的衬底并放入脉冲激光沉积系统真空腔体中,并抽真空至1×10-4pa,将衬底加热到700℃,通入o2于真空腔体中,调节生长室气压为2pa,利用nbsno2陶瓷靶材采用脉冲激光烧蚀的方法在衬底上进行n-nbsno2薄膜的生长,即制备得到n-nbsno2薄膜层;将n-nbsno2薄膜层表面部分使用掩膜板遮盖,具体的,将n-nbsno2薄膜层右侧的部分使用掩膜板遮盖,放入脉冲激光沉积系统真空腔体中,并抽真空至1×10-4pa,将衬底加热到700℃,通入o2于真空腔体中,调节生长室气压为2pa,利用mgsno2陶瓷靶材采用脉冲激光烧蚀的方法在n-nbsno2薄膜层左侧部分上进行mg掺杂的mgsno2薄膜的生长;然后在真空管式炉中将生长有n-nbsno2薄膜、mg掺杂的mgsno2薄膜的衬底于氧气的气氛下,于600℃下退火;退火后在镁掺杂p型导电mgsno2薄膜层远离衬底一侧的表面制备第一金属电极层;在n-nbsno2薄膜层远离衬底一侧且未被mg掺杂p型导电mgsno2薄膜层覆盖的表面制备第二金属电极层,具体的,可通过化学气相沉积、物理气相沉积、蒸镀等方法制备得到第一金属电极层(即铝电极层)和第二金属电极层(即铝电极层)。

实施例2

如图3所示,本发明提供了一种sno2基同质pn结自驱动紫外光光电探测器,包括:

衬底1;

n-nbsno2薄膜层2,位于衬底1表面;

n-sno2薄膜层6,位于nbsno2薄膜层2远离衬底1一侧的表面,n-sno2薄膜层6在n-nbsno2薄膜层6表面的正投影不完全覆盖n-nbsno2薄膜层6;

mg掺杂p型导电mgsno2薄膜层3,位于n-sno2薄膜层6远离衬底1一侧的表面;

第一金属电极层4,位于mg掺杂p型导电mgsno2薄膜层3远离衬底1一侧的表面;

第二金属电极层5,位于n-nbsno2薄膜层2远离衬底1一侧且未被n-sno2薄膜层6覆盖的表面。

需要说明的是,本申请实施例中,衬底1包括c面蓝宝石衬底或玻璃衬底、硅或石英玻璃衬底、gan/蓝宝石(硅)衬底等,蓝宝石衬底其主要成分是氧化铝(al2o3),具体的,本申请实施例中衬底选用c面蓝宝石衬底。

需要说明的是,本申请实施例中,n-nbsno2薄膜层2中n-nbsno2指的是n型nbsno2薄膜层。实际中n-nbsno2薄膜层2还可以用n型sbsno2薄膜、fsno2薄膜等替换。

需要说明的是,n-sno2薄膜层6指的是n型sno2薄膜层。

本申请实施例中,n-sno2薄膜层6位于nbsno2薄膜层2远离衬底1一侧的表面,具体的,具体的,将nbsno2薄膜层2表面分为左右相等的两部分,n-sno2薄膜层6在nbsno2薄膜层2表面的正投影与nbsno2薄膜层2表面的左侧的部分重合,而nbsno2薄膜层2表面的右侧的部分则完全暴露。

本申请实施例中,第一金属电极层4采用金电极层,第二金属电极层5也采用金电极层,镁掺杂p型导电mgsno2薄膜层3与第一金属电极层4之间为欧姆接触,n-nbsno2薄膜层2与第二金属电极层5之间为欧姆接触。

本申请的sno2基同质pn结,具体的mg掺杂p型导电mgsno2薄膜层3与n-sno2薄膜层6之间构成pn结,mg掺杂p型导电mgsno2薄膜层3作为空穴传输层,具有高的重复性与稳定性,与传统的msm型探测器相比具有极低的暗电流、极低的功耗以及极快的响应速度,可以在零偏压下自驱动工作。同时,n-sno2薄膜层6的加入阻止了nb元素的扩散,使其不能扩散进入p型导电mgsno2薄膜层作为施主杂质,n-sno2薄膜层作为半本征层可以扩大耗尽区宽度,使pn结表现出更好的整流特性。

基于同一发明构思,本申请实施例还提供了上述sno2基同质结自驱动紫外光光电探测器的制备方法,包括以下步骤:

提供一衬底;

提供nbsno2陶瓷靶材、sno2陶瓷靶材和mgsno2陶瓷靶材;

利用nbsno2陶瓷靶材在衬底表面制备n-nbsno2薄膜层;

利用sno2陶瓷靶材在nbsno2薄膜层远离衬底一侧的表面制备n-sno2薄膜层,n-sno2薄膜层不完全覆盖nbsno2薄膜层;

利用mgsno2陶瓷靶材在n-sno2薄膜层远离衬底一侧的表面制备镁掺杂p型导电mgsno2薄膜层;

在镁掺杂p型导电mgsno2薄膜层远离衬底一侧的表面制备第一金属电极层;

在nbsno2薄膜层远离衬底一侧且未被n-sno2薄膜层覆盖的部分表面制备第二金属电极层。

具体的,本申请实施例中,nbsno2陶瓷靶材的制备方法包括:称取摩尔比为198:2的sno2和nb2o5粉末置于球磨罐中得到混合粉末,然后向混合粉末中加入质量为混合粉末质量60%的去离子水进行球磨8小时;将球磨后的混合粉末放入真空干燥箱中于温度为120℃下,干燥8小时;然后向干燥后的混合粉末中加入质量为干燥后的混合粉末质量3%的无水乙醇,研磨搅拌均匀,得到混合粘结在一起的陶瓷坯料,并在压片机中于压强为4mpa压成厚度为3mm的nbsno2陶瓷坯片;在氧气氛围中,于真空管式炉中,在1200℃下对得到的nbsno2陶瓷坯片进行烧结,得到nbsno2陶瓷靶材。

具体的,本申请实施例中,sno2陶瓷靶材的制备方法包括:称取10g的sno2粉末于球磨罐,然后加入质量为sno2粉末质量60%的去离子水进行球磨8小时,然后将球磨后的sno2粉末置于真空干燥箱中,于温度为120℃下干燥8小时,然后向干燥后的sno2粉末中加入质量为干燥后的sno2粉末质量3%的无水乙醇,研磨搅拌均匀,得到混合粘结在一起的陶瓷坯料,并在压片机中于压强为4mpa下压制成sno2陶瓷坯片;在氧气氛围中,于真空管式炉中,在1200℃下对得到的sno2陶瓷坯片进行烧结,得到sno2陶瓷靶材。

具体的,本申请实施例中,mgsno2陶瓷靶材的制备方法包括:称取摩尔比为96:4的sno2和mgo粉末置于球磨罐中得到混合粉末,然后向混合粉末中加入质量为混合粉末质量60%的去离子水进行球磨8小时;将球磨后的混合粉末放入真空干燥箱中于温度为120℃下,干燥8小时;然后向干燥后的混合粉末中加入质量为干燥后的混合粉末质量3%的无水乙醇,研磨搅拌均匀,得到混合粘结在一起的陶瓷坯料,并在压片机中于压强为4mpa压成厚度为3mm的mgsno2陶瓷坯片;在氧气氛围中,于真空管式炉中,在1200℃下对得到的mgsno2陶瓷坯片进行烧结,得到mgsno2陶瓷靶材。

以下进一步说明sno2基同质结自驱动紫外光光电探测器的制备方法,具体的,取c面蓝宝石为薄膜生长的衬底,对衬底依次用丙酮、无水乙醇、去离子水清洗15分钟,之后用高纯氮气吹干,得到干净的衬底并放入脉冲激光沉积系统真空腔体中,并抽真空至1×10-4pa,将衬底加热到700℃,通入o2于真空腔体中,调节生长室气压为2pa,利用nbsno2陶瓷靶材采用脉冲激光烧蚀的方法在衬底上进行n-nbsno2薄膜的生长,即制备得到n-nbsno2薄膜层;将n-nbsno2薄膜层表面部分使用掩膜板遮盖,具体的,将n-nbsno2薄膜层右侧的部分使用掩膜板遮盖,放入脉冲激光沉积系统真空腔体中,并抽真空至1×10-4pa,将衬底加热到700℃,通入o2于真空腔体中,调节生长室气压为2pa,利用sno2陶瓷靶材采用脉冲激光烧蚀的方法在nbsno2薄膜层左侧部分上进行n-sno2薄膜的生长;然后改变靶材为mgsno2靶材,在同样条件下采用脉冲激光烧蚀的方法在n-sno2薄膜层表面进行mg掺杂的mgsno2薄膜的生长,得到mg掺杂的mgsno2薄膜的生长;然后在真空管式炉中将生长有n-nbsno2薄膜、n-sno2薄膜、mg掺杂的mgsno2薄膜的衬底于氧气的气氛下,于600℃下退火;退火后在镁掺杂p型导电mgsno2薄膜层远离衬底一侧的表面制备第一金属电极层;在n-nbsno2薄膜层远离衬底一侧且未被mg掺杂p型导电mgsno2薄膜层覆盖的表面制备第二金属电极层,具体的,可通过化学气相沉积、物理气相沉积、蒸镀等方法制备得到第一金属电极层(即金电极层)和第二金属电极层(即金电极层)。

测试本申请实施例1制备得到的sno2基同质结自驱动紫外光光电探测器在黑暗条件下以及290nm光照下的的电流电压曲线,结果如图4所示。从图4中可以看出,本申请实施例1制备得到的sno2基同质结自驱动紫外光光电探测器具有良好的整流特性。

测试本申请实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在黑暗条件下的电流电压曲线,结果如图5所示,sno2基同质结自驱动紫外光光电探测器具有很好的整流效果,开启电压为1.23v。

由图4~5可知,实施例2相比于实施例1有更好的整流特性的原因在于:其一,n-sno2薄膜层的加入阻止了nb元素的扩散,使其不能扩散进入p-mgsno2薄膜层作为施主杂质;其二,n-sno2薄膜层作为半本征层可以扩大耗尽区宽度,使pn结表现出更好的整流特性。

测试本申请实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在0a电流偏置下,打开290nm紫外光光照时响应速度,结果如图6所示,从图6中可知,sno2基同质结自驱动紫外光光电探测器在0a电流偏置、290nm光照下上升响应时间为0.57ms。

测试本申请实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在0a电流偏置下,关闭290nm紫外光光照时响应速度,结果如图7所示,从图,7中可知,sno2基同质结自驱动紫外光光电探测器在0a电流偏置、290nm光照下,衰减时间为0.64ms。

测试本申请实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在0v偏压下,290nm紫外光光照下的时间电流曲线(10个循环),结果如图8所示,从图8中可知,重复10个周期测试,sno2基同质结自驱动紫外光光电探测器具有优秀的重复性。

测试本申请实施例2制备得到的sno2基同质结自驱动紫外光光电探测器在0v偏压下,对不同波长的光响应度曲线,结果如图9所示,从图9中可知,sno2基同质pn结自驱动紫外光光电探测器,对可见光没有响应,对紫外光有高的响应度(在240nm处最高,为9.6ma/w),表明探测器具有极快的响应速度,极好的稳定性与重复性以及优秀的光选择性。

以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1