用于燃料电池的膜电极单元的制作方法

文档序号:6808268阅读:157来源:国知局

专利名称::用于燃料电池的膜电极单元的制作方法
技术领域
:本发明涉及用于燃料电池的膜电极单元,它包括一任选地用催化剂涂覆的阳极、一任选地用催化剂涂覆的阴极、一位于阳极和阴极之间的质子导体。这样一种单元是已知的。它在燃料电池中在包含氢气和氧气的反应气体或液体组分反应时引起离子和电通道的分离,以实现化学能至电能的直接转化。不同类型燃料电池的性质和作用方式描述于K.-D.Kreuer和J.Maier的“科学之丰富多彩”(SpektrumderWissenschaft)(Juli1995),92-96。电极必须是极好的电子导体(电阻约0.1Ωcm-l)。它应与电解液表面一起催化所需的反应。电解液必须具有高的离子导电性并且同时具有尽可能低的电子导电性。此外,它对于输出气体来说必须是尽可能不可渗透的。所有的材料之间以及与参与反应者之间应该是化学惰性的,在阴极上的强氧化条件以及在阳极上的强还原条件下,也不允许有不希望的彼此之间的化合。为了将更多的单电池连接成电池堆,必须赋予包含于单电池中的固体成分以足够的机械承载能力。此外,电池成分的材料和工艺成本、寿命和环境相容性也起重要作用。对于80-90℃的操作温度,在燃料电池的情况下,质子传导聚合物膜已经达到目的。该聚合物膜结合了赋予分子和质子以自由迁移性的液体性能和形状上稳定的固体性能。基于具有磺化全氟乙烯基醚侧链的聚四氟乙烯的全氟化离子交联聚合物近乎理想地满足了这一要求。这一材料由疏水和亲水部分组成,它们在存在水的情况下分解形成了凝胶状但形状稳定的膜。该聚合物的疏水主链是非常耐氧化和还原的,并且即使在溶胀状态下也赋予膜以形状稳定的骨架。在水中溶胀的亲水的、类似液体的含磺酸侧链使得极好的质子导电性成为可能。几纳米的孔径对应于少许几个水分子的大小。水的存在使得在通道和孔中的高质子迁移性成为可能。如所引用的文献所描述的,该阳离子交换剂的缺点在于价格昂贵,因为制备工艺很耗费。此外,其废弃或回收会造成生态问题。在燃料电池的运行中,这些膜易于干燥,尤其在通过空气流向电池输入燃烧用氧,但基于质子流的性质,将水分子由阳极输送至阴极时。已知薄膜或其磺酸基团的热稳定性的上限为90-100℃,在更高的温度下,形态结构开始崩溃。因此作为独立性的膜,已知的全氟化离子交联聚合物膜不适用于更高的温度,以致于不适合于以下应用a)在超过130℃的温度下使用来自转化的甲醇的氢作为燃料(该方法描述于U.Benz等的“科学之丰富多彩”(Juli1995)97-104中)。b)在超过130℃,通常150-200℃的温度下用于在阳极上直接氧化甲醇。本发明的任务在于,提供一种用于燃料电池的膜电极单元,它除了上述全氟化离子交联聚合物膜的有利特征之外,它还具有下述性能1.相对于现有技术的聚合物膜,制造成本降低。2.废弃时有害物质减少3.直至200℃的温度稳定性有利于减少催化剂毒物的作用,来自转化的甲醇的氢作为燃料的可应用性,甲醇的内部转化或甲醇的直接氧化。本发明的这一任务通过权利要求1的膜电极单元而得以实现。在从属权利要求中给出了有利的实施方案。根据本发明,质子导体由微纤维无纺布构成,该无纺布已用电解液浸渍直至饱和,在此,该无纺布在直至+200℃的温度以及在氧化和还原条件下对于电解液来说是化学惰性的。其中该无纺布的重量为20-200g/m2;无纺布厚度最大为1mm并且孔体积为65-92%。该微纤维无纺布的平均孔半径应是20nm至10μm。对于本发明的主题来说,微纤维无纺布的无纺布骨架确保膜的机械稳定性,以致电解液不再必须来实现这一任务。相对于由全氟化离子交联聚合物制造相应二维独立性膜的费用来说,由此膜的材料成本可降低高达90%。微纤维无纺布可填充有全氟化离子交联聚合物,其中该全氟化离子交联聚合物可以是具有磺化全氟乙烯基醚侧链的聚四氟乙烯。作为替代方案,可使用1-5摩尔浓度的硫酸水溶液或用浓磷酸浸渍微纤维无纺布。此外还有可能使用水合的磷酸锆和磷酸二氢铵。下列的实施例可以说明,就燃料电池的功率(离子传导性)而言,本发明可以与由全氟化离子交联聚合物构成的纯聚合物膜相提并论,而无需使用迄今昂贵的材料。在实施例中,共用下述基础材料无纺布材料具有矩形截面(宽6-13μm,高1.7-2.4μm)的聚砜纤维聚砜材料的机械性质熔程343-399℃。抗拉强度70MPa断裂伸长50-100%E-模量2.4GPa在1.8MPa负荷下的弯曲温度174℃纤维的制造在静电场中,对聚砜于二氯甲烷中的溶液进行纺丝。为此可例如使用DE-OS2620399的装置。在线性连续运动的纺织导纱器上收集纤维。无纺布性能重量150g/m2厚度(压缩的)0.05mm厚度(用电解液浸渍)0.18mm未压缩状态下的平均孔半径8μm压缩状态下的平均孔半径4μm孔体积83%本发明膜的温度稳定性,如果没有其它原因阻碍,基本上由无纺布材料决定,并因此对于纯纤维材料聚砜来说仅在约174℃才终止。由于无纺布中纤维的相互机械结合,机械稳定性甚至提高到直至250℃的温度。因此燃料电池的高温操作成为可能,这可大大降低阳极催化剂的中毒。实施例1在16mm直径的玻璃料中,在微纤维无纺布上铺上一层液体Nafion(一种FirmaDuPont生产的商用全氟化离子交联聚合物)。通过施加轻微的负压使液相进入无纺布的孔结构,将如此浸渍的膜在干燥柜中于60℃干燥处理以去除溶剂。可将其保持在蒸馏水中直至进一步加工。实施例2-4类似于实施例1用3种不同摩尔浓度的硫酸水溶液浸渍微纤维无纺布,但其中为降低粘度而将硫酸加热至约70℃。也可将无纺布在加热至70℃的酸中煮几分钟而不会获得另外的结果。宜在相应的浸渍介质中保存如此得到的膜。使用根据1979年3月DIN53779的方法检测的以这种方式制得的膜的比电导率<tablesid="table1"num="001"><table>实施例测量温度℃比导电率S/cm1230.01621MH2SO4180.03133MH2SO4180.04145MH2SO4180.0805对比实施例250.070</table></tables>表中的实施例5代表由全氟化离子交联聚合物(Nafion-117,DuPont)制得的现有技术的厚度为125μm的自载聚合物膜的相应测量值。比电导率S/cm的值清楚表明,使用本发明与纯Nafion相比便宜得多的、结构简单和机械稳定的膜,可以实现具有与现有技术相应功率的燃料电池运行。对于超过100℃的温度的应用,可使用浓磷酸作为离子导体。与125μm厚的溶胀Nafion膜相比,用于实施例1-4中的、用电解液浸渍的无纺布是其两倍厚。燃料电池的功率(其由电压和电流强度之积给出)不仅可由较高的酸浓度,即较高的比导电率S/cm达到,而且也可通过使用较薄的无纺布来降低扩散阻力而达到。举例性地在图中示出了室温下分别对应于实施例1、3和5的电流/电压曲线。该图表明,与现有技术(实施例5)相比,由本发明的膜获得了类似的曲线分布。上面提到的通过较高的酸浓度或较薄的无纺布材料达到较高电池功率的效果在该图中通过曲线向坐标正方向的移动而得以表现。基于无纺布高的温度稳定性,对于在超过100℃的温度下的应用,也可使用浓磷酸作为电解液。权利要求1.用于燃料电池的膜电极单元,包括一任选用催化剂涂覆的阳极、一任选用催化剂涂覆的阴极、一位于阳极和阴极之间的质子导体,其特征在于,质子导体由微纤维无纺布构成,该无纺布已用电解液浸渍直至饱和,在此,该无纺布在直至+200℃的温度以及在氧化和还原条件下对于电解液来说是化学惰性的,其中该无纺布的重量为20-200g/m2;无纺布厚度小于1mm并且孔体积为65-92%。2.根据权利要求1的膜电极单元,其特征在于,该微纤维无纺布的平均孔半径是20nm至10μm。3.根据权利要求1或2的膜电极单元,其特征在于,该微纤维无纺布填充有全氟化离子交联聚合物。4.根据权利要求3的膜电极单元,其特征在于,所述全氟化离子交联聚合物是具有磺化全氟乙烯基醚侧链的聚四氟乙烯。5.根据权利要求1或2的膜电极单元,其特征在于,该微纤维无纺布已用1-5摩尔浓度的硫酸水溶液浸渍。6.根据权利要求1或2的膜电极单元,其特征在于,该微纤维无纺布已用浓磷酸浸渍。7.根据权利要求1或2的膜电极单元,其特征在于,该微纤维无纺布已用水合磷酸锆或磷酸二氢铵浸渍。全文摘要本发明涉及用于燃料电池的膜电极单元,包括一任选用催化剂涂覆的阳极、一任选用催化剂涂覆的阴极、一位于阳极和阴极之间的质子导体,其特征在于,质子导体由微纤维无纺布构成,该无纺布已用电解液浸渍直至饱和,在此,该无纺布在直至+200℃的温度以及在氧化和还原条件下对于电解液来说是化学惰性的,其中该无纺布的重量为20—200g/m文档编号H01M8/02GK1294762SQ99804275公开日2001年5月9日申请日期1999年4月1日优先权日1998年5月18日发明者U·斯蒂明申请人:卡尔·弗罗伊登贝格公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1