碳化硅中形成蓝光发射二极管的制作方法

文档序号:6799171阅读:287来源:国知局
专利名称:碳化硅中形成蓝光发射二极管的制作方法
技术领域
本发明涉及发光二极管的结构和制造,特别是碳化硅中形成的、发射蓝光的发光二极管。
通常叫做“LED′s”的发光二极管,是把电功率转变为发射光的半导体器件。
正如那些根据量子力学理论和定律,而通晓原子和分子结构及电子迁移的人所知道的那样,当电子在原子或分子中允许能级间做跃迁的时候,这些跃迁总是伴随着获得或失去某种特殊的能量。准确地说,把电子提升到较高能级,要吸收能量。电子从较高能级跃迁到较低能级,就放出能量,通常,电子做向下跃迁所释放出的能,是一种振动能形式,经常看到的有热能或光能等,这就是光子,如果是在可见光谱范围内,它可以被人眼看到。
在发光二极管中,产生或注入经过二极管结的电子流或空穴流,接着,所注入的空穴或电子载流子进行复合,这促进了电子跃迁,并同时伴随着振动能或光的产生,或两者同时产生。一般,直接禁带材料中的跃迁主要产生光,而间接材料中的跃迁主要产生热和某些光。直接禁带材料被定义为,在相同动量时,导带的最小值相当于价带中的最大值。相应地,在间接禁带材料中,在相同动量时,两者的最小值和最大值不一致。
熟悉电子跃迁的人还知道,所产生的光的波长直接与电子跃迁的距离有关。电磁辐射的本性就是,在可见光范围内,少量电子跃迁易于发射较长波长的光,趋向可见光谱的红色部分;而较大能量跃迁易于发射较短波长的光,趋向紫色部分。更进一步说,这样的跃迁总是表明材料的性质,跃迁出现在材料中,以使得分光镜满视野基于这样一个前提,即原子、分子和物质可以通过它们与电磁光谱(包括可见光,紫外线和红外线)的特殊反应方式加以辨识。因此,任何给定的半导体材料可以产生的颜色都受到限制,尤其是迄今为止,成功地制造发射特殊蓝光的LED′s是困难的。因为蓝色是原始颜色之一,缺少始终合用有效的蓝光LED′s,为许多技术领域提出了课题。没有适用的蓝光,采用LED′s可以产生或想象的颜色,就限于红色和绿色以及由它们形成的那些颜色。
为了产生蓝光,半导体材料必须具有一个大于2.6电子伏特(ev)的禁带。熟悉半导体材料的人知道,禁带表示某种半导体材料的导带和价带之间能量差别。现在,市场上可得到的可见光发射二极管,都是用诸如磷化镓(GaP)或砷化镓(GaAs)这样的材料做的,它们不适于产生蓝光,因为其禁带约为2.26ev或更小。而蓝光发射固态二极管必须由比较大的禁带半导体做成,例如,氮化镓(GaN),硫化锌(ZnS),硒化锌(ZnSe)和α碳化硅(也称为“六边”或“6H”碳化硅)。因此,许多研究者已试图用α碳化硅来制造蓝光发射二极管。
作为有潜力的蓝光发射二极管的半导体材料,碳化硅具有许多优点。尤其是,碳化硅可易于被进行P型和N型两种掺杂。除具有宽禁带外,碳化硅还具有高热传导率,高的饱和电子漂移速度和高的击穿电场。不过,迄今为止,在制造电子器件,包括制造发光二极管方面,碳化硅还未达到完全商用地位,但是由于它的优良的半导体性能和制造蓝光LED′s的潜力,它将是有希望的。这通常是加工碳化硅所遇到的困难造成的加温度高,获得好的原材料困难,某些掺杂技术至今难于达到,也许最主要的是,碳化硅结晶超过150种聚型物,其中许多是靠非常小的热力学差别区分的。
因此,碳化硅作为制造诸如实用的,商业可靠的二极管等电子器件的优质材料,控制它的单晶体或单晶薄膜生长的目的,使得许多研究者感到困惑,尽管尽管他们勤奋努力多年,且这些努力大多反映在专利和非专利文献中。
不过,最近取得了一些进展,已有能力生长优质碳化硅器件的大的单晶体,生长优质碳化硅器件薄膜,以及把掺杂物引入碳化硅中,这是制造LED′s和其它电子器件所需要的。这些进展是几个美国专利的主题,包括专利号4,-Davis等人的专利“β碳化硅薄膜生长和在其上的半导体器件制造”(序号07/113,921,申请日,1987年10月26日);专利号4,-,Davis等人专利,“α碳化硅薄膜同外延生长和在其上的半导体器件制造”(序号.07/113,573,申请日1987年,10月26日);专利号4866005,Davis等人的专利,“纯化碳化硅以制造大的、优质的碳化硅单晶体”;专利号4,865,685,Palmour的专利,“碳化硅的干蚀刻”;和尚未批准的Edmond等人的美国专利申请,“进入单晶碳化硅的杂质的注入和电激活”序号07/356,333,1989年5月24日申请。
碳化硅的α聚型物在室温下具有2.9电子伏特的禁带。这个禁带足够大,以使得只要能够形成适当的跃迁,则可见光谱中的任何颜色都是适用的。因为在纯碳化硅中的跃迁是2.9ev,全禁带跃迁产生424-428毫微米的光,它具有特殊的紫色。因此碳化硅特别必须掺杂,以便在晶体中产生一个附加的受主级,电子可以从碳化硅的导带迁入受主级。例如,如果碳化硅用铝掺杂,铝掺杂物将形成一个受主级,它大约是导带下2.7ev。结果,从碳化硅导带跃迁到的铝掺杂物受主级的电子的就发射约455-460毫微米的蓝光。
如前所述,因为光是由在能级间跃迁的电子发出的,从半导体器件产生光的目的就是促进这种跃迁。一个二极管,简化为它的基本结构就是一个P-n结,它是一个促进这一跃迁的方法。当空穴或电子经P-n结被注入,它们将彼此复合,许多复合过程将包括电子从导带或施主级向价带或受主级的跃迁,并发射所需要的光。
因为制造LED′s的全部目的是要获得尽可能多的发射光,下属有关目的就是能够注入尽可能多的流经P-n结的电流,在发射层中具有尽可能大的掺杂物粒子数,在产生复合过程中具有尽可能大的效率和透明的物理结构,它加强从二极管获得的可见光。
这样看来,二极管中电流流动,可被认为是电子从n到P的流动或是空穴从P到n的流动。为获得蓝光发射器件的种种色调,两种注入模型都是必要的。
两种特别的市场可得到的器件使用较高的P电流,以便获得所希望的复合数,特别是使用一个P+-n结,这在下文将更全面解释,其中“+”号表示特种材料中活性掺杂物中较大粒子数。这样一个器件主要工作在空穴注入情况,以得到一个复合,它产生已报导的480毫微米峰值发射。
如前所述,碳化硅中全禁带约为2.9ev,且经过这个禁带的跃迁将产生紫色光子而不是蓝色光子。碳化硅中最有效的跃迁是在氮杂质级(施主级,它在导带下约0.08ev)和铝杂质级(受主级,它在价带上约0.22ev)两者之间进行的,从而在注入时复合的电子和空穴,在已掺杂的氮带和铝带之间进行跃迁,且发射一个具有更特殊蓝颜色的光子,有些研究人员报告说,它具有475-480nm的峰值波长。因此,主要载流子流动或注入-不管是电子还是空穴-必须形成为补偿层,或P型或n型。结果,为了使空穴电流产生蓝光,二极管的n型部分必须掺入施主(氮)和受主(铝)两种掺杂物,这种技术和结构称之为“补偿”。因此,为了得到一个补偿n型材料,材料中存在的n型掺杂原子数必须大于P型掺杂原子数。而且,475-480nm的光子虽然还被说成是具有“蓝”色,也逐渐向可见光谱的缘色区变化。因此,由于发射稍低波长。(例如460-470nm),由SiC做成的LED′s仍然是希望的。
如上所述,一种市场上可得到的LED′s使用这种类型的P+-n型结,以获得480nm的复合,并产生蓝光,这样的LED′s是通过在P型基片以铝(N)作为掺杂剂,采用液相外延的方法生长-P+层而形成的,在LED形成时附加P+层之后,将氮气以气泡方式引入LED熔体。由于铝杂质的存在,使其形成一个经补偿的n型层。这一生长技术实质上只限于制造这种类型的器件。
不过,使用液相外延形成一个P+-n结,存在许多问题和局限性。首先,它需要使用一个P基片,通常,这样一个基片具有一个相当高的电阻率,因为空穴的迁移率仅是电子迁移率的六分之一,并且因为少于2%的受主原子在室温下被电离。这就产生一个较高的二极管正偏压电阻,熟悉这种器件的人都知道,这是一个不希望有的二极管特性。
一个解决这种问题的办法是增加P型基片中空穴的浓度。不过,增加额外的掺杂物会使晶体不透明,减少发射的可见光。因此,问题在于,在所希望的高透明度和所不希望的高电阻率之间做折衷选择。增加较多的P型掺杂物,满意地减少电阻率却不希望地减少了透明度。反之,保持所希望的透明度,则不希望地产生了高电阻率。
回避这个问题的另一尝试,是把二极管的两个接触置于二极管的表面上,以避免使用基片作为导体;例如,可参见美国专利4531142。不过,这是一个非常困难的制造技术,这反映在这种二极管的低可用性和高成本方面。
除使用高透明度的基片以外,还可以通过增加注入补偿层的电流来增加光输出。这里的尝试是增加P区中P的浓度,即需要在外延层中增加P型掺杂物。不过,对P浓度可以达到多高是有限制的,尤其不是每个掺杂原子都会自动产生电离化的载流子(空穴或电子)。通常,电离的载流子数正比于掺杂原子数,并且按指数律反比于掺杂原子的电离(激活)能。例如,铝的电离能约为210-220毫电子伏特(mev),而氮则仅为70-80mev。因此,分别用氮和铝时,增加电离的n型掺杂原子的浓度比增加电离的P型掺杂原子的浓度要容易得多。
熟悉这种跃迁的人将知道,材料的电离是由热产生的,即电离的掺杂原子数取决于温度和电离能。例如,在具有1×1019原子/cm3掺杂水平的室温下,仅在约1%的铝载流子原子被电离,而约有22%的氮载流子原子被电离。因此,对于相同的掺杂原子数,电离化的n型掺杂物离子数将是P型掺杂物原子数的许多倍。结果是增加较多的P型掺杂物-通常是铝-去降低电阻率,同时也就降低了透明度。而且,在室温下获得满意的P+层是困难的,因为以前的研究人员报告说,P型电离载流子浓度的上限,在室温下大约为1到2×1018cm-3。不过,最近由于使用了改进的戴维斯型CVD工艺,已达到1-2×1019cm-3的P型载流子浓度。
而且,LPE工艺有助于n层附加到P层上,而不是相反,因为氮气可被引入熔体去增加进入所产生的外延层的掺杂物。典型的受主原子(例如铝)加入LPE工艺中的外延层要比氮难得多。因此,在碳化硅中形成二极管的工艺过程中,把P型外延层加到一个n型基片上通常认为是困难的和费用大的。理由是,除了能够把氮气引进熔体以形成n型层外,作为最后一步,铝必须被引入,它是这样一个过程如果在独步LPE浸渍工艺过程中不是不可能的话,也是相当困难的。
最后,SiC的LPE工艺过程包含,在超过1600℃的温度下,从石墨坩埚中硅熔体生长外延层。一般,石墨坩埚中的杂质,在外延生长时作为LPE工艺过程的一部分已被消耗,加入生长的外延层,即P+和n补偿层。许多这些杂质具有属于SiC禁带的能级,它们的存在引起附加的,不希望的复合过程,产生光子,随着就是放射峰值的增宽。因此,使用这种生长技术,发射尖的,窄带宽被证明是不实际的。例如,前述市场可得的LED在90-95毫微米的的峰值半带宽(也称“光谱半宽”)上规定了一个全宽。
因此,有必要改进碳化硅中形成的蓝光LED′s的制造技术和最终结构,即它可以在注入电子和空穴条件下操作,它因而可以达到较高的掺杂物浓度,较高纯度的薄膜,更透明的基片,较好的电流-电压特性,较低的电阻,并且它可用来制造这样的二极管它能在465-470毫微米范围内、在455-460毫微米范围内和在424-428范围内发光,它们都具有相当窄的带宽。
因此,本发明包含一个碳化硅中形成的发光二极管,它发射可见光,其峰值波长在约465-470毫微米之间,或在约455-460毫微米之间,或在约424-428毫微米之间。这个二极管包含一个具有第一导电型的α碳化硅基片和一个在基片之上的,具有和基片导电类型相同的α碳化硅第一外延层。一个第二α碳化硅外延层在第一外延层上,它具有与第一层相反的导电型,并且与第一外延层一起形成P-n结。在最佳实施例中,第一和第二外延层具有彼此完全不同的载流子浓度,从而在偏压状态下经过结的空穴流和电子流的数量不相同,从而使多数复合现象发生在所希望的外延层内。
以下将参照附图和对最佳及优选实施例的详细说明,使得本发明的上述的和其它的目的、优点和本发明的特征以及本发明的实现方法变得更容易理解,其中

图1和2是按照本发明的二极管的示意图,二极管是以约455-460毫微米间的峰值波长发光;
图3和4是按照本发明的二极管的示意图,二极管是以约424-428毫微米间的峰值波长发光;
图5到8是按照本发明的二极管的示意图,二极管是以约465-470毫微米间的峰值波长发光;
图9和10是按照本发明的二极管的发射光谱;
图11是按照本发明的二极管的电流对电压特性曲线;
图12是按照本发明的台面LED结构的典型横剖视图;
图13是按照本发明的二极管的另一发射光谱。
图1示出了一个按照本发明的碳化硅中形成的发光二极管,它用20标示,该二极管发射可见光,其峰值波长在约455-460毫微米之间。二极管包含α碳化硅21的一个n型基片。欧姆接触22为基片21提供电接触。在本发明特定实施例中,到n型基片21,或者到如下文中所述的n型外延层20上的欧姆接触22可以由金属镍来形成,相似地,到下文中将要描述的P型基片和P型外延层的欧姆接触可以由金属铝来形成。
在二极管20中,基本上未经补偿的n型外延层23是被置于n型基片21上的,其载流子浓度大于n型基片的载流子浓度。其中所用的术语“基本上未经补偿”是指在晶体的外延结构中存在某些少量相反导电型掺杂物,而这一个数量不会造成那此熟悉晶体结构的人所说的“补偿”特性,对此,下文中将更全面地叙述。如前所述,外延层23中较大的施主浓度,常用符号例如“n+”表示。一个基本上未经补偿的α型碳化硅的P型外延层24置于n+型外延层23上,并和n+型层一起形成一个P-n结。P型外延层24的载流子浓度小于n+型外延层23的载流子浓度。
当谈到这里所说二极管的各外延层的粒子数时,使用过“大于”或“小于”等词,这指的是各外延层间载流子浓度的差,这个差大得足以使得流经结的空穴流或电子流占完全优势,从而同样使得大多数的电流流过结时发生的复合过程在所希望的外延层中产生。经过二极管的电流可以认为是电子的流动,即从结的n边向P边流动,这个电流称为电子流,并用符号“In”表示。电流也可以被认为是空穴的流动,即从P型材料经过结流向n型材料,这个电流用符号“Ip”表示。
熟悉这些器件及其操作的人还知道,In和Ip不一定是相同的,两者经常不同。图1中,主流是电子流,并用符号In标示。
一个欧姆接触25做在基本上未经补偿的P型外延层24上,所得到的二极管在约为455-460毫微米之间的波长范围上产生峰值发射,并且在峰值波长上的光谱半宽不大于约50毫微米。
在一个最佳的实施例中,图1的发光二极管是通过生长外延层制造的,这种生长是靠美国专利(序号为4,-和4,-)中所述的化学汽相淀积(CVD)技术实现的,其中公开的化学汽相淀积技术将在下文和权利要求书中被涉及,其目的在于定义和明确戴维斯型化学汽相淀积。
正如在Davis′573申请中陈述的和这里已经使用过的,“戴维斯型化学汽相淀积”包含在一个α碳化硅基片的制备表面上,均匀外延沉淀一个α碳化硅的聚型物的膜,其中制备表面相对于基准表面的离轴倾角大于1度,基准表面实质上朝着<1120>方向之一。在结构上,在这种工艺生产的二极管中,碳化硅基片具有一个相对于基准平面的离轴倾斜角度大于1度的平面型界面,其基准平面实质上朝向均匀地沉积在所述基片界面上的α型面化硅的所述P型外延层的<1120>方向之一。这里所用的标记,例如“2”表示密勒系统中的一个位置,(例如,一个平机或一个方向),它具有定义为原点的格位置“负”边上的截距。
因为由戴维斯型化学汽相淀积产生的外延层及由此构成的二极管具有高的纯度和优质的结晶,则最佳实施例中的发光二极管(如图1中所示的)在其波长范围为约455-460nm之间产生一个峰值发射,峰值波长处的光谱半宽度大于约25nm。在二极管20中,n型基片21和n型外延层可以包含施主载流子氮,P型外延层可以包含受主载流子铝。
而且,熟悉结晶体本性和碳化硅结构的人都知道,在基片中使用的单晶α型碳化硅和外延层可以具有单个聚型物,它选自包含6H,4H,和15R聚型物组。
熟悉这种二极管操作的人将认识到,因为P型层24是用铝掺杂的,当主要电子流从n+外延层23流入P型外延层24时,主要复合过程将产生在碳化硅导带和铝掺杂带之间。这种传递所表示的能量和455-460毫微米光子和特殊蓝光相符合。如前所述,将有一个相应的非主要的空穴流从P型外延层24流入n+外延层23,它准同样产生某种复合过程,例如是在碳化硅导带和价带之间进行的复合,它相应于一个424-428毫微米的发射,但由于电子流占优势,所以455-460毫微米过程和光发射也同样占优势。
如上所述,n+层23的载流子浓度充分大于P型外延层24的载流子浓度,以产生占优势的电子流。特别是,这样一个“大于”层的载流子浓度至少比注入了载流子的邻层的浓度大一个数量级。在典型的二极管中,基片具有的施主能级范围约为每立方厘米5×1017到1×1018个载流子,而在一个n+外延层中施主粒子数约在2×1018和2×1019cm-3之间。在这种情况下,P型外延层将具有约2×1017到2×1018cm-3的空穴数。这种二极管的一个典型尺寸是,基片厚度约是300微米,其外延层厚约为1-2微米,这是实现二极管各种特性所希望的。
图2是在α型碳化硅的一个P型基片上的碳化硅中形成另一发光二极管30的示意图。一个欧姆接触32置于基片31上,基本上未经补偿P型外延层33置于基片31上。基本上未经补偿的α碳化硅的n型外延层34置于P型外延层33上,和P型外延层33共同形成一个P-n结。n型外延层34的载流子浓度大于P型外延层33的载流子浓度,一个欧姆接触35在n型外延层上形成。二极管30同样以约为455-460毫微米之间的波长产生一个峰值发射,它具有不大于50毫微米的峰值波长上的光谱半宽。
在一个最佳的实施例中,二极管30同样靠相应的生长外延层形成,生长是靠Davis型化学汽相淀积法,在优选实施例中,用这种方法生产的二极管以约为455-460毫微米之间的波长,产生一个峰值发射,它具有不大于约25毫微米的峰值波长上的光谱半宽。
在另一实施例中,n型外延层可以包含施主载流子氮,P型外延层和P型基片两者可以包含受主载流子铝。二极管同样可以由α型碳化硅形成,α型碳化硅选自由6H,4H和15R聚型物组。
如图2箭号In所指示的,主要载流子流是电子流,它从n+层34流入P层33,产生与图1有关陈述相同的跃迁。
图3和4示出了按照本发明的发光二极管,它们所发射的光线将具有约424-428毫微米范围的发射峰值。这种波长的光线体现了在碳化硅中从导带到价带之间的全禁带的跃迁,而不是在碳化硅中从某一带和某一掺杂带之间,或者在两种掺杂带之间的跃迁。参见图3和4的相关结构,可见该种跃迁是通过形成如此结构的二极管来完成的,即其主要的电流是空穴流。正如那些熟悉碳化硅及其特性的人们所了解的,全禁带复合现象在碳化硅中的出现,使其特性较佳于其他发生在n型材料中的n型(通常为掺氮)掺杂级和价带之间的跃迁。图3所示为发光二极管的第一种形式,该型发光二极管的特性将可发射424毫微米的光子。箭头40所指之外为二极管,它包括α碳化硅的一个n型基片41和一个与n型基片41作欧姆接触的接触端42。α碳化硅的一个基本上未经补偿的n型外延层43处于n型基片41之上,而α碳化硅的一个基本上未经补偿的P型外延层44处于n型外延层43之上,并且它与n型外延层形成一个P-n结。当n型层43和P型层44两者均为戴维斯型化学气相沉积形成时,P型外延层44所具有的载流子浓度将大于n型外延层43的载流子浓度。从P型外延层44上引出欧姆接触45。如先后前已述的,由于P型外延层44的载流子浓度是起主导作用的,则电流的主流将是由P型外延层至n型外延层43的空穴电流,如图中箭头Ip所示。于是二极管产生一种约在424-428毫微米范围的峰值发射,并且在其峰值外的光谱半宽度的波长约不大于50毫微米。在最佳实施例中,在其峰值波长处的光谱半宽度不大于25毫微米。
如在较早的实施例中,n型基片和n型外延层41和43分别可以包括起施主载流子作用的氮,而P型外延层44则可以包括起受主载流子作用的铝。基片41及基相应的外延层43和44可以是6H,4H和5R聚型碳化硅中选出的一种聚型碳化硅。同样,在较早的实施例中,P型外延层44的欧姆接触可以包括铝,而n型基片41的欧姆接触可以包含镍。进一步要为本例和较早的实施例指出的是,n型基片41提供了在较低的电阻率下比P型基片具有更高的透明度的优点,尽管在某些条件下P型基片可能还是比较好的。
图4表示出发光二极管的另一个实施例,二极管以50来命名,它是在α碳化硅的P型基片51上形成的。基片51处引出一个欧姆接触52,并且一个基本上未经补偿的P型外延层53处于P型基片51之上,外延层53所具有的载流子浓度高于P型基片51的载流子浓度。基本上未经补偿的第一α碳化硅n型外延层54处于P型外延层53之上,它所具有的载流子浓度低于P型外延层53的载流子浓度。一个基本上未经补偿的第二n型外延层55处于第一n型外延层54之上,它所具有的载流子浓度比第一n型外型层54的高。
就图3和4所示的二极管而言,P型或n型基片将典型地具有5×1017-1×1018cm-3范围内的载流子浓度。P+外延层将具有1和2×1018cm-3之间的载流子浓度,而n外延层将具有1×1016和5×1017cm-3之间的载流子浓度。如图1和2所描述的二极管的情形下,一个典型的基片厚度将是300微米的量级,其外延层的厚度将是1或2微米的量级,它们的厚度取决于所需特性和设计要求。应该理解的是,这些是若干典型数值,但按照本发明的二极管并不限定于这些规定值。
一个欧姆接触56被制作到第二n型外延层55上。于是具有较高的浓度的第二n型外延层55形成了一个导电表面,该表面缓解了电流的了聚集,否则该聚集的电流会出现在制作到第二n型外延层55的接触56周围。最终获得的二极管产生介于约424-428毫微米之间的峰值发射,并且在其峰值波长处的光谱半宽度不大于50毫微米左右。
如图4中箭头Ip所指出的,该电流的主导成分是从P型外延层53流到n型外延层54的空穴电流,如先前所解释的,它趋向较好的效果,即导致在碳化硅的导带和价带之间产生全禁带跃迁,并获得424-428毫微米的光子发射效果。
正如在先前的实施例中,外延层53和54相应地用戴维斯型化学气相沉积法生成,则在这样的最佳实施例中,在峰值波长处的光谱半宽度不大于25毫微米。与其它的实施例相同的是,施主载流子可以包括氮,受主载流子可以包括铝。基片和外延层的聚型物可以从由6H,4H和15R组成的聚型α碳化硅中选出,以及欧姆接触可以分别包括制作到n型外延层55的镍和制作到P型基片51的铝。
图5示出标志为60,通常命名为发光二极管的另一种形式,它是按照本发明在碳化硅中形成的,它所发射的可见光具有在465-470毫微米之间的峰值波长。该二极管包括一个α型碳化硅的n型基片61。一个欧姆接触62提供了至基片61的电接触。一个基本上未经补偿的α型碳化硅的n型外延层63是在n型基片61上形成的,并且它所具有的施主数大于n型基片的施主数。一个经补偿的α型碳化硅的P型外延层64被形成在基本上未经补的n型外延层之上,从而形成一个具有n型外延层63的P-n结。一个基本上未经补偿的α型碳化硅的P型外延层65被形成在经补偿的P型外延层之上,它所具有的受主数大于或等于经补偿的P型外延层64之受主数。一个导电接触66引到实质上未经补偿的P-型外延层,从而完成了整个二极管。P+-型未经补偿的外延层65的目的是形成稍加改善的导电表面,从而避免那种在早期的碳化硅二极管中所观察到的电流聚集。但应该理解的是,即便没有那层未经补偿的P+外延层,直接将接触66加到经补偿的P型外延层64上,也可以形成适合的二极管。
如预先已提到的,术语“经补偿的”(某些参考资料中称其为“过补偿的”)指在材料的掺杂部分中,施主和受主型掺杂物都采用,藉此而使其保持施主型或受主型特性。例如,在经补偿的P型层中,P型的和n型的两种掺杂物(分别是受主和施主原子)均被包括,其中P型受主原子数足够地超过n型施主原子数,从而使之呈现外延层的P型特性。以类似的方式,一种n型经补偿的材料将包括施主和受主两种原子当作预期的掺杂物,但其中施主型原子数足够地超过受主型原子数,从而呈现出整个外延层n型的特性。
作为对前面已提到一步说明,通过二极管的电流可以被考虑为结的n侧流向P侧的电子流,即所称的电子流的电流,这个电子流以“In”的符号来表示。该电流也可以被认为是跨越结的由P型材料流向n型材料的空穴流,即命名为“Ip”的电流。对于一个发射蓝光的器件,利用了向P型补偿层注入电子的方法,则在正向偏压下,大部分电流最好应该是电子电流(In),这样导致大量的电子注进了结的经补偿的P侧,这本身又导致更多的复合机会和导致更大量的光发射。反过来,对于n型补偿层而言,在正向偏置下的电流大部分最好应是空穴电流(Ip),这样造成大量的空穴注进了结的经补偿的n侧。为了做到这一点,在上述讨论基础上进一步提出,运用一种n+层或P+层来分别形成n+-P结或P+-n结;也即形成了一个结,在该结中,较多载流子将存在于结的某侧边,而载流子也是从该侧边注入的(即“+”侧)。
关于图5-8所讨论的二极管,典型的载流子浓度对于n或P基片来说分别是每立方厘米包括5×1017-1×1018;对于n+外延层为5×1018-2×1019;对于经补偿的n型外延层为5×1016-8×1017;对于P+型外延层为1×1018-2×1019;和对于经补偿的P型层为5×1016-8×1017。作为来文所所讨论的其他二极管的规定,典型基片可能是300微米厚度的量级;同时它的典型外延层将是1或2微米厚度的量级。如前所述,这些典型值并不限制那些特殊的数值或数值范围。
如上面已讨论的现有技术,以前的装置仅采用P+-n(经补偿的)结以便获得一种475-480毫微米的复合。从实施的观点看,SiC的液相外延生长(LPE)过程通常需要采用P型基片,这就限制了对P+-n结构的设计和制造。更重要的是,LPE导致一种相对不纯的和带缺陷的n型补偿层,它会产生一种带宽非常宽的光发射。
如同那些熟知的半导体装置的制造方法的技术人员所知,单晶的质量和掺杂-包括补偿-会影响掺杂物的正确的能级。其本身又反过来影响在能级间的能差,并影响最终所发射光线的色彩。因此,由本发明的二极管所发射的465-470nm光提供了较纯的或“更蓝化”的光线色彩。尽管申请人并不希望由任何特殊的理论来限定它,但它显示出由戴维斯型CVD形成的较高级的单晶结构减少了能级位置上单晶缺陷的数量和影响也降低了最终物跃迁。这一点是由本发明的二极管所提供的规定波长的光线和较窄的带宽所说明了的。
反过来讲,戴维斯型化学气相沉积法工艺提供了利用n型或P型两种基片的灵活性,并藉此生产出在三种不同波长段的窄带光发射的LED。
在图6中,在70外标明为二极管,71为n型基片,72处为欧姆接触,73为经补偿的n型外延层,74为P+外延层,而75为至P+层的欧姆接触。如同由箭头Ip所示的,图6的二极管可通过从P+层74注入空穴而进入经补偿的n型外延层73的方法来操作。
本发明的二极管(如刚才讨论的)的优点如下1)由于具有在n+或P+层分别获得较高的施主或受主量的能力,因而具有较高的注入电流;
2)较高的透明度,具有在低阻率下几乎无色的基片;
3)较好的电流-电压特性;
4)由于采用了戴维斯型气相沉积法(CVD)其生长的外延层具有高纯度;和5)窄带发射,这是由于外延层的高纯度而获得的。
人们还可能通过单独采取1)和4)的优点而获得改进的器件特性(参见图7和8)。
在图7中,80处命名为二极管,81为P型基片,82为到基片的欧姆接触,83为经补偿的P型外延层,84为n+外延层,而85为至n+层的欧姆接触。在本例中,以箭头In标明的电子电流从n+外延层84流向经补偿的P型外延83。
在图8中,90定义为二极管,91为P型基片,92为至基片的欧姆接触,外延层,94为经补偿的n型外延层,95为实质上未经补偿的n+层外延,而96为至n+层的欧姆接触。93为P+如图4实施例中的有关注释,n+外延层95提供了高的导电表面,因而有助于防止可能会发生在接触片96周围电流聚集。如同由箭头Ip所示的那样,本实施例可以通过注入由P+层93流向经补偿的n型外延层94的空穴电流的方法,来操作该二极管。
图9、10和13分别示出了455毫微米,424毫微米和467毫微米的LED的光谱,这些二极管是按照本发明而形成的,并且以光强(相对)相对于以毫微米为单位的波长来表示。由图9,10和13所体现的二极管的波长数据均归纳在表1中。这些图中所描述的二极管同样展示了它们具有极好的外在的量子效应,尤其是图13的二极管显示出了具有1×10-4的外在量子效应。
表1附图号峰值波长光谱半宽度9456nm26nm10425nm23nm13467nm75nm在戴维斯的专利No.4,一中所提出的是作为该技术的一种简要的概括,按照本发明的二极管的外延层是在α碳化硅的经研磨和抛光的离轴(offaxis)基片上通过采用α碳化硅的化学气相沉积方法而生成的。在形成未经补偿的n型层的过程中,将乙烯(C2H4)和硅烷(SiH4)的气流引入CVD系统。一种包含着气体的氮在选择浓度时被引入,并且按照组成基准中所提出的参数要求,最后形成α碳化硅的n型外延层。
然后,将所有的气流关闭,因而系统很干净,此后,已烯和硅烷被再度引用到形成P型层的过程。借助气泡化的氢气通过三甲基铝(TMA)的方法来增补铝。以便形成包含气体的铝。最终结果是,n型外延层之上是P型外延层,该两种外延层以一个基本上连续的过程完成其形成过程。
为了形成一种经补偿的外延层,在上述流程中的氮流或可维持原速或可作略微的减少,与此同时增补铝,方法如刚才所说的,但却不能停止氮流。
为了在经补偿的外延层上形成P+外延层,上述流程可以继续,但是在其最后阶段关闭氮气,因而仅仅只有铝被增补到最终形成的外延层中。
图11示出按照本发明的二极管的电流-电压特性,尤其是它表明了在正向电压为4.4伏时正向电流为100mA,而在-5伏情况下,反向漏电流小于1微安。
最后,图12绘出了一种台面型结构的典型横截面,这种台面型结构为本发明的发光二极管提供了一种适用的结构。101被指定是基片,102和103分别是外延层,104和105分别是引基片和引外延层103的欧姆接触。一个钝化层106,例如二氧化硅,可以被加入引台面型结构中,其目的是保护P-n结。采用戴维斯型化学气相沉积法进行外延层生长之后,各外延层和基片可相应地被刻蚀,欧姆接触和钝化层可采用其他传统的技术,如光刻工艺来提供,在专利No.4865685中提出了可适用的蚀刻技术。如熟悉器件制造的人们所了解的,台面型结构描绘了P-n结的外型轮廓,而当数个或许多个结被形成在一个公共基片上时,相互结间需作隔离。相应地,若许多个这样的二极管被同时制造而相互紧邻时,通常的制造要领是,将各二极管作分离,通常采用划开基片的方法,但注意不应损伤边缘或结,否则则会影响所期望的晶体结构。
附图和说明书中已对本发明的典型最佳实施例作了公开,尽管使用到了一些专用术语,它们已被用于某个种类,但仅仅是描述性的概念,而目的不在于限定,本发明的范围由下列权利要求所体现。
权利要求
1.一种在碳化硅中形成的发光二极管,它发射可见光谱的蓝一紫色部分的光线,其特征是一个α型碳化硅的n型基片;一个所述基片的欧姆接触;一个在所述的n型基片上的α型碳化硅的基本上未经补偿的n型单结晶的外延层;一个在所述的n型外延层上的α型碳化硅的P型单晶外延层,它与所述n型层形成P-n结,所述的P-型外延层具有的载流子浓度少于所述的未经补偿的n型外延层的载流子浓度;和一个至所述的P型外延层的欧姆接触,所述的二极管产生介于约455至460nm波长之间的峰值发射,并且在峰值波长处的光谱半宽度不大于约50nm。
2.按照权利要求1所述的发光二极管,其特征是,所述的n型基片和所述的n型外延层包括氮作为施主载流子,并且所述的P型外延层包括铝作为受主载流子。
3.一种在碳化硅中形成的发光二极管,它发射可见光谱的蓝-紫色部分的光线,其特征是一个α型碳化硅的P型基片;一个至所述基片的欧姆接触;一个在所述的P型基片上的α型碳化硅的基本上未经补偿的P型单晶的外延层;一个在所述的P型外延层上的α型碳化硅的基本上未经补偿的n型单晶的外延层,并与所述的P形成一个P-n结,所述的n型外延层所具有的载流子浓度大于所述的P型外延层的载流子浓度;和一个至所述的n型外延层的欧姆接触,所述的二极管产生介于约455至460nm波长之间的峰值发射,并且在峰值波长处的光谱半宽度不大于约50nm。
4.按照权利要求1或3所述的发光二极管,其特征在于该二极管产生介于约455至460nm波长的峰值发射,并且在峰值波长处的光谱半宽度不大于约25nm。
5.按照权利要求3所述的发光二极光管,其特征在于所述的n型外延层包括作为施主载流子的氮,所述的P型基片和所述的P型外延层包括作为受主的铝。
6.一种在碳化硅中形成的发光二极管,它发射可见光谱的蓝-紫色部分的光线,其特征是一个α型碳化硅的n型基片;一个至所述的n型基片的欧姆接触;一个在所述的n型基片上的α型碳化硅的基本上未经补偿的n型单晶的外延层;一个在所述的n型外延上的α型碳化硅的基本上未经补偿的P型单晶的外延层,并与所述的n型外延层形成一个P-n结,所述的P型外延层所具有的载流子浓度大于所述的n型外延层的载流子浓度,所述的n型和P型外延层分别采用戴维斯型化学气相沉积法形成;和一个至所述的未经补偿的P型外延层的欧姆接触,所述的二极管产生介于约424至428nm波长之间的峰值发射,并且在其峰值波长处的光谱半宽度不大于约50nm。
7.按照权利要求6的发光二极管,其特征是,所述的n型基片和所述的n型外延层包括作为施主载流子的氮,所述的P型外延层包括作为受主载流子的铝。
8.一种在碳化硅中形成的发光二极管,它发射可见光谱的蓝-紫色部分的光线,其特征是一个α型碳化硅的P型基片;一个至所述的P型基片的欧姆接触;一个在所述的P型基片上的碳化硅的基本上未经补偿的P型单晶的外延层;一个在所述P型外延层上的α型碳化硅的基本上未经补偿的第一n型单晶的外延层,并且它所具有的载流子浓度少于所述的P型外延层的载流子浓度;一个在所述的第一n型外延层上的碳化硅的基本上未经补偿的第二n型外延层,并且它所具有的载流子浓度大于所述的第一n型外延层的载流子浓度;和一个至所述的第二n型外延层的欧姆接触,其中所述的第二n型外延层形成一个能缓解电流聚集的导电表面,而该电流聚集会包围接至第二n型外延层的接触端,所述的二极管产生介于约424至428nm的峰值发射,并且在其峰值波长处的光谱半宽度不大于约50nm。
9.按照权利要求8所述的发光二极管,其特征是,所述的基本上未经补偿的P型外延层具有的载流子浓度大于所述的P型外延层具有的载流子浓度大于所述的P型基片的载流子浓度。
10.按照权利要求6或8所述的发光二极管,其特征是,它产生介于约424至428nm的峰值发射,并且在峰值波长处的光谱半宽度不大于约25nm。
11.按照权利要求8所述的发光二极管,其特征是,所述的n型外延层包括作为施主载流子的氮,并且所述的P型基片和所述的P型外延层包括作为受主载流子的铝。
12.一种在碳化硅中形成的发光二极管,它发射可见光谱的蓝-紫色部分的光线,其特征是一个α型碳化硅的n型基片;一个至所述n型基片的欧姆接触;一个所述n型基片上的α型碳化硅的基本上未经补偿的n型单晶的外延层;一个在所述的未经补偿的n型外延层上的α型碳化硅的经补偿的P型单晶的外延层,并且它与所述的n型外延层形成一个P-n结,和一个至所述的经补偿的P型外延层的欧姆接触。
13.按照权利要求1或12所述的发光二极管,其特征是,所述的未经补偿的n型外延层所具有的载流子浓度大于所述的n型基片的载流子浓度。
14.按照权利要求12所述的发光二极管,其特征是,进一步包括一个在所述的经补偿的P型外延层之上的α型碳化硅的未经补偿的P型外延层,所述的未经补偿的P型外延层所具有的载流子浓度大于所述的经补偿的P型外延层的载流子浓度,并且其中所述的未经补偿的P型外延层形成一个能缓解电流聚集的导电表面,而该电流聚集会包围接至所述的P型外延层的所述接触片。
15.按照权利要求12所述的发光二极管,其特征是,所述的n型基片的n型外延层包括作为施主载流子的氮,和所述的经补偿的P型外延层包括作为受主载流子的铝和作为施主载流子的氮。
16.按照权利要求1,6或12所述的发光二极管,其特征是,至n型基片的欧姆接触包含镍,并且至所述的P型外延层的欧姆接触包含铝或铝合金。
17.一种在碳化硅中形成的发光二极管,它发射可见光谱的蓝-紫色部分的光线,其特征是一个α型碳化硅的n型基片;一个在所述的基片上的α型碳化硅的经补偿的n型单晶的外延层;一个在所述的n型外延层上的基本上未经补偿的P型单晶的外延层,所述的P型外延层所具有的载流子浓度大于所述的n型外延层的载流子浓度;和所述的二极管产生介于约465至470nm波长的峰值发射,并且在峰值波长处的光谱半宽度大于约80nm。
18.按照权利要求1,12或17所述的发光二极管,其特征是,所述的碳化硅基片具有一个相对于基准平面的离轴倾斜角度大于1°的平面型界面,其基准平面实质上朝向均匀地沉积在所述的基片界面上的α型碳化硅的所述P型外延层的<1120>方向之一。
19.按照权利要求17所述的发光二极管,其特征是,所述的n型基片和经补偿的n型外延层包括作为施主载流子的氮,所述的经补偿的外延层进一步包括作为受主载流子的铝,和所述的基本上未经补偿的P型外延层包括作为受主载流子的铝。
20.一种在碳化硅中形成的发光二极管,它发射可见光谱的蓝-紫色部分的光线,其特征是一个α型碳化硅的P型基片;一个在所述的基片上的α型碳化硅的经补偿的P型单晶的外延层;一个在所述的经补偿的P型外延层上的基本上未经补偿的n型单晶的外延层,并且它与所述的经补偿的P型层构成一个P-n结;所述的n型外延层所具有的载流子浓度大于经补偿的P型外延层的载流子浓度。
21.按照权利要求12或20所述的发光二极管,其特征是,它产生介于约465至470nm波长的峰值发射,并且其光谱的半宽度不大于约80nm。
22.按照权利要求20所述的发光二极管,其特征是,所述的n型外延层包括作为施主载流子的氮,所述的P型基片和经补偿的P型外延层包括作为受主载流子的铝,以及所述的经补偿的P型外延层进一步包括作为受主载流子的氮。
23.一种在碳化硅中形成的发光二极管,它发射可见光谱的蓝-紫色部分的光线,其特征是一个由α型碳化硅所形成的P型基片;一个至所述基片的欧姆接触;一个在所述基片上的由α型碳化硅形成的基本上未经补偿的P型单晶的外延层;一个在所述的P型外延层上的经补偿的n型单晶的外延层,所述的n-型外延层所具有的载流子浓度少于所述的P型外延层的载流子浓度;和一个在所述的经补偿的n型外延层上的基本上未经补偿以n-型外延层,它所具有的载流子浓度大于所述的经补偿的n型外延层的载流子浓度;和一个至未经补偿的n型外延层的欧姆接触,并且其中所述的n型外延层构成一个能缓解电流聚集的导电表面,而该电流聚集会包围至n型外延层的所述的接触片,并且所述的二极管产生介于约465至470nm波长的峰值发射,并且在峰值波长处的光谱半宽度不大于80nm。
24.按照权利要求3、8、20或23所述的发光二极管,其特征是,所述的碳化硅基片具有一个相对于基准平面的离轴颂斜角度大于1°的平面型界面,其基准平面实质上朝向均匀地沉积在所述的基片界面上的α型碳化硅的所述P型外延层的<1120>方向之一。
25.按照权利要求23所述的发光二极管,其特征是,它产生介于约475至480nm波长的峰值发射,并且在峰值波长处的光谱半宽度不大于约25nm。
26.按照权利要求23所述的发光二极管,其特征是,所述的经补偿的n型外延层和所述的基本上未补偿的n型外延层包括作为施主载流子的氮,和所述的经补偿的n型外延层进一步包括作为受主载流子的铝。
27.按照权利要求1,3,6,8,12,17,20或23所述的发光二极管,其特征是,其中的α型碳化硅是一种由6H,4H和15R组成的组合中选取的聚型物。
28.按照权利要求3,8或23所述的发光二极管,其特征是,所述的至n型外延层的欧姆接触包含镍,和所述的至P型基片的欧姆接触包含铝或一种铝合金。
29.按照权利要求1,3,6,8,12,17,20或23所述的发光二极管,其特征是,其中所述的n型单晶的外延层包含一种简单的聚型物,以及所述的P型单晶的外延层包含一种简单的聚型物。
全文摘要
本发明包含有在碳化硅中形成的发光二极管,它发射介于约465至470nm,或介于约455至460nm,或介于约424至428nm波长的可见光。该二极管包含具有第一导电型的α型碳化硅的基片和在具有相同导电型的用作为基片的在基片上的α型碳化硅的第一外延层。一个在第一外延层上的α型碳化硅的第二外延层,具有与第一层相比相对高的导电型,并与第一外延层形成一个P-N结。
文档编号H01L33/16GK1044549SQ8910979
公开日1990年8月8日 申请日期1989年12月14日 优先权日1988年12月14日
发明者约翰·A·埃德蒙 申请人:克里研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1