一种X波段低剖面宽赋形天线的制作方法

文档序号:29806743发布日期:2022-04-23 22:30阅读:221来源:国知局
一种X波段低剖面宽赋形天线的制作方法
一种x波段低剖面宽赋形天线
技术领域
1.本发明属于卫星通信赋形天线技术领域,提出一种适用于空间资源严苛受限的微纳卫星通信测控领域应用的极低剖面宽赋形天线。


背景技术:

2.受益于卫星批量化制造成本和运载发射成本的大幅降低,一箭多星技术和火箭重复使用技术日益成熟,以美国starlink为代表的低轨通信星座带动了全球卫星互联网建设热潮,卫星互联网已经成为国际科技竞争的制高点。我国在2020年9月向国际电联提交了一万多颗卫星组成的“gw”星座轨道申请,标志我国卫星互联网建设进入国家统筹、全面建设时期。相比于传统的单个卫星,高容积比的卫星互联网星座系统更加复杂,对被称为“卫星生命线”的星载天线提出了更高的要求。一方面,卫星微型化的发展及卫星体积重量功耗等空间资源的极端受限,严格限制了星载天线的包络尺寸,对天线的小型化、轻量化的需求日益迫切;另一方面,大纬度范围宽覆盖对天线提出了宽覆盖赋形的性能要求。
3.单个天线的增益和波束宽度近似成反比例关系,宽波束赋形的单天线可以满足卫星低速测控应用要求。传统的螺旋天线由于具有圆极化宽角和易于赋形的特性成为目前国内外主要采用的星载赋形天线形式,但由于其巨大的包络尺寸已经不能满足高容积比互联网卫星应用的要求,目前x波段的螺旋天线最低剖面高度达100mm;另一种方案是采用微带天线阵列实现宽波束赋形,可以大大降低剖面高度,但是功耗大成本较高体积较大,而采用常规的单个微带天线单元迄今很难实现宽赋形,只能实现单纯展宽波束达
±
45
°
。一方面,由于常规微带天线在工作频段内仅能靠主模的两个边射简并模式辐射,波束很难展宽甚至赋形;另一方面,由于卫星通信主流频段为x波段并向着更高的k及ka频段发展,单个微带天线尺寸极小,不易测试且极易受到星体和周围载荷的影响。


技术实现要素:

4.为克服上述现有技术的不足,本发明提出一种基于微带形式的x波段容性表面天线,通过减缓相速随频率变化的趋势,拉近天线的高次模与主模的谐振频率间距,使得在工作频段内不仅可以激励起一组正交的主辐射简并模式tm11,还可以同时激励起单极子模式和环形电流模式这一组正交模式,同时通过对两组辐射模式进行方向图调控,实现宽波束赋形。本发明相较于传统的螺旋天线,在极大程度上降低天线剖面的同时能够实现宽波束赋形,同时相较于同频段的单个微带天线,本发明具有合适的横向尺寸,降低天线测试难度,减弱天线受周围星体及载荷的影响。
5.面向空间资源严苛受限的微纳卫星通信应用,本发明提供的可用于低轨卫星低速测控系统的极低剖面、可宽赋形的容性表面天线,解决目前宽波束赋形星载天线剖面过高,尺寸过大的技术难题。
6.本发明的技术解决方案如下:
7.一种x波段低剖面宽赋形天线,包括辐射贴片、上层介质板、开槽金属地、下层介质
板、微带馈线层、金属空腔以及贯穿该金属空腔的第一馈电同轴线和第二馈电同轴线,所述的辐射贴片设置于所述的上层介质板的上表面,由一个圆形中心贴片和环绕在该圆形中心贴片外的外围贴片组构成,所述的中心贴片的周缘上具有二个中心对称分布的缺口,所述的外围贴片组为由六个形状相同的外围贴片构成环状,各外围贴片之间、以及外围贴片与中心贴片之间均留有缝隙,且各外围贴片与中心贴片之间分别通过金属枝节相连通;所述的开槽金属地设置于所述的上层介质板和下层介质板之间,且中心设有十字形缝隙;所述的微带馈线层设置于所述的下层介质板的下表面,通过缝隙耦合馈电方式为所述的辐射贴片馈电;所述的金属空腔设置于所述的下层介质板的下方,外部激励源通过所述的第一馈电同轴线和第二馈电同轴线穿过所述的金属空腔与微带馈线层相连接以提供馈电激励。
8.所述的微带馈线层的中央设有圆形开口的内环馈线,以及环绕在该内环馈线外围的、圆形开口的外环馈线;所述的内环馈线具有内环馈电端口和内环馈线开路端,所述的外环馈线具有外环馈电端口和外环馈线开路端;所述的第二馈电同轴内导体通过与所述的内环馈线连接到内环馈电端口激励天线的边射圆极化模式,所述的第一馈电同轴内导体通过与所述的外环馈线连接到外环馈电端口激励天线的主辐射方向介于边射和端射之间的圆极化模式,外部激励源同时通过第一馈电同轴线和第二馈电同轴线激励外环馈电端口和内环馈电端口使得两组圆极化模式方向图叠加,实现天线的宽波束赋形。
9.进一步的,上层介质板介电常数较低,厚度较高;下层介质板的介电常数较高,厚度较低,从而馈线更容易产生激励效果。
10.进一步的,天线的金属地板开十字形缝隙,配合下层介质板底部的金属馈线利用缝隙耦合馈电方式为辐射贴片馈电。
11.进一步的,下层介质板的金属馈线采用两条环形结构,每条馈线为十字缝隙的四条臂分别提供0
°
、90
°
、180
°
和270
°
的相位激励,形成圆极化辐射。其中内环馈线激励天线的边射圆极化模式,外环馈线激励主辐射方向介于边射和端射之间的圆极化模式,两种圆极化模式方向图叠加实现宽波束赋形功能。
12.进一步的,天线底板安装金属空腔,将微带馈线包围在内保护其不受外界电磁环境的干扰,同时微带馈线的激励端口转接同轴馈线延伸至金属空腔底部外面,以便接入外部激励馈源。
13.与现有技术相比,本发明解决了高容积比卫星互联网应用背景下的现有卫星测控天线剖面较高尺寸较大的技术难题。具体的:
14.1、天线采用容性表面微带结构,减缓了相速随频率变化的速率,可在工作频段内同时激励起多模,通过模式方向图调控实现宽波束赋形,突破常规微带单天线窄波束且不易赋形的瓶颈;
15.2、具有极低剖面特性,相对于x波段常规宽赋形螺旋天线,剖面降低了将近90%;
16.3、本发明不仅解决了宽波束赋形天线阵列的高功耗、高成本和大体积问题,而且解决了常规高频微带单天线由于尺寸较小引起的测量难题和星体遮挡的问题。
附图说明
17.图1为本发明宽赋形天线的整体结构图
18.图2为本发明宽赋形天线的辐射贴片结构图
19.图3为本发明宽赋形天线的开缝金属地结构示意图
20.图4为本发明宽赋形天线的微带金属馈线层结构示意图
21.图5为本发明宽赋形天线的金属空腔及同轴馈电连接结构示意图
22.图6为本发明宽赋形天线的反射系数
23.图7为本发明宽赋形天线在8.2ghz e面辐射增益方向图
24.图8为本发明宽赋形天线在8.2ghz e面圆极化轴比图
具体实施方式
25.下面结合附图和实施例对本发明做进一步说明,但不应以此限制本发明的保护范围。
26.请参阅图1,图1为本发明宽赋形天线的整体结构图,如图1所示,一个x波段的容性表面天线,最大外轮廓直径为40mm,高度为12mm的圆柱体,包括圆极化容性表面辐射贴片1、上层介质板2、开槽金属地4、下层介质版3、微带馈线层5、金属空腔6、馈电同轴线7和馈电同轴线8。
27.如图2所示,圆极化容性表面辐射贴片1的中心贴片11形状是有两个缺口的圆形,缺口相对贴片中心呈轴对称分布,改善天线的圆极化特性;外围贴片12是切割成六等分的圆环贴片,外围圆环与中心贴片之间留有缝隙,通过六条金属枝节相连通。
28.如图3所示的金属地4开十字形缝隙41,配合如图4所示的微带金属馈线通过缝隙耦合馈电方式为辐射贴片1馈电。其中,内环馈线53通过内环馈电端口54激励天线的边射圆极化模式,外环馈线51通过外环馈电端口52激励天线的主辐射方向介于边射和端射之间的圆极化模式,同时激励外环馈电端口52和内环馈电端口54使得两组圆极化模式方向图叠加,实现天线的宽波束赋形。
29.如图5所示的金属空腔安装在下层介质板3的下表面,空腔底部距离下层介质板3的下表面1/4λ(λ为中心频率8.2ghz的自由空间波长),馈电同轴内导体71和馈电同轴内导体81分别与外环馈电端口52和内环馈电端口54相接并延伸至金属空腔外部以连接外部激励源,馈电同轴外导体72和馈电同轴外导体82均安装在金属空腔底部外表面。
30.仿真结果表明,该x波段容性表面天线可工作频段范围为7.9-9.3ghz,s11的-10db相对带宽17%,e面方向图最大增益达6.9db,3db波束范围为
±
55
°
,波束范围内增益变化平缓,天线e面的3db轴比波束宽度为100
°
,具有出色的宽赋形能力。
31.本发明采用容性表面微带结构天线实现宽赋形技术,具有仅为12mm的极低剖面,相较于现有应用较多的宽赋形星载螺旋天线的100mm剖面,天线整体剖面高度降低了近90%,非常适用于空间资源紧张的微纳卫星星载应用。天线辐射贴片设计成容性表面,减缓了相速随频率变化的速率,使得在工作频段内可以同时激励起多个模式,突破传统微带单天线窄波束且不易赋形的瓶颈。不仅解决了阵列天线宽波束赋形的高功耗、高成本和大体积问题,而且相较于同频段的常规单元微带贴片天线,扩宽了天线的横向尺寸,解决了常规高频单元微带天线由于尺寸太小而难以测量的问题。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1