显示器和用于制造显示器的方法与流程

文档序号:33507357发布日期:2023-03-18 04:14阅读:231来源:国知局
显示器和用于制造显示器的方法与流程
显示器和用于制造显示器的方法
1.本公开涉及显示器,具体地,涉及micro-led显示器以及用于制造这种显示器的方法。
2.在诸如移动设备、可穿戴设备、汽车设备等各种应用中使用的平板显示器技术的当前发展的重点在于制造具有更高像素密度、更高对比度和更好能效的显示器。现代设备开始利用新兴的微型光发射设备(micro-led)技术来形成所述显示器的像素元件。
3.此外,现代显示器的发展重点还在于集成红外光发射器,以提供应用所需的照明,例如,接近传感和生物特征认证。这些应用通过使用单独的光学成像模块来实现以用于传感反射光。然而,这些模块不仅需要设备内的额外空间,这可能是极其有限的资源,而且集成单独的模块通常会导致更高的生产工作量和成本。为了在实现传感能力和提供成本和空间保守的解决方案之间找到折衷,光学成像能力通常限于显示表面的小部分。
4.本发明的目的是提供一种具有收发器能力的显示器和电子传感设备的改进概念,其克服了基于单独模块和/或有限活动区域的现有解决方案的局限性。
5.这些目的通过独立权利要求的主题实现。从属权利要求中描述了另外的发展和实施例。
6.改进的概念基于在显示器内具有集成的传感元件的micro-led显示器的构思。传感元件能够实现为能够以与micro-led的制造相比类似的方式制造的微型光电二极管。此外,相同的封装和组装工艺步骤能够与micro-led共享。将光发射和光检测的功能结合在单一设备或部件中,使得显示器能够为具有各种类型传感能力的移动设备实现更紧凑的屏幕。因此,改进的概念为下一代移动设备的发射和传感元件的真正无缝集成铺平了道路。
7.特别地,根据改进概念所述的显示器包括显示衬底、多个像素和多个发光显示子像素。每个发光显示子像素包括微型发光二极管micro-led,并且被配置为发射用于形成显示图像的一部分的光。该显示器还包括多个光捕获子像素,其中,每个光捕获子像素包括微型光电二极管,并且被配置为接收由发光显示子像素的至少一部分发射并通过反射返回的光。
8.所述多个发光显示子像素和所述多个光捕获子像素设置在显示衬底的表面上。所述多个发光显示子像素和所述多个光捕获子像素形成分布在显示衬底的活动显示区域或活动区域上的像素。此外,像素的至少一部分包括光捕获子像素和至少一个发光显示子像素。
9.显示衬底能够是硅衬底,例如硅晶片或硅晶片的切片芯片,或蓝宝石衬底,包括具有用于操作像素的电路的功能层,例如读出电路和/或驱动电路的部件。显示衬底也能够是不同的材料,例如fr4或聚酰亚胺。
10.为了形成显示图像,像素由设置在显示衬底的表面上的发光子像素组成。例如,每个像素包括rgb颜色中的每个的发光子像素。其中,每个发光子像素包括至少一个micro-led。这些微型led基于常规技术,例如用于形成氮化镓基led。然而,micro-led的特征在于占用面积小得多,因此能够在保持特定像素密度的同时,在显示层(即,显示衬底的表面)上实现具有较高的像素密度或较低的有源元件群体密度的显示器。后一方面允许在显示器的
像素层中放置附加有源部件,从而允许附加功能和/或更紧凑的设计。
11.优于oled,micro-led通过与oled相比具有明显更高的发光亮度,与传统led相比具有更高的能效。这实现了接近无限的对比度。此外,与oled不同,micro-led不会显示屏幕老化效应。
12.根据改进的概念所述的显示器还包括多个光捕获子像素,其同样设置在除了micro-led的显示衬底的表面上。例如,除了上述发光子像素之外,显示器的一部分像素还包括一个或更多个光捕获子像素,其例如通过微型光电二极管实现。具有光捕获子像素的像素部分限定显示器的活动区域。在此上下文中的活动区域意味着显示器的所述部分能够传感入射到微型光电二极管上的光。
13.微型光电二极管的特征在于与micro-led的占用面积相同或至少相似,并且能够以类似的方式制造。它们包括吸收材料,例如硅、锗或取决于目标吸收波长的任何其他半导体材料,以及形成用于操作光电二极管的阳极和阴极的电接触件。
14.微型光电二极管设置在显示衬底上,使得它们能够接收从micro-led的至少一部分发射的光(例如从各个微型光电二极管附近的micro-led发射的光)并通过反射引导到微型光电二极管。反射能够是例如通过来自显示器玻璃的内部反射的显示器本身的表面的反射,或者是放置在显示器表面上或位于显示器上方的物体的反射。微型光电二极管还能够被配置为接收在显示器的环境中发射的光,例如用于实现环境光传感。
15.显示器的活动区域能够是显示区域的一部分,例如显示区域的一半,或者对应于整个显示区域。在该活动区域内,如果用户的相应身体部位被放置在活动区域内的显示器上或上方,则由微型光电二极管产生的光信号能够用于实现生物特征认证,例如指纹或面部识别。其中,由micro-led发射的光能够用作待识别对象的显示图像和照明,并且微型光电二极管能够被配置为接收所述照明的反射。
16.在一些实施例中,像素被设置在活动显示区域内的二维阵列中。
17.通常,显示器以二维矩阵排列形成,其中,发射和接收元件在显示衬底上并排排列。像素又能够类似地形成为子像素的二维阵列。例如,像素包括rgb micro-led作为拜耳(bayer)配置中的发光子像素,并且活动区域内的像素能够另外包括附加光捕获子像素作为微型光电二极管。替代地,例如,对于光捕获子像素,能够牺牲活动区域内的像素的发光子像素,例如拜耳排列的绿色像素。
18.在一些实施例中,所述多个发光显示子像素包括红外发射显示子像素,其中,每个红外发射显示像素包括红外发射器,例如红外micro-led或垂直腔表面发射激光器vcsel。
19.对于诸如生物特征认证和接近传感的应用,用于形成显示图像的相同光能够用作由微型光电二极管传感的反射光。然而,在可见光域中的物体的照明可能会对用户造成高度干扰,特别是在micro-led没有形成或形成暗显示图像的情况下。在这些情况下,这些应用能够在红外域中执行。
20.为此,像素还能够包括主要或仅发射红外域中的光的发光显示子像素。例如,与微型光电二极管一样,这些子像素能够被有效地视为添加到rgb发射子像素的附加颜色子像素。对于红外发射器,红外micro-led和vcsel都提供了具有与micro-led和微型光电二极管相似或相对应的占用面积的合适选项。类似于微型光电二极管,红外发射器能够被添加到整个显示器的像素或活动区域的像素,其本身对应于显示表面的一部分或如上所述的整个
显示表面。
21.在一些实施例中,所述多个光捕获子像素包括红外捕获显示子像素,其中,每个红外捕获子像素都包括红外检测器,例如红外微型光电二极管或谐振腔光电检测器。
22.对于一些应用,可能期望将微型光电二极管的至少一部分的灵敏度限制在红外域中的波长范围,例如对应于显示器的红外发射器的发射光谱的波长范围(例如940nm附近的波长范围)。特别是对于认证应用,这可能会由于抑制不需要的背景光而导致增强的性能。微型光电二极管的限制能够通过选择具有相应窄吸收窗的光电二极管的吸收材料或者替代地通过采用设置在微型光电二极管上的滤光器元件来实现。
23.在一些实施例中,micro-led包括led基层和设置在所述led基层上的发射层。
24.led基层可以是在led技术中通常用作led衬底的材料,例如si、ge、gaas或inp。发射层同样能够是led技术中常用的材料,例如aln、algan、ingan、ge、algainp、ingaas等。例如gan缓冲层的可选的缓冲层能够设置在led基层和发射层之间。缓冲器可以是掺杂的或未掺杂的。
25.在一些实施例中,微型光电二极管包括吸收层和设置在所述吸收层上的电接触件。
26.光电二极管基层能够是吸收材料,例如si、aln、algan、ingan或algainp。电接触件由诸如金属的导电材料制成,并形成微型光电二极管的阳极和阴极。可选地,微型光电二极管能够包括其他导电元件,例如tsv或背面再分配层。此外,微型光电二极管能够包括光电二极管基层,其可以用作衬底。
27.在一些实施例中,micro-led和微型光电二极管的占用面积小于0.1mm2,特别是小于100μm2。
28.在一些实施例中,micro-led的占用面积相当于微型光电二极管的占用面积的80%至120%。
29.micro-led和可选的红外发射器的小的占用面积使得能够将微型光电二极管与发光子像素(例如在发光子像素之间)直接集成。小的占用面积与光电二极管集成到显示器本身相结合,实现了真正的显示器内传感能力,而不需要提供附加传感模块,例如,当将其放置在显示器下方时,该附加传感模块将需要附加空间。此外,通过根据改进的概念提供具有micro-led和微型光电二极管的显示器,能够实现用于特征化传感能力的移动设备的显著更紧凑的显示器。
30.在一些实施例中,显示衬底是柔性衬底,特别是聚酰亚胺衬底。
31.柔性衬底的使用显著减少了平板显示器的质量,并且另外提供了使显示器符合、弯曲或滚动成任何形状的能力。此外,它开辟了通过连续滚压加工制造显示器的可能性,从而为经济高效的大规模生产提供了基础。例如聚酰亚胺的柔性聚合物衬底的特征在于优异的柔韧性、重量轻和成本低。
32.在一些实施例中,显示器还包括与显示衬底基本平行并设置在显示器的发射侧上的另一显示衬底。
33.在一些另外的实施例中,另外的显示衬底是柔性衬底,例如聚酰亚胺衬底。
34.为了保护micro-led、微型光电二极管和可选电子器件,显示器还能够包括第二衬底,所述第二衬底设置在子像素的背向显示衬底的一侧上。类似于所述第一衬底,所述另一
衬底同样能够是柔性衬底,例如聚酰亚胺衬底。为了更好地保护,能够用模具填充子像素和衬底之间产生的空隙。
35.在一些实施例中,显示器还包括透明导体,其中,所述透明导体设置在发光显示子像素中的每个面向另一显示衬底的一侧上,以及光捕获子像素中的每个面向所述另一显示衬底的一侧上。
36.为了电连接子像素,透明导体能够设置在子像素的一侧上,例如发射侧上。例如,氧化铟锡(ito)薄膜在子像素的发射或吸收侧上生长,因此被子像素和最终设备中的另一衬底夹在中间。
37.在一些实施例中,显示器还包括孔径结构,所述孔径结构设置在显示器的发射侧上的发光显示子像素和光捕获子像素的至少一部分上方。
38.光学孔径能够用于限制子像素的接收或发射角度,以防止不希望的光被微型光电二极管传感。光学孔径能够通过光学间隔层来实现,所述光学间隔层包括在micro-led和/或微型光电二极管上方限定光学孔径的光吸收材料。
39.在一些实施例中,显示器还包括透镜结构,所述透镜结构设置在显示器的发射侧上的发光显示子像素和光捕获子像素的至少一部分上方。
40.使用micro-led和微型光电二极管意味着与传统led或lcd显示器中使用的元件相比,所述元件的占用面积更小。然而,子像素和/或像素之间的巨大空白空间,例如当将其他电路设置在像素和子像素之间的显示衬底上时,可能导致不连续的显示图像。为了避免这一点,能够在子像素上方设置透镜元件,以用于确保在形成显示图像时照亮整个显示表面。同样,能够采用透镜元件以更有效地利用微型光电二极管来捕获光。
41.在一些实施例中,所述多个发光显示子像素和所述多个光捕获子像素被配置为由收发器元件驱动,特别是由单个收发器元件驱动。
42.例如,显示器包括收发器电路,例如收发器集成电路,所述收发器电路被配置为驱动micro-led以发光并且驱动微型光电二极管以接收光或者基于接收到的光产生光电流。收发器元件能够替代地是耦合到显示器的单独模块。
43.驱动led以及测量微型光电二极管的响应的例如实现为收发器芯片的单个元件,极大地简化了发射和检测的同步,并另外节省了产品上的有价值的衬底面。此外,这显著降低了成本。
44.在一些实施例中,所述多个发光显示子像素和所述多个光捕获子像素被配置为以同步方式驱动。
45.当micro-led的至少一部分被接通时,即发光时,驱动微型光电二极管以接收光或基于接收到的光产生光电流。例如,当红外发射的micro-led被驱动发光而在可见光域中发光的micro-led的发射被禁用时,微型光电二极管被操作。
46.例如,作为显示器或单独元件的一部分并且被配置为驱动micro-led以发光并且驱动微型光电二极管以接收光或者基于接收到的光产生光电流的收发器电路以所述方式实现同步驱动。
47.通过一种用于制造显示器的方法另外解决了该目的。该方法包括提供显示衬底,并通过在显示衬底的表面上设置多个微型发光二极管micro-led来形成发光显示子像素。该方法还包括通过在显示衬底的表面上设置多个微型光电二极管来形成光捕获子像素。所
述多个发光显示子像素和所述多个光捕获子像素形成分布在显示衬底的活动显示区域上的像素。此外,像素的至少一部分包括光捕获子像素和至少一个发光显示子像素。
48.在该方法的一些实施例中,形成发光显示子像素包括在供体衬底上形成所述多个micro-led,并通过质量转移将所述多个micro-led从供体衬底转移到显示衬底的表面。在该方法的这些实施例中,形成光捕获子像素包括在另一供体衬底上形成所述多个微型光电二极管,并通过质量转移将所述多个微型光敏二极管从另一供体衬底转移到显示衬底的表面。
49.micro-led和微型光电二极管能够根据它们各自的制造工艺在各自的供体衬底上制造,然后通过质量转移而转移到显示衬底。例如,转移根据静电原理操作。该过程包括用静电转移头阵列从供体衬底拾取micro-led阵列、从头部转移热量并液化接收显示衬底上的接合层,以及在释放micro-led阵列之前将micro-led阵列接合到显示衬底。质量转移过程的另一个例子是弹性体印模过程,其中使软弹性体印模与micro-led接触。在足够高的剥离速度下,将micro-led附着到印模上并从供体衬底上提起。在足够低的剥离速度下,micro-led从印模释放并粘附到显示衬底。在两个示例性质量转移过程中,微型光电二极管的转移以类似的方式进行。
50.作为质量转移的替代,微透镜和微型光电二极管能够直接制造在显示衬底上。如果micro-led和微型光电二极管基于与制造工艺相同或至少兼容的材料,则这能够促进制造工艺。
51.根据上述显示器的实施例,本方法的其他实施例对于本领域技术人员来说是显而易见的。
52.所述目的还由包括显示器的电子传感设备解决,所述显示器具有显示表面和多个微型光发射器,所述多个微型光发射器被配置为发射光以用于形成显示表面上的显示图像。所述电子传感设备还包括被配置为检测显示表面处的光条件的多个微型光电检测器和收发器电路。收发器电路被配置为驱动微型光发射器以发射光、驱动微型光电检测器以检测光并基于检测到的光生成光信号、协调微型光发射器和微型光电检测器的驱动,并根据传感模式列表中的至少一个来处理光信号。所述多个微型光发射器和所述多个微型光电检测器设置在显示衬底的表面上。
53.电子传感设备能够是移动设备,例如智能手机、可穿戴设备或汽车中使用的计算机。电子传感设备能够替代地是前述设备之一的部件,例如触摸屏设备。
54.为了形成显示图像,显示器包括微型光发射器,例如micro-led。例如,显示器的像素包括各自具有微型光发射器的子像素。特别地,每个像素能够包括用于rgb颜色中的每一个的发射器。除了微型光发射器之外,像素的至少一部分还包括用于检测光并基于检测到的光生成光信号的微型光电检测器。例如,微型光电检测器能够是微型光电二极管。替代地,微型光电检测器能够通过反向偏置的micro-led实现,例如通过向微型光发射器施加反向偏置电压。根据改进的概念,微型光电检测器被设置在显示衬底表面上的微型光发射器旁边。包括微型光电检测器的像素限定了显示器的活动区域,其能够对应于一部分或整个显示器。
55.电子传感设备被配置为通过包括控制微型光发射器和微型光电检测器两者的收发器电路来充当收发器。除了驱动微型光发射器以形成显示图像之外,收发器电路被配置
为还驱动微型光发射器以用于照明目的。例如,位于传感设备的表面(例如显示表面)上或上方的物体被照明。
56.此外,收发器电路被配置为驱动微型光电检测器。在这种情况下驱动光电检测器意味着,例如由入射到光电检测器上的光产生的光信号被读出。检测到的光能够是由光发射器发射并通过反射引导到光电检测器的光,或者是在传感设备的环境中发射的光,例如环境光。特别地,收发器电路通过在照明时间期间操作微型光发射器并在与照明时间重合或跟随照明时间的检测时间期间操作微型光电检测器,以收发器模式操作电子传感设备。例如,收发器电路使微型光发射器的驱动与微型光电检测器的驱动同步。
57.收发器电路还被配置为根据传感模式列表中的一个来处理光信号。例如,处理光信号包括将光信号或从光信号导出的信号与参考数据进行比较。处理光信号还能够或可替换地包括确定测量值,例如光强度、亮度、光谱组成或从这些中的一个导出的量。
58.在一些实施例中,传感模式列表包括以下中的至少一个:生物特征认证模式、接近传感模式、环境光传感模式和电池支持模式。
59.在一些另外的实施例中,在生物特征认证模式和接近传感模式中,所述多个微型光电检测器被配置为传感由微型光发射器的至少一部分发射并且从由位于显示表面上或上方的用户身体部位限定的界面反射的光。
60.生物特征认证模式实现对传感设备的用户的身体部位的识别,用于认证目的,例如解锁或登录到设备。接近传感模式确定与对象(例如身体部位)相对于显示器的距离相对应的值。在这些传感模式中,收发器电路控制微型光发射器以发射光,该光照射在由位于显示器上或上方的身体部位形成的界面上,该身体部位位于显示器的活动区域内,并且该光被反射到微型光检测器。收发器电路另外控制微型光电检测器,以检测所述反射光并基于由微型光电检测器生成的光信号执行识别处理。界面能够通过覆盖玻璃和物体之间的过渡形成,或者通过空气和物体之间过渡形成。因此,由于显示器本身支持生物特征认证,不再需要与显示器分离的附加光传感器模块。
61.在一些另外的实施例中,用户的身体部位是面部或手指。
62.生物特征认证通常在具有关于用户的独特特征的身体部位上执行。身体部位能够是手指或指纹、手掌或用户的脸。
63.在一些另外的实施例中,界面由身体部位的血管结构和/或汗液通道结构限定。
64.替代地或附加地,界面由身体部位的表面形成,并且界面同样能够通过由血管结构或汗液通道限定的过渡在身体部位内形成。对于生物特征认证,识别功能正常的血管或汗液通道能够用于确认是否有活体物体(即用户的实际活体部位)被照亮。此外,能够执行生物医学测量,例如脉冲测量。为此,能够使用微型光发射器的红外照明,使其穿透皮肤足够深。
65.在电子传感设备的一些实施例中,在生物特征认证模式中,用于处理光信号的收发器电路被配置为基于光信号和存储在电子传感设备的存储器中的参考生物特征数据来执行身体部位的生物特征认证,特别是指纹或面部识别。
66.收发器电路能够包括或连接到存储器模块,在所述存储器模块中存储参考生物特征数据以执行实际认证过程。分析光信号和执行认证过程的精确方法是众所周知的概念,因此在本公开中不作另外详细描述。
67.在一些实施例中,在接近传感模式中,用于处理光信号的收发器电路被配置为确定与界面的距离。
68.例如,能够执行接近传感模式以确定到用户的手或手指的距离。这样,显示器能够被配置为在用户的身体部位在距显示表面的特定阈值距离内的情况下点亮。此外,触摸屏的触摸输入只能够在这种情况下激活。因此,不再需要附加专用接近传感器。
69.在一些实施例中,在环境光传感模式和太阳能电池模式中,所述多个微型光电检测器被配置为传感在电子传感设备的环境中发射的光。
70.除了接收来自微型光发射器的反射光之外,微型光电检测器能够被配置为传感直到传感设备的环境中的光,例如环境光,以用于确定照明条件。该信息能够依次用于调整显示图像的亮度,即微型光发射器的发射强度。因此,不再需要附加专用环境光传感器。
71.在一些另外的实施例中,在环境光传感模式中,用于处理光信号的收发器电路被配置为确定环境中发射的光的特性,特别是亮度、色温和/或光谱组成。
72.在一些另外的实施例中,在电池支持模式中,用于处理光信号的收发器电路被配置为将光信号的至少一部分作为电源提供给电子传感设备。
73.电池支持模式能够实现太阳能电池板功能,并因此充当用于支持设备的电池的附加电源。为此,由光电检测器产生的光信号能够直接提供给设备或设备的部件。
74.所描述的传感模式中的至少一些能够彼此协同工作。例如,能够同时执行环境光传感和电池支持。同样,能够与接近传感并行地执行生物特征认证。
75.在一些实施例中,所述多个微型光发射器包括微型红外发射器,例如红外micro-led或垂直腔表面发射激光器vcsel。
76.如上所述,对于一些应用,可能期望在红外域中执行光的发射和/或检测。例如,当没有形成显示图像而不干扰用户时,能够在红外域中执行生物特征认证或接近传感。此外,一些传感模式的性能能够受益于红外中的有限波长范围。例如,照明和检测能够被限制在940nm左右的波长范围内,在该波长范围内能够在典型的低背景光影响下可靠地执行生物特征认证。
77.所述目的通过使用具有包括显示表面和显示衬底的显示器的设备的传感方法来另外解决。该方法包括借助于设置在显示衬底的表面上的多个微型光发射器发光,以用于在显示表面上形成显示图像。该方法还包括通过设置在显示衬底的表面上的多个微型光电检测器来传感显示表面处的光条件。该方法还包括借助于收发器电路读出由微型光电检测器基于传感到的光产生的光信号。该方法还包括借助于收发器电路协调微型光发射器和微型光电检测器的驱动,并根据传感模式列表中的至少一个来处理光信号。
78.根据改进的概念所述的传感方法的其他实施例根据上述电子传感设备的实施例对于本领域技术人员来说变得显而易见。
79.示例性实施例的附图的以下描述可以另外说明和解释改进概念的方面。具有相同结构和相同效果的部件和零件分别以等效的附图标记显示。只要部件和零件在不同图中的功能方面彼此对应,则不必对以下各图重复其描述。
80.在附图中:
81.图1至图11示出了根据改进概念所述的显示器的示例性实施例;
82.图12示出了根据改进概念所述的显示器中采用的micro-led的实施例;
83.图13至15示出了根据改进概念所述的显示器中使用的微型光电二极管的实施例;
84.图16示出了具有根据改进概念所述的显示器的移动设备的示例性实施例;
85.图17示出了根据改进概念所述的显示器的另一示例性实施例;和
86.图18至21示出了根据改进概念所述的传感设备的示例性实施例。
87.图1示出了根据改进概念所述的显示器1的示例性实施例的示意性俯视图。显示器1包括具有其上设置有像素11的表面的显示衬底10。像素11由发光子像素和光捕获子像素形成,每个发光子像素包括微型光发射器12,每个光捕获子像素包括微型光电检测器13。在图1至11中所示的实施例中,微型光发射器实现为micro-led,微型光电检测器实现为微型光电二极管。然而,替代解决方案,例如基于vcsel作为发射器和反向偏置led作为检测器是可能的。
88.显示衬底10能够是由聚酰亚胺或fr4衬底制成的柔性衬底。同样,显示衬底10能够是硅衬底,例如晶片或晶片的一部分。显示衬底10本身能够包括多层,例如缓冲层和功能层。
89.本实施例中的像素11包括用于形成显示图像的三个micro-led 12(例如,rgb颜色中的每个的micro-led)和单个微型光电二极管13。然而,像素11的不同组成并不排除,并且能够取决于具体应用。此外,并非显示器1的所有像素11都必须具有相同的子像素组成。例如,只有显示器1的活动区域内的像素11包括微型光电二极管13。然而,活动区域能够对应于显示器1的整个显示表面。
90.特别强调的是,本图和下图中的示意图仅用于说明目的。实际显示器1可以在精确的子像素排列以及尺寸和密度方面变化。
91.图2示出了与图1所示类似的显示器1的另一示例性实施例的示意性俯视图。与图1相比,该实施例的特征在于显示器1的活动区域中的像素11另外包括红外发射器14。红外发射器14仅或主要发射红外域中的光,并且能够通过红外micro-led或替代地通过vcsel实现。因此,在该示例性实施例中,每个像素11由在可见光域中具有发射的三个micro-led 12、对红外和可选地对可见光敏感的微型光电二极管13以及红外发射器14组成。然而,在具有这种红外发射器14的实施例中,各个像素11的各种组成和子像素的排列能够根据具体应用要求进行调整。
92.图3示出了根据改进概念所述的显示器1的示例性实施例的示意性截面图。在该视图中,例如,示出了显示器1还包括导体20和用于将子像素(例如,子像素的阳极和阴极)电连接到电路的布线元件21。例如,每个像素11包括用于驱动micro-led 12和读出微型光电二极管13的电路。例如,该电路能够设置在显示衬底10的功能层内的所有层上。
93.图4示出了与图3所示类似的显示器1的另一示例性实施例的示意性截面图。与图3相比且与图2类似,该示意图示出了额外包括红外发射器14的像素11,该红外发射器14例如由vcsel实现。
94.图5示出了类似于图3和图4所示的显示器1的另一示例性实施例的示意性截面图,然而,其中,微型光电二极管13设置在micro-led 12和可选红外发射器14中的每个旁边。这种设置具有实现与由micro-led 12形成的显示图像的分辨率相对应的图像传感的分辨率的优点。同样,这种设置能够限制于显示器1的活动区域,该活动区域能够是整个显示表面的一部分或延伸到整个显示表面上。
95.图6示出了显示器1的另一实施例的示意性截面图。在该实施例中,另一显示衬底15设置在子像素的背向显示衬底10的一侧。换言之,显示衬底10、像素11和另一衬底15形成夹层结构。在该实施例中,未示出的micro-led 12、微型光电二极管13和可选的红外度量14通过连接元件17(例如焊盘)结合到显示衬底10。连接元件17能够是导电的,并且将相应子像素的电接触件接触到显示衬底10的表面上的接触垫。
96.在子像素的面向另一衬底15的一侧(其能够称为子像素的进入或吸收侧)上,设置透明导体16以用于提供另一电接触件。例如,透明导体16由在子像素的发射或吸收侧上生长的氧化铟锡(ito)薄膜实现。
97.另外的显示衬底15能够是柔性衬底,例如聚酰亚胺衬底,特别是在显示衬底10是柔性衬底的实施例中。例如,另一显示衬底15能够替代地是形成显示玻璃的玻璃衬底,显示图像形成在所述显示玻璃中。
98.图7示出了与图6类似的显示器1的另一实施例的示意性截面图。与前一实施例相比,该实施例还特征化模具18。模具18可以用作有源电路和子像素的保护,以及为显示器1提供稳定性。例如,模具由诸如氧化物(例如二氧化硅)的半导体材料制成。
99.图8示出了显示器1的另一个实施例的示意性截面图。在该实施例中,未示出的micro-led 12、微型光电二极管13和可选红外发射器14嵌入透明模具19中。透明模具19可以用作有源电路和子像素的保护。例如,透明模具19由诸如环氧树脂、硅树脂等之类的材料制成。透明模具19的上表面能够是光滑的或由于micro-led的形貌而具有形貌,如图中着重示出的。
100.图9示出了类似于图6所示的显示器1的另一实施例的示意性截面图。在该实施例中,显示衬底10包括半导体衬底10a(例如硅晶片或城市罐晶片的切片部分)、缓冲层10b(例如氮化镓缓冲层),以及导电层10c(例如通过特定掺杂来表征)。显示衬底10在其功能层中能够包括寻址(即驱动和读出)每个像素11的各个子像素所必需的有源和无源电路。
101.图10示出了基于图9所示实施例的显示器1的另一实施例的示意性横截面图。与前一实施例相比,图10的实施例还包括光学间隔层22,所述光学间隔层设置在子像素的发射或吸收侧上,并且在子像素和另一显示衬底15之间,所述另一显示衬底15可以是玻璃板或柔性衬底,例如如上所述的聚酰亚胺衬底。
102.光学间隔层22包括吸收元件23,吸收元件23被设置成使得在micro-led 12、微型光电二极管13和可选的红外发射器14上方形成光学孔径。其中,吸收元件23能够被限制在显示器1的活动区域,即显示器1的包括具有微型光电二极管13的像素11的部分。所形成的光学孔径限制了能够由微型光电二极管13接收的光的入射角以及由micro-led 12和可选的红外发射器14发射的光的发射角。光学间隔层22由光学透明材料(例如氧化物)制成,而吸收元件23由光学不透明材料(例如金属)制成。
103.图11示出了显示器1的另一实施例的示意性横截面图,该实施例基于前面图10中所示的实施例。除了前面的实施例之外,图11的实施例还包括滤光器衬底24,该滤光器衬底24设置在子像素的发射或吸收侧上,位于子像素和光学间隔层22之间。
104.滤光器衬底24包括设置在微型光电二极管13上方的滤光器元件25,使得任何入射光在进入并吸收相应的微型光电二极管13的材料之前必须穿过滤光器元件24。例如,滤光器元件25是主要或仅透射红外光的红外滤光器。需要强调的是,也能够提供包括具有滤光
器元件25而没有光学间隔层22的滤光器衬底24的实施例。
105.图12示出了根据改进概念所述的用作显示器1中的光发射器的micro-led 12的示例性实施例的示意图。micro-led 12包括其上设置有缓冲层12b的基层12a。在缓冲层12b上,背对基层12a设置发射层12c。
106.基层12a例如是由硅制成的led衬底,而缓冲层12b例如是氮化镓缓冲层。发射层12c能够是氮化铝、氮化铝镓、氮化铟镓。micro-led 12的替代实施例能够仅由一层或两层组成。例如,micro-led 12能够由设置在硅基层上的锗层、设置在砷化镓基层上的磷化铝镓铟层或设置在磷化铟基层上的砷化镓铟层组成。此外,仅由锗或砷化镓发射层构成的micro-led 12也是可能的。通常,对于micro-led技术,与普通led技术相同的可能性适用。
107.根据改进的概念所述的显示器1中使用的micro-led 12的特征在于占用面积小于0.1mm2,特别是小于100μm2。例如,micro-led 12的特征在于边长为30μm或更小的矩形或方形封装。这同样适用于微型光电二极管13。
108.图13至15示出了根据用于捕获光的改进概念的显示器1中采用的微型光电二极管13的示例性实施例的示意图。微型光电二极管13包括电接触件13a(例如阳极和阴极)和吸收材料13b。根据具体应用的要求,电接触件13a能够以各种方式设置。
109.例如,如图13所示,两个电接触件13a能够设置在吸收材料13b的上表面上,用于形成阳极和阴极,例如,所述阳极和阴极能够通过布线元件21连接到集成电路的接触件。替代地,如图15所示,电接触件13a和吸收材料13b能够形成夹层结构。其中,微型光电二极管13的背面上的电接触件13a能够直接接合(例如焊接)到集成电路的接触垫,该集成电路例如设置在显示衬底10上或内。
110.图14示出了与图13的实施例类似的微型光电二极管13的另一个实施例,其另外包括硅通孔13c、tsv,例如用于将电接触件13a之一互连到背面再分配层13d。微型光电二极管13的背面上的背面再分布层13d能够直接结合(例如焊接)到集成电路的接触垫。
111.图16示出了根据改进概念所述的包括显示器1的移动设备3的示例性实施例。包括具有一个或更多个微型光电二极管13的像素11的显示器的活动区域能够占据显示表面的一部分,例如如图3中虚线区域所示的下半部分,但也能够对应于整个显示表面。
112.替代地,根据改进的概念所述的显示器1同样能够用于其他设备,例如便携式计算机、可穿戴设备和计算机,例如汽车中的信息娱乐系统。
113.图17示出了根据改进概念所述的显示器1的另一示例性实施例。在该实施例中,显示器1还包括收发器元件4,例如收发器集成电路,其被配置为驱动所述多个发光显示子像素和所述多个光捕获子像素。特别地,收发器元件4被配置为驱动micro-led 12以发光并驱动微型光电二极管13,即,读出由接收的光产生的光电流。在图中,收发器元件4发射光的驱动以及光e的发射被指示为向上的箭头,而检测到的光d以及收发器元件4从微型光电二极管13读出光电流的驱动被指示为向下的箭头。
114.收发器元件4能够被配置为以同步方式驱动micro-led 12和微型光电二极管13。例如,收发器元件4能够被配置为从微型光电二极管13读出信号,同时驱动micro-led 12的一部分(例如,显示器1的活动区域内的红外发射micro-led)以发光,而禁用剩余的micro-led(例如,在可见域中发光的micro-led)的发射。在替代实施例中,收发器元件4能够是耦合到显示器1的单独元件,例如模块或芯片。
115.图18示出了根据改进概念所述的电子传感设备2的示例性实施例的示意性截面图。例如,电子传感设备2包括根据改进概念所述的显示器1。以上已经描述了这种显示器1的特征和功能。
116.传感设备2包括微型光发射器,例如micro-led 12,其被配置为发光,以用于在显示表面上形成显示图像。显示表面是例如作为显示玻璃的另一衬底15的上表面。传感设备2还包括微型光电检测器,例如微型光电二极管13,其被配置为检测显示表面处的光条件。在替代实施例中,微型光电检测器能够是反向偏置的微型光发射器,例如反向偏置的micro-led。此外,在又一替代实施例中,微型光发射器能够是红外发射器14,例如vcsel。
117.如图所示,在本实施例中,来自micro-led 12的发射光e从显示表面反射并被引导到微型光电二极管13。被反射到微型光电元件13的反射光r的量能够取决于界面,其由另一衬底15和围绕传感设备2的介质(例如空气)之间的过渡形成。例如,通过全内反射该反射的光。反射光r能够被配置为在到达微型光电二极管13之前穿过可选的滤光器元件25。
118.电子传感设备2还包括收发器电路,其例如设置在显示衬底10上或内部。除了用于形成显示图像之外,收发器电路被配置为例如作为收发器来协调电子传感设备2的微型光发射器和微型光电检测器。这意味着收发器驱动微型光发射器(例如红外发射器)的至少一部分,以在照明阶段发射光,并驱动微型光电检测器以在随后的传感阶段检测光。
119.此外,收发器电路包括用于根据传感模式列表中的至少一个来处理光信号的电路。例如,图18所示的传感设备2的收发器电路被配置为检测反射光r的量是否变化或波动,例如是否减少。
120.图19示出了图18的电子传感设备2的示例性实施例的示意性截面图,其中物体(例如身体部位30)设置在显示表面上或上方。例如,身体部位30是具有与另一衬底15接触的指纹的手指。
121.身体部位30与另一个衬底15接触意味着光被反射的界面不再由另一个衬底15和空气之间的过渡形成,而是由另一衬底15和身体部位30之间的过渡来形成。例如,与空气相比,由于组织的折射率不同,不再满足界面处全内反射的条件。这导致了这样一个事实,但发射光e的至少一部分穿过界面并被身体部位30吸收。吸收通过标记为a的箭头来说明。因此,与图18的情况相比,反射光r的量与被引导到微型光电检测器的散射光s的量的结合减少,其中不存在身体部位30。
122.评估穿过显示器1的活动区域的反射光的量能够用于确定手指的指纹,该指纹的特征在于具有与另一衬底15接触的部分的凹槽以及其中例如在身体部位30和另一衬底15之间保留有一定量的空气的部分。
123.作为图18和19所示实施例的替代方案,同样能够设想传感设备2的实施例,其中,光发射器以此方式设置,即在没有身体部位设置在显示表面上或上方的情况下,基本上没有光从显示表面反射到微型光电检测器。为此,例如,发射的光e能够近似垂直于显示表面。这样的实施例允许检测从物体(例如身体部位30)反射的光,所述物体不必与另一衬底接触,而是定位在与衬底相距一定距离处。这些实施例允许例如在对象未与传感设备2接触的情况下进行面部或手掌识别以及接近传感。
124.在另外的实施例中,例如在图20的实施例,传感设备2能够被配置为如果没有物体或没有特定特征的物体(例如血管或汗液通道)位于显示表面上,则基本上没有光被引导到
微型光电检测器。在这些实施例中,发射的光e在物体内被完全吸收或散射,例如,物体可以是伪造的指纹。
125.在图21中,示出了与图20相同的电子传感设备2的实施例,位于显示表面上的身体部位30包括通道31,所述通道31能够是血管结构或汗液通道。由于身体部位30本身和通道31的折射率不同,发射的光e能够被配置为在该界面处被反射并被引向微型光电检测器。除了指纹的生物特征认证之外,这些实施例还允许验证是否要认证活体手指。同样,通道31的结构能够用作为了认证目的而测量和评估的附加生物特征。
126.特别是在这些实施例中,用红外光照射是有利的,因为这例如能够穿透人体组织。因此,微型光电检测器被设置为使得能够检测从红外发射器发射并从所述通道31反射的光。
127.此外,本实施例对于检测不一定与显示表面接触但位于与显示表面相距一定距离处的物体也是容易想到的。例如,同样能够以这种方式执行面部或手掌识别。
128.分析光信号和执行认证过程以及执行接近检测的精确方法是众所周知的概念,因此在本公开中不作另外详细描述。
129.另外指出,所示的传感设备2的实施例还能够用于环境光传感以及太阳能电池模式,其中,由微型光电检测器产生的光信号作为实现电池支持的附加电源被提供给传感设备2中的部件。
130.本文所公开的显示器和传感设备的实施例已被讨论,以用于使读者熟悉该思想的新颖方面的目的。尽管已经示出和描述了优选实施例,但是本领域技术人员能够对所公开的概念进行许多改变、修改、等同物和替换,而不必脱离权利要求的范围。
131.特别地,本公开不限于所公开的实施例,并且给出了所讨论的实施例中包括的特征的尽可能多的替代方案的示例。然而,意图将所公开概念的任何修改、等同物和替换包括在所附权利要求的范围内。
132.能够有利地组合独立从属权利要求中所述的特征。此外,权利要求中使用的附图标记不限于解释为限制权利要求的范围。
133.此外,如本文所用,术语“包括”不排除其他元素。此外,如本文所用,条款“一个”旨在包括一个或更多个部件或元件,且不限于解释为仅指一个。
134.除非另有明确规定,否则本协议中规定的任何方法均不得解释为要求按照特定顺序执行其步骤。因此,如果方法权利要求实际上没有列举其步骤所遵循的顺序,或者在权利要求或描述中没有另外具体地说明步骤将被限制于特定顺序,则决不旨在推断出任何特定顺序。
135.本专利申请要求欧洲专利申请20192157.4的优先权,其公开内容通过引用并入本文。
136.附图标记
137.1 显示器
138.2 传感设备
139.3 移动设备
140.4 收发器元件
141.10 显示衬底
142.10a 半导体衬底
143.10b 缓冲层
144.10c 导电层
145.11 像素
146.12micro-led
147.12a 基层
148.12b 缓冲层
149.12c 发射层
150.13 微型光电二极管
151.13a 电接触件
152.13b 吸收材料
153.13c 硅通孔
154.13d 背面再分配层
155.14 红外发射器
156.15 另一衬底
157.16 透明导体
158.17 连接元件
159.18 模具
160.19 透明模具
161.20 导体
162.21 布线
163.22 光学间隔
164.23 吸收元件
165.24 滤光器衬底
166.25 滤光器元件
167.30 身体部位
168.31 通道
169.a 吸收
170.d 检测
171.e 发射
172.r 反射
173.s 散射
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1