一种能够抑制锂枝晶的形成和成长的锂离子电池电解液及锂离子电池的制作方法

文档序号:35248630发布日期:2023-08-25 20:54阅读:46来源:国知局
一种能够抑制锂枝晶的形成和成长的锂离子电池电解液及锂离子电池的制作方法

本发明涉及锂离子电池领域,具体涉及一种能够抑制锂枝晶的形成和成长的锂离子电池电解液及锂离子电池。


背景技术:

1、锂离子电池具有高能量密度、长循环寿命的优点,是3c电子产品(一般包括计算机类、通信类和消费类电子产品)、新能源电动汽车、储能电站等国民经济核心行业中极其重要的能量转换器件。而新能源产业的蓬勃发展,对电能的快速存储与高效利用也提出了更高的要求,开发具有高比能、高安全性、低成本且环境友好的下一代电池储能技术,是电池行业的主要目标。普通锂离子电池主要包括正极极片、负极极片、隔膜以及电解液。其中,电解液为锂盐添加至有机溶剂中而形成的高离子导电率溶液。

2、在锂离子电池中,放电时电子从外电路流向正极,溶液中的锂离子在正极材料得到电子被还原,充电过程使得锂离子从正极材料晶格中脱出,进入电解液并穿梭至负极再嵌入负极材料晶格中,而由于各种各样的原因(锂枝晶的形成和生长是一个极其复杂、电化学反应影响还不完全清晰的过程)使得富锂状态的电极,特别是多次循环充放电或过充时表面极易产生锂枝晶,不规则的锂枝晶沉积将导致电池性能恶化,库仑效率降低,电池容量大幅衰减;而过度生长的锂枝晶还可能穿透隔膜,导致锂离子电池发生热失控,安全事故时有发生。另外,锂离子电池的电解液也存在电化学稳定窗口窄的问题,在循环过程中也会因为电解液的电化学稳定性不足而引起电解液氧化分解,相应地该锂离子电池显示出电池循环性恶化,电池性能下降。


技术实现思路

1、本发明的目的是克服现有技术中的一个或多个不足,提供一种改进的锂离子电池电解液,该锂离子电池电解液能够解决锂离子电池使用过程中会发生锂枝晶的形成和成长的难题,可以使得锂的沉积层平滑均匀且均衡生长,显著地抑制锂枝晶的形成和成长,有效防止锂离子电池电极表面的枝晶产生,大幅提高锂离子电池的安全性。

2、本发明的发明人在深入研究和大量实践基础上,同时采用小分子吡啶类化合物(如式(ⅰ)所示)、摩尔质量高于120g/mol 的含氟酸酐类化合物特别是4,4'-(六氟异亚丙基)二邻苯二甲酸酐作为组合添加剂应用于以六氟磷酸锂作为主锂盐的电解液时,不仅可以抑制电解液的酸性,将可能存在的水通过反应而消耗掉,减少氟化氢的生成,避免了氟化氢对材料的腐蚀等,还能够中和正极的残碱基团,抑制气体产生和碳酸酯类的分解;

3、尤其是,意外发现,协同作用下获得了出乎意料的优异的抑制锂枝晶形成和成长的效果,实践表明,使用本发明特定添加剂的电解液在锂铜试验电池的锂沉积试验中,原位光学显微镜实时观察发现铜箔上锂的沉积层平滑均匀且均衡生长,实现了电极表面锂均匀平坦沉积,可明显抑制锂枝晶的形成和过度生长,提升了电解液的电化学稳定窗口,而与之对比的使用不含本发明特定组合添加剂或仅单一添加的电解液组装的锂铜试验电池,其铜箔上的沉积锂基本都呈现岛状不连续分布,并且容易过度生长成明显的树枝状锂枝晶。

4、本发明同时还提供了一种包含特定添加剂和锂盐的组合物在制备锂离子电池电解液中的应用。

5、本发明同时还提供了一种包含上述锂离子电池电解液的锂离子电池。

6、基于此,为达到上述目的,本发明采用的一种技术方案是:

7、一种能够抑制锂枝晶的形成和成长的锂离子电池电解液,其包含:锂盐、有机溶剂和添加剂;其中,所述添加剂包含第一添加剂和第二添加剂,所述第一添加剂选自式(ⅰ)所示化合物:

8、,式(ⅰ)中,r1选自氢、c1-3烷基,a为1、2或3;

9、所述第二添加剂包含4,4'-(六氟异亚丙基)二邻苯二甲酸酐(也称六氟异丙基邻苯二甲酸酐,6fda);

10、所述锂盐包含六氟磷酸锂;且以质量百分含量计,所述锂盐中,所述六氟磷酸锂占50%以上。

11、进一步地,r1选自氢或甲基,a为1。根据本发明的一些优选且具体的方面,所述第一添加剂为选自吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶中的一种或多种的组合。

12、在本发明的一些实施方式中,所述第二添加剂还包含三氟邻苯二甲酸酐,例如可以是3,4,5-三氟邻苯二甲酸酐或3,4,6-三氟邻苯二甲酸酐。

13、在本发明的一些实施方式中,所述三氟邻苯二甲酸酐的添加量为所述锂离子电池电解液的总重量的0.01%-0.5%。

14、根据本发明的一些优选方面,所述第一添加剂与所述第二添加剂的投料质量比为1∶0.02-20。

15、进一步地,所述第一添加剂与所述第二添加剂的投料质量比为1∶1-12。

16、在本发明的一些实施方式中,所述第一添加剂与所述第二添加剂的投料质量比可以为1∶1、1∶1.5、1∶2、1∶2.5、1∶3、1∶3.5、1∶4、1∶5、1∶6、1∶7、1∶8、1∶10等。

17、根据本发明的一些优选方面, 以质量百分含量计,所述第一添加剂和所述第二添加剂的总添加量为所述锂离子电池电解液的总重量的0.001%-1.5%,例如可以包括但不限于0.001%、0.005%、0.01%、0.015%、0.03%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.2%、1.3%、1.4%、1.45%等。

18、根据本发明的一些优选方面,以质量百分含量计,所述第一添加剂的添加量为所述锂离子电池电解液的总重量的1%以下。进一步地,以质量百分含量计,所述第一添加剂的添加量为所述锂离子电池电解液的总重量的0.05%-0.5%,例如可以包括但不限于0.05%、0.06%、0.08%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%、0.4%、0.45%、0.5%等。

19、根据本发明的一些优选方面,以质量百分含量计,所述第二添加剂的添加量为所述锂离子电池电解液的总重量的1%以下。进一步地,以质量百分含量计,所述第二添加剂的添加量为所述锂离子电池电解液的总重量的0.1%-1.0%,例如可以包括但不限于0.1%、0.15%、0.2%、0.25%、0.3%、0.35%、0.4%、0.45%、0.5%、0.55%、0.6%、0.65%、0.7%、0.75%、0.8%、0.85%、0.9%、0.95%、1%等。

20、在本发明的一些实施方式中,所述锂盐中,以质量百分含量计,所述锂盐还包含0-50%的辅助锂盐,所述辅助锂盐为选自高氯酸锂、四氟硼酸锂和二氟草酸硼酸锂中的一种或多种的组合。

21、根据本发明,本发明的电解液中以六氟磷酸锂为主盐,其浓度可以为1.0-1.5mol/l。进一步地,在一些实施方式中,还可以选择性地添加高氯酸锂、四氟硼酸锂和二氟草酸硼酸锂等作为辅助锂盐,控制辅助锂盐的浓度约为0.05-0.2 mol/l。

22、根据本发明,根据使用场合的不同,还可以选择其他添加剂,例如在一些实施方式中,所述添加剂还包含第三添加剂,所述第三添加剂包含选自碳酸亚乙烯酯、氟代碳酸乙烯酯、1,3-丙烷磺酸内酯中的一种或多种;以质量百分含量计,所述第三添加剂的添加量为所述锂离子电池电解液的总重量的0.5%-3.0%。进一步地,在一些实施方式中,所述添加剂还可以包含第四添加剂,所述第四添加剂包含选自硫酸乙烯酯、丙酸乙酯、丙酸丙酯中的一种或多种;以质量百分含量计,所述第四添加剂的添加量为所述锂离子电池电解液的总重量的0.1%-0.5%。

23、根据本发明的一个具体方面,所述添加剂由吡啶、4,4'-(六氟异亚丙基)二邻苯二甲酸酐、碳酸亚乙烯酯、氟代碳酸乙烯酯、1,3-丙烷磺酸内酯和丙酸丙酯构成;所述锂盐为六氟磷酸锂。

24、本发明中,以六氟磷酸锂作为主锂盐可以与上述添加剂配合获得更好地抑制锂枝晶形成或生长的效果。

25、在本发明的一些实施方式中,所述有机溶剂为选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯和碳酸甲乙酯中的一种或多种的组合。

26、根据本发明的一些具体方面,所述有机溶剂由碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯构成。作为可选的实施方式,碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯的质量比为1∶0.8-1.2∶0.8-1.2,进一步可以为1∶1∶1。

27、本发明提供的又一技术方案:一种上述所述的锂离子电池电解液的制备方法,该制备方法包括:

28、按配方称取锂盐,然后将其溶解于有机溶剂中,搅拌至完全溶解,选择性地加入第三添加剂和第四添加剂,制成基础电解液;

29、在上述基础电解液中加入第一添加剂,然后加入第二添加剂,搅拌至完全溶解。

30、根据本发明的一些优选方面,本发明制备上述所述的锂离子电池电解液的过程在露点为-40℃以下的干燥房内或水分小于0.1ppm的惰性气氛手套箱内完成。

31、在一些实施方式中,电解液制备完成后充惰性气氛封装,静置备用。

32、本发明提供的又一技术方案:一种组合物在制备锂离子电池电解液中的应用,所述组合物包含添加剂和锂盐,所述添加剂包含第一添加剂和第二添加剂,所述第一添加剂选自式(ⅰ)所示化合物:

33、,式(ⅰ)中,r1选自氢、c1-3烷基,a为1、2或3;

34、所述第二添加剂包含4,4'-(六氟异亚丙基)二邻苯二甲酸酐;

35、所述锂盐包含六氟磷酸锂;且以质量百分含量计,所述锂盐中,所述六氟磷酸锂占50%以上。

36、本发明提供的又一技术方案:一种添加剂在制备锂离子电池中的应用,所述添加剂包含第一添加剂和第二添加剂,所述第一添加剂选自式(ⅰ)所示化合物:

37、,式(ⅰ)中,r1选自氢、c1-3烷基,a为1、2或3;

38、所述第二添加剂包含4,4'-(六氟异亚丙基)二邻苯二甲酸酐。

39、本发明提供的又一技术方案:一种锂离子电池,该锂离子电池包括正极极片、负极极片、位于所述正极极片和所述负极极片之间的隔膜、电解液,所述电解液为选自上述所述的能够抑制锂枝晶的形成和成长的锂离子电池电解液。

40、在一些实施方式中,隔膜包括但不限于可以为聚丙烯微孔膜等等。

41、由于上述技术方案运用,本发明与现有技术相比具有下列优点:

42、锂枝晶的形成和生长是一个极其复杂、电化学反应影响还不完全清晰的过程,而由于各种各样的原因使得电化学过程中处于富锂状态的电极,特别是多次循环充放电或过充时表面极易产生锂枝晶,锂枝晶将造成电池性能恶化、安全事故等问题,基于此,本发明提供了改进的锂离子电池电解液,以六氟磷酸锂作为主锂盐,并创新地采用小分子吡啶类化合物和含氟酸酐类化合物特别是4,4'-(六氟异亚丙基)二邻苯二甲酸酐作为组合添加剂,获得了出乎意料的抑制锂枝晶形成和成长的效果,基于大量实验和研究,分析认为应是改善了在电极表面形成的sei界面层,使该界面层稳定可靠,在预期时间内基本不会在充放电过程中失效,而且还能够引导锂在电化学沉积过程中在电极表面平滑且均衡的沉积,大大地抑制了其倾向于形成并生长为树枝状锂枝晶的过程,提高了锂离子电池的安全性;此外,吡啶类化合物还可作为缚酸剂,可以达到抑制电解液的酸性的效果,4,4'-(六氟异亚丙基)二邻苯二甲酸酐能够与不期待存在的水分反应,减少氟化氢的生成,中和正极的残碱基团,抑制气体的产生和碳酸酯类的分解,进一步使得锂离子电池的循环稳定性更好,电解液的电化学稳定窗口也获得了提升。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1