一种金属硅化物的形成方法

文档序号:10666032阅读:303来源:国知局
一种金属硅化物的形成方法
【专利摘要】本发明提供了一种金属硅化物的形成方法,首先提供衬底,所述衬底上形成有鳍,所述鳍上形成有栅极;然后沉积Ti金属层;接着进行所述Ti金属层的硅化,并去除未反应的所述Ti金属层。Ti原子具有较好的稳定性,在热退火的过程中,主要扩散的为Si原子,而Ti原子极少扩散,从而,避免耗尽区由于金属扩散导致的漏电,降低衬底的漏电流。
【专利说明】
一种金属硅化物的形成方法
技术领域
[0001]本发明涉及半导体器件制造领域,特别涉及一种金属硅化物的形成方法。
【背景技术】
[0002]随着半导体器件的高度集成,MOSFET沟道长度不断缩短,一系列在MOSFET长沟道模型中可以忽略的效应变得愈发显著,甚至成为影响器件性能的主导因素,这种现象统称为短沟道效应。短沟道效应会恶化器件的电学性能,如造成栅极阈值电压下降、功耗增加以及信噪比下降等问题。
[0003]全耗尽(Fully-Depleted)非平面器件,如FinFET (鳍式场效应晶体管),是20纳米及以下技术代的理想选择。FinFET源自于传统标准的晶体管一场效晶体管(Field-Effect Transistor ;FET)的一项创新设计,它利用鳍(Fin)的几个表面作为沟道,从而可以防止传统晶体管中的短沟道效应,同时可以增大工作电流。
[0004]在FinFET的制造工艺中,通常采用Ni或NiPt合金的金属硅化工艺,如图1所示,在源/漏极上形成Ni (Pt)硅化物110,从而降低器件的方块电阻和欧姆接触电阻。然而,在源漏注入和退火时,会使鳍102产生非晶化的边界,并产生位错线105,在形成硅化物的工艺中,如图2所示,Ni (Pt) 1701沿着位错线105扩散,在耗尽区内形成很多不连续的NiSi点,而在施加电压时,耗尽区内存在较强的电场强度,使得这些不连续的点导通,造成向衬底的漏电流很大,影响器件的性能。

【发明内容】

[0005]本发明提供一种金属硅化物的形成方法,以解决传统金属硅化物形成方法会导致鳍和衬底之间漏电流大的问题。
[0006]本发明提供了一种金属硅化物的形成方法,包括步骤:
[0007]提供衬底,所述衬底上形成有鳍,所述鳍上形成有栅极;
[0008]沉积Ti金属层;
[0009]进行所述Ti金属层的硅化,并去除未反应的Ti金属层。
[0010]可选的,所述进行所述Ti金属层的硅化,并去除未反应的Ti金属层包括:
[0011]进行第一次热退火;
[0012]去除未反应的Ti金属层;
[0013]进行第二次热退火,所述第二次热退火的温度高于所述第一次热退火的温度。
[0014]可选的,所述第一次热退火的温度为600-700°C,时间为20-40S。
[0015]可选的,所述第二次热退火的温度为800_900°C,时间为7-13S。
[0016]可选的,所述方法还包括:
[0017]在进行第二次热退火之后,进行离子注入,所述离子注入的注入杂质的类型与源/漏极掺杂类型相同,并进行退火。
[0018]可选的,对于N型器件,所述离子注入的注入杂质为As,所述离子注入的注入剂量范围为1E14至5E14cm2,注入能量范围为5至15KeV,注入角度范围为垂直于鳍方向0-45。 。
[0019]可选的,对于P型器件,所述离子注入的注入杂质为BF3,所述离子注入的注入剂量范围为1E14至5E14cm 2,注入能量范围为2.5至lOKeV,注入角度范围为垂直于鳍方向0-45。 。
[0020]可选的,所述进行离子注入后,退火工艺的温度为550-700°C,时间为20-40S。
[0021]本发明提供的金属硅化物的形成方法,首先在已经形成有鳍和鳍上栅极的衬底上沉积Ti金属层,然后通过退火方式进行所述Ti金属层的硅化,并去除未反应的所述Ti金属层以完成金属硅化物的制作。Ti原子具有较好的稳定性,在热退火的过程中,主要扩散的为Si原子,而Ti原子极少扩散,从而,避免耗尽区由于金属扩散导致的漏电,降低衬底的漏电流。
[0022]进一步,采用二次退火工艺形成的Ti的娃化物体电阻小,无需采用GeSi外延的方式来降低源/漏极的寄生电阻,简化了制造工艺,提高了器件的性能。
[0023]进一步的,在硅化之后,进行离子注入,进一步降低了硅化物与鳍之间的接触电阻。
【附图说明】
[0024]为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
[0025]图1-2为现有技术金属硅化工艺形成鳍式场效应晶体管器件的过程中器件的截面结构示意图;
[0026]图3为根据本发明实施例的金属硅化物的形成方法的流程图;
[0027]图4为本发明实施例进行金属硅化物工艺前的鳍式场效应晶体管的立体结构示意图;
[0028]图5-9为根据本发明实施例的金属硅化物的形成方法的形成过程中,沿源/漏极的鳍式场效应晶体管的截面结构示意图;
[0029]图10为本发明实施例的方法形成的鳍式场效应晶体管的漏极与体硅之间1-V曲线的示意图。
【具体实施方式】
[0030]下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
[0031]其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
[0032]为了更好的理解本发明的技术方案和技术效果,以下将结合本发明方法的流程图对具体的实施例进行详细的描述。如图3所示,本发明方法包括以下步骤:
[0033]首先,在步骤SOI,提供衬底100,所述衬底100上形成有鳍102,所述鳍102上形成有栅极104,参考图4和图5所示。
[0034]在本发明实施例中,所述衬底100可以为Si衬底、SOI衬底等。在其他实施例中,还可以为包括其他硅化合物半导体的衬底,例如SiC等,还可以为叠层结构,例如Si/SiGe等。在本实施例中,所述衬底100为体Si衬底。
[0035]在本实施例中,通过如下具体的步骤形成鳍及栅极。
[0036]首先,在体Si的衬底100上形成第一硬掩膜,如Si3N4;而后,采用刻蚀技术,例如RIE (反应离子刻蚀)的方法,刻蚀衬底100来形成鳍102,从而形成了衬底100上的鳍102。
[0037]接着,进行隔离101的填充,隔离材料例如可以为S12,并进行平坦化,直至暴露出鳍102的上表面,而后,可以使用湿法腐蚀,例如用HF酸腐蚀去除一定厚度的S12,保留部分的隔离材料在鳍102之间,从而形成了隔离101,如图4和图5所示。
[0038]然后,覆盖鳍102及隔离101以形成栅介质层103及栅极104。栅介质层可以为S12S HfOx等可用于鳍式场效应晶体管栅介质层的薄膜。栅极可以为一层或多层结构,可以包括金属材料或多晶Si或他们的组合,金属材料例如T1、TiAlx、TiN、TaNx、HfN、TiCx、TaCx等。
[0039]而后,沿与鳍102垂直的方向进行栅极104及栅介质层103的刻蚀,直至暴露隔离层101及鳍102,以形成栅极104。如图4和图5所示。
[0040]而后,可以进行离子注入,以在鳍的两端形成FinFET的源/漏极,在对源/漏极进行离子注入和退火时,会导致鳍102产生多晶的边界,并产生位错线105,如图6所示。
[0041]可以通过根据期望的晶体管结构,注入P型或N型掺杂物或杂质到所述衬底中形成源/漏极,并进行退火以激活掺杂。
[0042]接着,在步骤S02,沉积Ti金属层107,如图7所示。
[0043]在本发明实施例中,可以采用PVD工艺沉积Ti金属层107。PVD工艺例如可以为真空蒸发、溅射、离子镀等。
[0044]Si衬底暴露在空气中时,衬底100表面的Si,会和O2反应生成致密的自然氧化层S12,需要去除S12以使金属层沉积在Si表面。在本发明实施例中,在进行Ti金属层107的淀积之前,还进行去除鳍102表面的自然氧化层的工艺。
[0045]在一个具体实施例中,可以将通过步骤SOl获取的器件浸泡在HF化学试剂中,来去除鳍102表面的自然氧化层,然后,用PVD法沉积Ti金属层107,Ti金属层107的厚度可以为 4-1Onmο
[0046]而后,在步骤S03,进行所述Ti金属层107的硅化,并去除未反应的Ti金属层107,参考图8所示。
[0047]Ti金属具有较好的稳定性,在硅化过程中,Si和Ti的接触界面主要扩散原子为Si原子,而不是Ti原子,这样,Ti原子不会沿着Si衬底原有位错线快速扩散,比较稳定,从而,避免耗尽区由于金属扩散导致的漏电,降低沟道的漏电流。
[0048]在本发明实施例中,通过退火方式进行金属硅化工艺,退火方式可以为快速热退火(RTA)、激光退火或微波退火等,退火可以为一次退火或多次退火。具体的,本发明采用两次退火方式,且第二次快速热退火的温度高于所述第一次快速热退火的温度,以提升制作的TiSi2106的电学性能。在一些实施例中,第一次快速热退火的温度为600-700°C,时间为20-40s,促使Si和Ti反应,以形成高阻的C49相;第二次快速热退火的温度为800_900°C,时间为7-13s,促使高阻的C49相TiSi2106转变成低阻的C54相TiSi2106,以降低形成的TiSi2106的电阻率。
[0049]第一次快速热退火完成后,淀积的Ti金属层107可能部分和Si反应生成TiSi2106,其余部分仍然以Ti金属单质形式存在。未反应的Ti金属层107可以通过湿法刻蚀工艺或者干法刻蚀工艺去除。采用对Ti刻蚀速率相对TiSi2刻蚀速率大的刻蚀工艺,可以完全去除未反应的Ti金属层107,从而在鳍的源/漏极上形成Ti的硅化物,如图8所不O
[0050]在一个具体实施例中,对完成Ti金属层107沉积的衬底100进行第一次快速退火工艺,退火的温度为650°C,时间为30s ;然后通过氢氧化铵和双氧水的湿法化学刻蚀去掉所有未参与反应的Ti金属层107,留下的TiSi2106覆盖在源/漏极表面;进行第二次快速热退火工艺,退火的温度为850°C,时间为10s,促使高阻的C49相TiSi2106转变成低阻的C54 相 TiSi2106o
[0051]本实施例中形成硅化物的方法兼容自对准硅化物的方法,由于TiSi2106只在源/漏极表面形成,其余部分Ti金属层107没有和隔离101反应,全部通过湿法化学刻蚀去掉。
[0052]至此,形成了本发明实施例的金属硅化物。通过本发明公开的金属硅化物的形成方法,能有效解决传统Ni (Pt)硅化物110的形成过程中,Ni (Pt) 1701沿位错线105扩散导致鳍102与衬底100之间漏电流大的问题。同时,由于TiSi2106电阻率低的特性,采用自对准硅化钛方法,能减小源/漏极寄生电阻。
[0053]通常地,为了减小源/漏极的寄生电阻,通过在源/漏极外延GeSi层,增加源/漏极的导电能力来实现,随着FinFET结构的源/漏极选择性外延的复杂性不断增加,导致工艺难度及成本增加。本发明实施例的方法中,形成的Ti的硅化物制作的金属硅化物层的寄生电阻小,可以替代源/漏极外延GeSi层以减少源/漏极的寄生电阻,从而可以无需外延GeSi层,简化了工艺。
[0054]此外,为了进一步降低源/漏极寄生电阻,提升FinFET器件性能,在形成Ti的硅化物之后,进一步进行离子注入,注入杂质1021的类型与源/漏极掺杂类型相同,并进行退火。
[0055]在具体的实施例中,对于N型器件,离子注入的注入杂质1201为施主杂质,注入剂量范围为1E14至5E14cm2,注入能量范围为5至15KeV,注入角度范围为垂直于鳍方向0-45° ;对于P型器件,所述离子注入的注入杂质1201为受主杂质,注入剂量范围为1E14至5E14cm 2,注入能量范围为2.5至lOKeV,注入角度范围为垂直于鳍方向0-45°。
[0056]所述离子注入为两次注入法。由于FinFET是立体结构,凸起的鳍在一面进行倾斜角度的离子注入时,鳍的另一面受到自身的遮挡导致无法进行离子注入,因此,在鳍的一面进行离子注入后,需要在鳍的另一面以相同的倾斜角、相同的工艺参数再次进行离子注入。
[0057]在离子注入后,可以采用包括快速热退火方式等,使离子注入的注入杂质1021聚集在硅化物与Si的接触面,提高接触面处硅化物及Si的掺杂浓度,降低硅化物与源/漏极的接触电阻,以达到减小源/漏极寄生电阻的目的,如图9所示。
[0058]在一个具体实施例中,离子注入采用两次注入法,分别在鳍102的两面以相同的注入工艺进行;对于N型器件,所述离子注入的注入杂质1201为As,相应工艺条件为:注入剂量为IEHcm2,注入能量为5KeV,注入角度为垂直于鳍方向30° ;对于P型器件,所述离子注入的注入杂质1201为BF3,相应工艺条件为:注入剂量为IEHcm2,注入能量为3.5KeV,注入角度为垂直于鳍方向30°。
[0059]然后,衬底100进行快速热退火工艺,退火温度为650°C,退火时间为30s。
[0060]退火过程中,由于注入杂质1201在硅化物中溶解度低,从而使注入杂质1201主要聚集在硅化物和Si的接触面附近,提高了接触面处硅化物和Si的掺杂浓度,降低了硅化物和Si的接触电阻,进而减少了器件源/漏极的寄生电阻,能改善器件的电学性能。
[0061]相较于传统Ni (Pt)金属硅化物的形成方法形成的硅化物,采用本发明实施例的Ti金属硅化物的形成方法制作的金属硅化物,使鳍式场效应晶体管具有更好的器件性能,如图10所示,采用传统方法形成的NiSi制备的器件与采用本发明实施例的方法形成的TiSi2制备的器件,在各个工作电压下,漏极到体硅之间的1-V曲线图。可以看到,采用传统方法形成的NiSi制备的器件,漏极到体硅之间的漏电流比采用本发明实施例的方法形成的TiSi2制备的器件,漏极到体硅之间的漏电流大两个数量级。采用本发明实施例金属硅化物形成的方法,有效解决了传统鳍式场效应晶体管在形成金属硅化物过程中,导致鳍与体Si之间漏电流大的问题。
[0062]虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。
【主权项】
1.一种金属硅化物的形成方法,其特征在于,包括: 提供衬底,所述衬底上形成有鳍,所述鳍上形成有栅极; 沉积Ti金属层; 进行所述Ti金属层的硅化,并去除未反应的Ti金属层。2.根据权利要求1所述的方法,其特征在于,所述进行所述Ti金属层的硅化,并去除未反应的Ti金属层包括: 进行第一次热退火; 去除未反应的Ti金属层; 进行第二次热退火,所述第二次热退火的温度高于所述第一次热退火的温度。3.根据权利要求2所述的方法,其特征在于,所述第一次热退火的温度为600-700°C,时间为20-40S。4.根据权利要求3所述的方法,其特征在于,所述第二次热退火的温度为800-900°C,时间为7-13S。5.根据权利要求2所述的方法,其特征在于,所述方法还包括: 在进行第二次热退火之后,进行离子注入,所述离子注入的注入杂质的类型与源极或漏极掺杂类型相同,并进行退火。6.根据权利要求5所述的方法,其特征在于,对于N型器件,所述离子注入的注入杂质为As。7.根据权利要求6所述的方法,其特征在于,所述离子注入的注入剂量范围为1E14至5E14cm2,注入能量范围为5至15KeV,注入角度范围为垂直于鳍方向0-45°。8.根据权利要求5所述的方法,其特征在于,对于P型器件,所述离子注入的注入杂质为 BF309.根据权利要求8所述的方法,其特征在于,所述离子注入的注入剂量范围为1E14至5E14cm2,注入能量范围为2.5至lOKeV,注入角度范围为垂直于鳍方向0-45°。10.根据权利要求5所述的方法,其特征在于,所述进行离子注入后,退火工艺的温度为 550-700°C,时间为 20-40S。
【文档编号】H01L21/285GK106033718SQ201510112597
【公开日】2016年10月19日
【申请日】2015年3月13日
【发明人】张青竹, 赵利川, 杨雄锟, 殷华湘, 闫江, 李俊峰, 杨涛, 刘金彪
【申请人】中国科学院微电子研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1