微腔半导体激光器的制作方法

文档序号:6812562阅读:243来源:国知局
专利名称:微腔半导体激光器的制作方法
技术领域
本发明涉及微腔半导体激光器,更具体地涉及微片、微圆柱、微环和类似的半导体激光器。
背景技术
近来微腔半导体激光器已被用于在液态氮温度及室温下工作。这种微腔半导体激光器使用支持其形式为耳语道模形式的光模的有源激光介质,其中绕具有适当小直径的微片或微圆柱圆周滑动的光子被连续完全地反射。该薄微片或微圆柱放置在相对于有源激光介质具有折率高反差的周围介质(例如空气)中,以使得光模在垂直方向上被强烈地限定在微片或微圆柱内部并被耦合到包括一个或多个量子井的有源激光介质。例如,一种耳语道模的微片半导体激光器已被McCall等人描述在(Appl.phys.Lett.应用物理学通讯〕(60,(3),1992年1月20日)上的文章“耳语道模微片激光器”中。一种耳语道模微圆柱半导体激光器已被Levi等人描述在Appl.phys.Lett.(6,(17),1993年4月26日)上的文章“在In0.51Ga0.49P/In0.2Ga0.8As微圆柱激光二极管中的室温激光作用”中。
与传统半导体激光器相比较,微腔半导体激光器的优点在于其尺寸小并实质上需要在微瓦范围内的更小的最小工作电流(功率)。但是,它没有从该微腔激光器中输出光的定向耦合。事实上,光子被强烈地限定在微片或微圆柱的内部。这对于激光器中输出光的定向耦合对于有效的应用是必须的情况是不利的。
最近,在Appl.phys.Lett.62,561(1993)的文章“来自微片激光器的定向光耦合”中将不对称点引入到单圆形微片中,以提供使从不对称点中漏出的激光量增大的位置。此外,有人建议提供直接在微片上制造的光栅以便由其耦合光。但是,作为小尺寸微片的结果,在其上制造光栅或另外的光输出耦合结构在不同时对微腔的Q值(品质因数)及低激光阈值带来不利影响的情况下是难以实现的。
本发明的一个目的是提供一种微腔半导体激光器,它具有用来耦合从激光器输出的光的特征,而不会对微腔的Q值及低激光阈值有不利影响。
本发明的另一目的是提供一种微腔半导体激光器,它具有用来将从激光器输出的光耦合到合成光回路中的特征。
发明概述本发明提供一种微腔半导体激光器,它包括第一微构件,例如具有圆形横截面外围的激光微腔(一个或多个量子井)的微片、微圆柱或微环;第二波导微构件,它可包括与第一激光微构件隔开在不同平面中、例如在用层生长工艺的层制作期间的不同外延层上的微片、微圆柱或微环。第一激光微构件及第二激光微构件例如通过用在微构件之间的具有低折射率的材料使其分开选定距离的谐振光耦合产生光耦合。第一激光微构件及第二波导微构件隔开一个选定的距离,以提供它们之间的给定耦合效率。激光微腔的高Q值及低激光阈值是在第二波导微构件上而非在第一激光微构件上提供光输出耦合器来维持的。
在第二波导微构件上的光输出耦合器在本发明的一个实施例中可包括表面,例如切割波导外圆周的一个或多个扁平表面。另一方式是,光输出耦合器在本发明的另一实施例中可包括在波导微构件轴向端面上具有光辐射垂直分量的光栅或另外的表面。此外,在本发明又一实施例中,光输出耦合器可包括与第二波导微构件成整体的直线输出波导,或根据本发明另一实施例的围绕在微构件圆周外围一部分上的拱形波导。
在本发明的一个具体实施中,第一微构件包括作为被适当阻挡层分开的量子井的一个或多个InGaAs半导体微片、微圆柱或微环,第二波导微构件包括InGaAsP半导体微片、微圆柱或微环。光耦合器可包括低折射率的InP支台、微圆柱或微环。
本发还提供了一种激光器,它包括具有圆形横截面外围的波导或激光微构件,及包围波导微构件圆周一部分的拱形光输出波导以提供从它输出的光。该拱形光输出波导可包括围绕微构件的一个环形部分及至少一个终结成一端的一直线部分。光输出波导是在与设在衬底上的集成光回路相适合的衬底上的层次上,以便对光回路提供光输出信号。
本发明的激光器提供了有关微腔半导体激光器的优点,并提供了对激光器的光输出耦合器,它在公共应用中是有用的并能与集成光回路相兼容。
从以下结合下列附图的详细说明中将会使本发明的上述目的及优点变得更加易于明白。


图1是根据本发明一个实施例的微腔(微片)激光器的概图;图2是根据本发明一个实施例的在微片之间隔开0.65微米的双片激光器的耦合百分比相对耦合长度的曲线图;图3是根据本发明的双微片激光器的激光光谱相对于波长的波形图;图4是从图1的激光器的上波导微片的开口中输出的1.5微米波长上的边缘发射激光的照片;图5是根据本发明另一实施例的微腔(微圆柱)激光器的概图;图6是类似于图5的包括与下波导微圆柱成整体的光输出耦合波导的微腔(微圆柱)激光器的概图;图7是表示其分层结构的双微圆柱激光器的概图;图8是根据本发明另一实施例的包括绕下微构件圆周外围的一部分并与其隔开的拱形波导的微腔激光器的概图;图9是根据本发明又一实施例的包括绕下微环圆周外围的一部分并与其隔开的拱形波导的微腔激光器的概图。
本发明的详细说明参照图1,它概要地表示根据本发明一个实施例的微腔半导体激光器,其中包括第一下微片(微构件)10,它在图1中称为激光片;及第二上透明波导微片(微构件)12,它在图1中称为波导片,并在与下微片10不同的平面上(在外延层生长期间的不同外延层次),以致具有低的光吸收率。第一下激光微片10及第二上波导微片12在图中具有相同的直径。但是本发明并不受这种限制,也可以用具有不同直径及形状的微片10、12来实施,但要付出降低微片间光耦合效率的某些代价。第一下激光微片10可用合适的装置来激励,例如公知的光方式(例如用提供适当占空比的脉冲光的抽运激光器)或电方式(例如通过与微片上和下面相连接的导线提供适当占空比的电流脉冲)。
下激光微片10及上波导微片12通过谐振光子隧道效应被光耦合,该谐振光子隧道效应是通过在微片间设置具有低折射率的材料使彼此间隔开预定距离形成的。在图1中,微片10、12被包含InP的支台14隔开,但本发明并不受这种限制,而微片也可被悬置或是隔开以在其之间提供低折射率材料如空气、SiO2、丙烯酸类、或半导体(例如InP),以便在其中间提供谐振光子隧道效应。下激光微片10通过一个整体的竖立支台16连接在下衬底上。上波导片12包括一个圆周上的V形或楔形口或槽18,作为激光器的光输出耦合器。
图1中所示的双微片激光器是由InGaAs/InGaAsP层的分子束外延生长及然后使用多梯级光刻技术及选择性反应离子蚀刻技术将各层整形成图示的双片构型而形成的。具体地,在图1中所示的半绝缘(100)InP衬底的顶面上生长一个初始的In0.84Ga0.16As0.33P0.67蚀刻中止层。然后,在蚀刻中止层上生长一个1.0微米厚的InP支台层。在支台层上再生长一个0.2微米厚的微腔量子井(MQW)层。该MQW层被生长成包括三个(3)In0.53Ga0.47As量子层或井,每层约为100埃厚并被具有约700埃厚势垒成分的端帽的约100埃厚的两个In0.84Ga0.16As0.33P0.67阻挡层夹在中间。在MQW层上生长了具有0.65微米厚的第二InP支台层,接着是厚度约为0.2微米的作为顶部波导微片层的最后无源In0.84Ga0.16As0.33P0.67层。另外适合的材料体系(例如InGaAs/InAlGaAs)也可用来制造该激光器。
使用多梯级光刻技术在一次试验中制造出具有外径为3微米及在另一次试验中为10微米的双片激光器。对于开口18首先使用AZ-1350J的光刻胶形成图形并使用反应离子蚀刻技术刻下约0.4微米而不蚀刻到MQW层。在除去光刻胶后,作出圆形横截面微片10、12的图形并仔细地与开口对准。然后,再使用反应离子蚀刻将圆形图形垂直向下(约1.2微米)蚀刻到底部支台层以形成具有正圆柱形及平滑圆周侧壁(即圆周侧壁实质上垂直于轴向微片端)的微片10、12。在两个反应离子蚀刻步骤中,在气体压力45毫乇及离子束功率90瓦的条件下使用了比例为5∶17∶8的甲烷、氢及氩的气体混合物。然后使用高选择性HCL腐蚀剂(例如10容积%的HCL水溶液)水平地清除剩余的支台层以形成两个支承的Inp支台或支柱14,16,如图1中所示。蚀刻出的Inp支台或支柱作为Inp材料各向异性蚀刻的结果在扫描电子显微镜下检验时呈菱形形状。
该双片激光器的上微片12包括用于导光用途的在不同外延层(在层生长期间)上的一个基本无源、无吸收的材料。在下MQW微片10中产生的光子通过Inp支台或支柱14由谐振波导耦合(谐振光子隧道效应)缓慢地漏出到上波导微片12。MQW微片10及波导微片12之间的耦合效率可以通过适当地选择微片10、12之间分隔的距离来控制,例如在制造上述3微米及10微米直径的微片时约为0.65微米。随着微片10、12之间分隔距离的增加,耦合效率降低。图2表示对于0.65微米的微片10、12之间间隔的每来回长度的耦合百分比相对耦合长度(它约为微片结构的周长)的估计关系。耦合长度是光子绕微片圆周传播的来回长度,它近似表达为πD,其中D是微片直径。正如可看到的,对于从5到20微米的微片直径范围耦合效率估计为0.1%至1%的耦合效率。该双微片结构能使MQW微片谐振器保持接近理想的微片形状并具有相应的高Q值及低激光阈值,而光输出耦合特征或结构可在上波导微片12上设置以便耦合该激光器输出的光。通过在上波导微片12上设置光输出耦合器18,不会使下MQW微片的高Q值及低激光阈值受到不利影响。
在图1中,光输出耦合器包括V形开口18,它切割上波导微片12的圆周,以使光从双微片激光器导出。该开口18形成扁平表面或窗18a、18b,通过它们光可从激光器中耦合出来。
本发明的双微片激光器(微片直径为10微米)的激光特性通过使用NdYAG抽运激光器在1064毫微米下的光抽运被进行分析。抽运激光器由声光调制器以可变占空率调制并聚焦成覆盖等于或大于微片10面积的整个轴端的点尺寸。该双微片激光器被冷却到液态氮的温度。从双微度片激光器发射出的光被由光栅分光器(分辨率为1毫微米)分光的物镜收集并使用锁定技术及液态氮冷却的锗检测器来检测。
图3表示由双微片激光器(10微米直径)在等于或高于激光阈值上获得的激光光谱。实线数据线相应于高于阈值的抽运功率,而虚线数据线相应于等于阈值的抽运功率。在阈值点上,峰值抽运激光器功率接近500微瓦,及具有1微秒的脉冲宽度和1%的占空比以减小发热。为了比较的目的,制造出无开口18的双微片激光器(即在上微片12上未切割圆周)并在同样条件下进行了发射试验。作为上波导微片的低光损的结果,该作比较的无光输出耦合器开口18的双微片激光器呈现低激光闪值(约300微瓦)。这也是对于具有与下微片10相同的材料成分和直径的单微片激光器的典型阈值。
本发明的具有上微片12中开口18的并具有3微米片直径的双微片激光器的激光阈值被确定为约25微瓦,它几乎与具有相同直径的无切割圆周的单微片激光器的激光阈值相同。该结果表明,本发明的具有开口18的双微片激光器提供了高Q值微腔而不会使激光阈值变差。
由本发明的双微片激光器的上波导微片12的开口18中输出的定向激光使用红外摄象机被成象,该红外摄象机具有带有距离平表面18a、18b约10微米的衬底的成象管。开口18的激光输出图象表示在图4中,由它可看出,激光从微片12本身及从开口18漏出的光的强边缘辐射点放射出来并弹出到在距开口18约10微米的成象衬底上。在抽运功率两倍于阈值功率时摄下图象。为了获得图象,抽运激光器必须用红外摄象机前面的滤光镜作强烈衰减。由于衬底29及微片12本身之间的聚焦差别,图象被重聚焦,以看到使用图4中的虚线使微片上的光输出口及双微片的顶面图被描出。图4清楚地表示,上波导微片12的开口18提供了激光光子的泄漏源,并使激光从双微片激光器中导出。图象上的亮点是由于红外成象管上的灼热点引起的。
也可取代如图1中所示的作为双微片激光器光输出耦合器的开口18,在波导微片12的上轴端上形成具有45度或另外合适角度的光栅表面或开口,以提供由本发明激光器的上微片12发射的激光的垂直分量。
参照图5-7,它概要地表示根据本发明另一实施例的微腔半导体激光器,它包括第一上微圆柱(微构件)20,在图5-6中称为激光圆柱;及第二下透明波导微片(微构件)22,它在图5-6中被称为波导圆柱,它布置在与微圆柱20不同的(下)平面或外延层(在外延层生长期间)中及具有低的光吸收率。上激光微圆柱20放置在距下波导微圆柱22一段距离上,以便通过谐振光子隧道效应提供它们之间的光耦合。为此,微圆柱20、22由包含InP的微圆柱24隔开。下波导微圆柱22支承在图示InP衬底29上。下波导微圆柱22包括与其成整体的直线光输出波导28,作为该激光器的光输出耦合器。
图5-7中所示的双微圆柱激光器可以使用上述的用于双微片实施例的InGaAs/InGaAsP体系(或另外适当材料体系)层的分子束外延生长、及然后使用多梯级光刻技术及选择性反应离子蚀刻技术以类似于上述用于双微片激光器的方式将各层整形为图示的双圆柱构形来形成。例如,MQW层能以选择的X和Y值来成长以提供三个In0.53Ga0.47As量子层或井,每层约为100埃厚并被具有如上所述势垒成分/厚度的端帽的约100埃厚的两个In0.84Ga0.16As0.33P0.37阻挡层夹在中间。下缓冲层设置在衬底上并包括约1000埃厚度的InP,而包括1微米厚度InP的顶帽可设在MQW层上。
该双微圆柱激光器的下微圆柱22包括用于导光用途的低光吸收率的基本无源材料。在上MQW激光微圆柱20中产生的光子缓慢地经过谐振波导耦合微圆柱28漏出到下波导微圆柱22。如上所述,在激光微圆柱20及波导微圆柱22之间的耦合效率可通过选择它们之间的距离来控制。随着微圆柱20、22之间分开距离的增加,耦合效率降低。与下微圆柱22一体的直线光输出波导28包括次序与下微构件22相同的材料层,因为它是与该下微圆柱一体形成的,以提供激光器的光输出耦合,该光输出耦合是在与衬底29上设有的集成光回路相适合的衬底29的层次上形成的,以便对光回路提供光输出信号。
本发明的双微圆柱激光器具有的优点是它们具有比通常传统的半导体激光器短得多的腔长度。这使得本发明的双微圆柱激光器具有大的频率可调性,而不会通过直接注射电流控制使模跳变。通常传统的半导体激光器的腔长度为0.3mm及实际的光路径约为1mm。由于这样长的光路径,通常传统的激光器在有源介质增益曲线下具有约为50个腔谐振模。因为大量的频率模,在两个相邻模之间的频率间隔就变小。作为小频率间隔的结果,激光器频率可调性就受到限制。相反地,本发明的双微圆柱激光器具有短的腔长度并在增益曲线上包含少得多的腔谐振模(便如1-5个模)。较小数目的谐振模允许通过直接电流控制得到大频率可调性而无频率的跳动。
由于低损耗高Q值腔,本发明的微腔激光器具有高的腔内强度。该高的腔内强度将引起高的受激射率,导致在直流调制下对于载流子密度的快速载流子响应时间。该快速载流子响应时间与小尺寸的微腔相结合将导致增加的调制带宽。
参照图8,它表示本发明的另一实施例,其中包括下微构件(微片或微圆柱)50及一个与下微构件50相同的并具有与上述那些相似特征的上微构件(未示出)。下微构件50可为波导微构件,而上微构件(未示出)可为激光微构件。换一方式,下微构件50可为激光微构件,而上微构件(未示出)可为波导微构件或可以省略。上、下微构件可用上述方式隔开一距离以通过谐振光子隧道效应在它们之间提供光耦合。如图所示,下微构件50可被设在GaAs衬底上的SiO2层上并描述于下。围着下微构件50设置一拱形光输出波导52。该波导52可与微构件50作成一体或隔开以提供一个间隙或距离,并通过谐振光子隧道效应提供光输出耦合。波导52可具有0.2至2微米宽度及0.2至1微米高的典型尺寸。为此使用了典型上限为1.0微米宽(例如0.5微米宽)的间隙。光输出波导52包括一个拱的环形部分52a,该部分与下微构件50隔开并围绕着该下微构件50的外围(例如圆周的180°),且延伸到一个或多个直线状平行腿部52b(图中为两个),并终结成扁平端52c,它在与衬底上设有的集成光回路相适合的GaAs衬底上的层次上提供光输出,以便对光回路提供光输出信号。
当下微构件50为激光微构件时,波导52可具有与激光微构件相同的材料层次序并可被光抽运。换一种方式,波导52可包括不含量子井的上述透明InGaAsp波导材料而不用光抽运。当下微构件50是波导微构件时,波导52将包括与不用光抽运的波导微构件相同的无量子井的透明材料。
图9概要地表示与图8相似的本发明的又一实施例,其不同处在于使用下微环50’取代图8中的微片或微圆柱。下微环50’可以为波导微构件,而相同的上微环(未示出)可以是激光微构件。换一种方式,下微环50’可为激光微构件,而上微环(未示出)可为波导微构件或可以省略。微环可具有与上述微片及微圆柱相似的外径并具有典型的环宽为0.2至2微米及高度为0.2至1微米。在图9中与图8中相似的特征用带撇号的相同标号来表示。
具有所述尺寸的图8及9中所示的激光器可以使用上述的InGaAs/InGaAsP体系(或另外适当材料体系)层的分子束外延及然后使用多梯级光刻技术及选择性反应离子蚀刻以类似于上述用于双微片激光器的方式将各层整形为图示的双圆柱构形来形成。当微圆柱或微环50’的尺寸进一步减小到例如0.4微米的环宽及0.2微米高时,可使用涉及包括电子束(e-beam)刻版及反应离子蚀刻(RIE)的超小型制造技术。例如,InP衬底上可覆盖0.19微米厚的一层外延InGaAsP/InGaAs激光层结构。在此层结构中,三个100埃厚的量子井层(In0.53Ga0.47As)能被100埃厚的各阻挡层(In0.84Ga0.16As0.33P0.67)隔开。它们可以在两侧上被两个700埃厚的(In0.84Ga0.16As0.33P0.67)层夹在中间。
晶片粘接及蚀刻技术可以用来将薄微环50’转移到覆盖在GaAs衬底上低折射率的Sio2层的顶部。首先通过等离子增强化蒸汽淀积(PECVD)将800埃厚的Sio2沉积到晶片上。使用电子束刻版技术在覆盖于Sio2层顶部的PMMA(聚甲基异丁烯酸甲酯)上画出微环的图形。然后使用由CHF3作蚀刻剂气体的RIE工艺在31微乇和60瓦等离子功率下通过刻去未掩模的区域使图形转移到Sio2层,并然后除去PMMA。然后在Sio2上的图形形式后继InGaAsP层蚀刻的掩模。再使用RIE工艺向下垂直通过0.19微米的InGaAsP/InGaAs外延层结构进入InP衬底来蚀刻微环。在该步骤中,可使用在45微乇气体压力和90瓦等离子功率的等离子束功率下的比例为10∶34∶10的甲烷、氢气和氩气的气体混合物。
为了将该薄环形结构放置到低折射率材料上,将如下地除去衬底。使用PECVD在RIE蚀刻的样品沉积0.75微米厚的Sio2。然后就制备出一片通过PECVD沉积的覆盖了0.75微米厚的Sio2的GaAs衬底。使用丙烯酸将两个衬底的Sio2面对面地粘接。最后,使用高选择HCL蚀刻剂(HCL加H3PO4,比例为1∶1)除去InP衬底,在GaAs衬底上的1.5微米厚Sio2上留下微环激光器结构。
在本发明的实践中,如果微构件的直径小于5微米及量子井的光谱增益宽度具有60毫微米的典型值,则有在光致激光谱线中的频率的腔模的估计数目为小于两个(单模)。为此优先取在2微米至5微米范围中的微腔外径。但是,本发明并不受这样的限制,并能使用包括具有其直径上限为30微米、例如10至30微米的大致圆横截面外围的一个或多个有源量子井(MQW)层的激光微腔来实施,以提供一种支持波导光模的有源光介质,该光模包括、但不受其限制地包括耳语(道)模。本发明也不限制于所描述的及附图中所示的具体微构件上,它可使用这样选参数的微片、微圆柱、微环(microring)及另外形状的微构件,以便提供支持波导光模的有源光量子井。
虽然本发明是针对其一些专门实施例的,但本领域的熟练技术人员将理解,这些实施例的提供是为了说明的目的而非限制本发明,因而本发明不应局限于此,而仅能如权利要求书中所提出的。
权利要求
1.一种激光器,包括具有基本上圆形横截面外围的第一激光微构件,及与所述第一微构件隔开在不同平面上并与所述第一微构件光耦合的第二波导微构件,所述第二波导微构件包括光输出耦合器,用于提供从所述激光器输出的光。
2.根据权利要求1的激光器,其中所述第一微构件包括一个微片。
3.根据权利要求2的激光器,其中所述波导微构件包括一个微片。
4.根据权利要求3的激光器,其中所述微片被低折射率的材料在其之间隔开一距离,以提供微片间的谐振光子隧道效应光耦合。
5.根据权利要求1的激光器,其中所述第一微构件包括一个微圆柱。
6.根据权利要求5的激光器,其中所述波导微构件包括一个微圆柱。
7.根据权利要求6的激光器,其中所述微圆柱被低折射率的材料在其之间隔开一距离,以提供微圆柱之间的光耦合。
8.根据权利要求1的激光器,其中所述第一微构件包括一个微环。
9.根据权利要求8的激光器,其中所述波导微构件包括一个微环。
10.根据权利要求9的激光器,其中所述微环被低折射率的材料在其之间隔开一距离,以提供微环间的光耦合。
11.根据权利要求1的激光器,其中所述光输出耦合器包括切割所述第二波导微构件外圆周的该第二波导微构件上的表面。
12.根据权利要求1的激光器,其中所述光输出耦合器包括在所述波导微构件一端面上的光栅。
13.根据权利要求1的激光器,其中所述光输出耦合器包括与所述第二波导微构件为整体的直线形输出波导。
14.根据权利要求1的激光器,其中所述光输出耦合器包括围绕所述第二波导微构件一部分的拱形输出波导。
15.根据权利要求14的激光器,其中所述拱形输出波导包括围绕所述第二微构件的所述部分的环形部分及至少在一端终结的直线部分。
16.根据权利要求1的激光器,其中所述第一微构件及第二波导微构件被一段选择的距离隔开,以在其中间提供给定的耦合效率。
17.根据权利要求1的激光器,其中所述第一微构件包括InGaP半导体。
18.根据权利要求17的激光器,其中所述第二波导微构件包括InGaAsP半导体。
19.根据权利要求17的激光器,其中所述光耦合器包括InP。
20.一种激光器,包括一个衬底,在所述衬底上方隔开的并具有圆形模截面外围的激光微腔的第一微片,及在所述第一微片上方隔开的并与其光耦合的第二波导微片,所述第二波导微片具有光输出耦合器,用于提供从所述激光器输出的光。
21.一种激光器,包括一个衬底,具有圆形横截面外围的激光微腔的第一微圆柱,及隔在所述衬底及所述第一微圆柱之间并与第一微圆柱光耦合的第二波导微圆柱,所述第二波导微圆柱具有光输出耦合器,用于提供从该激光器输出的光。
22.根据权利要求21的激光器,其中所述光输出耦合器包括在与设于衬底上的集成光回路相适合的衬底上的层次上的波导,以便对光回路提供光输出信号。
23.一种激光器,包括具有圆形横截面外围的波导或激光微构件,及围绕所述波导微构件一部分的拱形光输出波导,以提供从所述微构件输出的光。
24.根据权利要求23的激光器,其中所述拱形光输出波导包括围绕所述微构件的所述部分的环形部分及至少在一个端终结的直线部分。
25.根据权利要求23的激光器,其中所述光输出波导在与设于衬底上的集成光回路相适合的衬底上的层次上,以便对光回路提供光输出信号。
全文摘要
激光器包括限定具有圆形横截面外围的微腔的第一激光微片(10)、微圆柱或微环,及在不同平面上并通过谐振光子隧道效应光耦合的第二波导微构件(12)。第二波导微构件包括光耦合器(18),用于提供从该激光器输出的光而不会对微腔的Q值及低激光阈值产生不利影响。
文档编号H01S5/026GK1185238SQ96194150
公开日1998年6月17日 申请日期1996年5月21日 优先权日1995年5月25日
发明者何盛中, 丹尼尔·严·朱, 张建平, 吴胜利 申请人:西北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1