用于高温半导体加工中夹持的静电卡盘及其制造方法与流程

文档序号:15309349发布日期:2018-08-31 21:32阅读:511来源:国知局

本发明涉及适于夹持的静电卡盘,更特别涉及适于johnsen-rahbek夹持的静电卡盘。



背景技术:

相关技术描述

静电夹具或卡盘(esc)常常用在半导体行业中,用于在基于等离子体或基于真空的半导体工艺(如蚀刻、cvd和离子注入等等)中夹持衬底。esc的性能,包括无边缘排除和晶片温度控制,已经证实在加工半导体衬底或晶片(如硅晶片)中极有价值。典型的esc例如包含位于导电电极上方的电介质层,其中该半导体晶片放置在该esc的表面上(例如,该晶片放置在该电介质层的表面上)。在半导体加工(例如离子注入、等离子体加工等等)的过程中,通常在晶片与电极之间施加箝制电压,其中该晶片通过静电力被夹向卡盘表面。

称为johnsen-rahbek(j-r)夹具的静电夹具的子类利用“漏型”电介质层(例如具有约1×109至1×1011ohm-cm的体电阻的半导体电介质层)接触该晶片,其中可以在低于常规库伦夹具的电压下实现更大的夹持力。esc的较低电压输入不仅降低了与j-r夹具相关的电源要求,还进一步提供了对晶片和在其上形成的器件潜在地破坏性更低的夹持环境。

常规的j-r夹具例如包含略微导电的电介质层,由此通常允许电介质层(例如陶瓷)的厚度远厚于对“经典”或库伦esc所允许的厚度。厚度的此类提高极大地促进了esc制造过程,同时还降低了夹具运行电压。例如,该电介质层可以用作基底,以便通过丝网印刷和烧结电介质糊料形成正电极和负电极。

在一些应用中,可以在低温(例如-50℃)下进行晶片的加工,而在其它应用中,可以在较高温度(例如150℃)下进行晶片的加工。一些j-r夹持静电卡盘使用aln上表面可以达到更高的温度。但是,在常规情况下,单个j-r夹具不能适应两种极端温度,因为电介质层的电阻率随温度而改变。由此,常规j-r夹具表现出的夹持力随温度显著变化,产生潜在不期望的夹持效应。

一些基于氮化铝的静电卡盘能够在250-450℃的温度下提供j-r夹持,但是aln的体电阻率在高于400℃时变得太低以至于不允许有效的夹持。

所谓静电卡盘能够在高于450℃的温度下提供j-r夹持,并可以承受腐蚀性的加工化学。

附图概述

图1是根据本发明的一些实施方案用于半导体加工的板轴装置的视图。

图2是根据本发明的一些实施方案用于板的高温压机和烘箱的简图。

图3是根据本发明的一些实施方案用于多个板的高温压机和烘箱的简图。

图4是用于板轴装置的高温压机和烘箱的简图。

图5是根据本发明的一些实施方案的板轴装置的视图。

图6是根据本发明的一些实施方案用于半导体制造的板轴装置的局部横截面视图。

图7是根据本发明的一些实施方案的静电卡盘的局部横截面视图。

图8是根据本发明的一些实施方案的静电卡盘的局部横截面视图。

图9是根据本发明的一些实施方案的夹持电极的示意图。

发明详述

一些用于连接陶瓷材料的现有技术工艺需要专门的烘箱,以及在烘箱中的压机以连接该材料。连接的材料可以获得例如静电卡盘。例如,一种采用液相烧结的现有技术的工艺,两个工件可以在极高的温度和接触压力下连接在一起。高温液相烧结工艺可以经历1700℃范围内的温度和2500psi范围内的接触压力。当采用此类工艺制造衬底支承底座时,需要大量的时间、专门的烘箱、压机和夹具,并且整个工艺极为昂贵。即使不是不可能,也极度不可能返工或修复使用液相烧结制造的静电卡盘中的某些缺陷。

在本发明的一个实施方案中,提供了具有适用于johnsen-rahbek夹持的顶表面的静电卡盘。在一个实施方案中,该顶表面适用于在超过450℃的温度下的johnsen-rahbek夹持。在一个实施方案中,该顶表面适用于在500℃至700℃温度范围内的johnsen-rahbek夹持。在一个实施方案中,该顶表面适用于在500℃至750℃温度范围内的johnsen-rahbek夹持。在一个实施方案中,该顶表面是任何合适的材料的。在一个实施方案中,该顶表面是在500℃至750℃的温度范围内具有10e9ohm-cm至10e11ohm-cm的体电阻率的材料的层。在一个实施方案中,该顶表面是蓝宝石的。在一个实施方案中,该顶表面是蓝宝石顶层,其可以固定到该卡盘的下部。在一个实施方案中,该蓝宝石顶层固定到下方的层。在一个实施方案中,下方的层是陶瓷层。在一个实施方案中,提供了具有蓝宝石顶表面的静电卡盘。

该蓝宝石层可以具有任何合适的厚度。在一个实施方案中,该蓝宝石层具有250至1000微米的厚度。在一个实施方案中,该蓝宝石层具有500微米的厚度。

该蓝宝石层可以以任何合适的方式固定到该卡盘的下方部分。在一个实施方案中,该顶层通过能够承受腐蚀性加工化学的连接层附着到该卡盘的下方部分。在一个实施方案中,该腐蚀性加工化学是在加工室内的半导体加工环境。在一个实施方案中,该连接层由钎焊层形成。在一个实施方案中,该钎焊层是铝钎焊层。

在一个实施方案中,该静电卡盘的蓝宝石层通过在任何合适的温度下连接钎焊层来连接到下方的陶瓷层。在一个实施方案中,该温度为至少770℃。在一个实施方案中,该温度为至少800℃。在一个实施方案中,该温度低于1200℃。在一个实施方案中,该温度为770℃至1200℃。在一个实施方案中,该温度为800℃至1200℃。

在一个实施方案中,该静电卡盘的蓝宝石层在合适的环境下通过在任何合适的温度下(包括任何本文中公开的温度)连接钎焊层来连接到下方的陶瓷层。在一个实施方案中,该环境是非含氧环境。在一个实施方案中,该环境不含氧。在一个实施方案中,该环境在不存在氧的情况下。在一种环境中,该环境是真空。在一个实施方案中,该环境处在低于1×10e-4torr的压力下。在一个实施方案中,该环境处在低于1×10e-5torr的压力下。在一个实施方案中,该环境为氩(ar)气氛。在一个实施方案中,该环境为其它惰性气体气氛。在一个实施方案中,该环境为氢气(h2)气氛。

在一个实施方案中,通过钎焊层在合适的环境下(包括任何本文中公开的环境)在任何合适的温度下(包括任何本文中公开的温度)将该静电卡盘的蓝宝石层连接到下方的陶瓷层。在一个实施方案中,该钎焊层是纯铝。在一个实施方案中,该钎焊层是大于89重量%的金属铝。在一个实施方案中,该钎焊层具有按重量计超过89%的铝。在一个实施方案中,该钎焊层是大于99重量%的金属铝。在一个实施方案中,该钎焊层具有按重量计超过99%的铝。

在一个实施方案中,通过铝连接层(包括通过任何本文中公开的铝钎焊层形成的铝连接层)在合适的环境下(包括任何本文中公开的环境)在任何合适的温度下(包括任何本文中公开的温度)将该静电卡盘的蓝宝石层连接到下方的陶瓷层。在一个实施方案中,该铝连接层不含扩散结合。在一个实施方案中,形成该铝连接层的工艺不包括扩散结合。在一个实施方案中,在该蓝宝石层与该铝连接层之间不存在扩散结合。在一个实施方案中,在该陶瓷层与该铝连接层之间不存在扩散结合。在一个实施方案中,该铝连接层在该蓝宝石层与该陶瓷层之间形成气密密封。在一个实施方案中,该铝连接层在该蓝宝石层与该陶瓷层之间形成具有<1×10e-9sccmhe/sec的真空泄漏速率的气密密封。在一个实施方案中,该铝连接层能够承受腐蚀性加工化学。在一个实施方案中,该腐蚀性加工化学是在加工室内的半导体加工环境。

下方的陶瓷可以由任何合适的材料制成,包括氮化铝、铝氧化物或氧化铝、蓝宝石、氧化钇、氧化锆和氧化铍。

本发明的前述实施方案可以以任何方式组合。下面阐述的本发明的实施方案是本发明的实例,并且在一些情况下可能比本发明的前述实施方案更宽泛,但非意在限制前述实施方案的广度或本发明的广度。下文阐述的本发明的实施方案中阐述的本发明的附加特征是任选的。在具有或不具有任何下文阐述的实施方案的任何其它特征的情况下,下文阐述的任何实施方案的特征可以与任何前述实施方案结合。下面的方法的所有特性、步骤、参数和特征不限于下文阐述的具体实施方案或具体部分,而是同样适用于本发明的前述实施方案和适用于本发明的所有实施方案。广义的术语和描述符有时代之以更具体的术语和描述符,而不是将本公开限于特定术语或描述符,而是仅仅为了便于讨论和理解。

图1显示了用于半导体加工中的衬底支承底座100,如静电卡盘的一个实施方案。在一些方面,该衬底支承底座100由陶瓷如氮化铝组成。该静电卡盘具有轴101,该轴101又支承着板102。该板102具有顶表面103。该轴101可以是中空的柱体。该板102可以是平坦的盘。可能存在其它子组件。

图2概念性地显示了具有压机121的加工烘箱120。该板122可以在适于被压机121压制的夹具123中的温度下被压实。还可以类似地在加工步骤中制造该轴101。在典型的工艺中,该板与轴通过以下方法来成型:向模具中装载以约2重量%掺入烧结助剂(如氧化钇)的氮化铝粉末,随后将氮化铝粉末压实成“实心”状态(通常称为“生坯”陶瓷),接着进行高温液相烧结过程,该过程将氮化铝粉末致密化为固体陶瓷本体。该高温液相烧结过程可以经历(see)1700℃范围内的温度和2500psi范围内的接触压力。随后通过标准研磨技术使用金刚石磨料将该本体成形为所需几何形状。

该轴具有多种功能,其一是通过真空室的壁提供真空密封的电连通,以便向加热器元件以及多种其它电极类型(其可以嵌在加热器板中)施加电功率。另一功能是允许使用标准橡胶或聚合物o型环以便将该轴的末端密封到室壁上。在高温应用中,该轴用于降低与室壁连接点处的温度。另一功能是能够使用监控装置如热电偶对加热器板进行温度监控,并允许热电偶驻留在加工室环境之外以避免热电偶材料与加工化学物质之间的相互作用(如腐蚀),并允许热电偶接头在非真空环境中运行以便快速响应。另一功能是提供用于前述电连通的材料与加工环境的隔离。用于电连通的材料通常是金属的,其由此可能与加工环境中的加工化学物质相互作用,这可能会对加工结果有害,并对用于电连通的金属性材料的寿命有害。

图3概念性地显示了具有压机141的加工烘箱140。如图3中概念性显示的那样,由于该板的相对平坦的性质,可以通过沿着位于加工烘箱140中的压机141的轴向方向堆叠多个板成型夹具143,在单个过程中形成多个板142。也可以使用加工烘箱中的该压机在类似过程中成型该轴。这些陶瓷成型操作各自涉及大量时间、能量和花费。

在制造用于半导体加工的静电卡盘的整个过程中,形成板和形成轴的步骤均需要承担大量的时间和能量。考虑到具有物理压机的专用高温烘箱的成本,以及成型该板和成型该轴的各工艺步骤可能需要使用专用加工烘箱数天,已经投入了大量的时间和金钱,只是为了使整个过程达到完成该轴与板的地步。在现有工艺中需要在专用加工烘箱中的进一步的步骤以便将板固定到轴。该步骤的一个实例是在专用的具有压机的高温加工烘箱中采用液相烧结步骤将该轴连接到该板。在专用加工烘箱中的该第三步骤也需要在此类加工烘箱中的相当大的空间,因为加热器的组装结构包括轴的长度和板的直径。尽管仅制造轴可能需要类似量的轴长度,该轴的直径使得可以在单个过程中平行制造多个轴。

如图4中可见,将轴烧结到板的连接过程也需要使用具有压机161的加工烘箱160。一组夹具164、165用于定位该板162与该轴163,并传送由压机161递送的压力。

一旦静电卡盘完成,其可用于半导体加工。该静电卡盘可能在恶劣条件下使用,包括腐蚀性气体、高温、热循环和气体等离子体。

图5显示了用于半导体加工室的衬底支承底座的示意图的一个实施方案。该衬底支承底座300(其可以是陶瓷加热器和/或静电卡盘)可以包括射频天线和/或夹持电极310、加热器元件320、轴330、板340和安装法兰350。射频天线310可以非常靠近安装板的顶表面。在一些方面,射频天线的位置可为夹持电极所处的位置。在一些方面,可能存在多个射频天线和/或夹持电极。在一些方面,一个电极可以同时用作夹持电极与射频天线。

如图6中可见,该衬底支承底座可以桥接在两种不同的气氛之间,其均可对现有技术的钎焊材料存在显著的问题。在半导体加工设备如加热器或静电卡盘205的外表面207上,该材料必须与半导体加工室200中进行的工艺和半导体加工室200中存在的环境201兼容,在半导体加工室200中将会使用底座205。这些可包括氟化学,以及其它极具挥发性或腐蚀性的化学。该衬底支承该底座205可具有固定到该板203顶表面上的衬底206,其由轴204支承。在该衬底支承该底座205的内表面208上,该材料必须与不同的气氛202兼容,该气氛可为含氧气氛。含有铜、银或金的材料可干扰加工中的硅晶片的晶格结构,因此是不合适的。对于可能使用钎焊作为修复过程一部分的任何修复而言,钎焊材料可暴露于中空轴中心内的含氧气氛。暴露于该气氛的钎焊接头部分将会氧化,并可氧化至接头中,可能导致该接头的气密性失效。除了结构性连接之外,在将要用于半导体制造的这些器件的轴和板的区域中使用的钎焊材料通常在许多(如果不是大部分或全部)用途中必须是密封的。

在一个实施方案中,该板和轴均为铝氧化物(氧化铝)。在一些实施方案中,该板的直径可以为约9-13英寸,厚度为0.5至0.75英寸厚。在一个实施方案中,该轴可以是5-10英寸长且壁厚度为0.1英寸的中空柱体。

在衬底支承底座的制造中,涉及用成本更低的工艺取代液相烧结的任何步骤显示了优于昂贵的现有技术制造方法的显著改善。一种改进可为由预先制造的陶瓷板层组装板组装件,使用钎焊材料连接这些层。在一些方面,可能重要的是,将该陶瓷层彼此连接和在一些方面将其连接至底座的钎焊层提供密封接头。需要良好和完全的润湿以及气密性以消除任何虚漏(virtualleak),其中非密封的钎焊层可能将钎料中的空隙内捕集的气体“泄露”到随后使用该底座的腔室内。这并非期望的条件。此外,无孔隙的、完全润湿的密封接头将在内部加热器和底座顶表面之间提供更一致、均匀的热通路,具有更加均等的导热性。

具有适用于在比先前所用温度更高的温度下提供johnsen-rahbek夹持并用钎焊层连接至该板的一个或多个下层的顶层的静电卡盘(其能够承受期望的更高温度并能够承受加工化学(如氟化学))会显示出超越先前的静电卡盘设计的显著改善。

在本发明的一些实施方案中,如图7中可见,静电卡盘300适于在高于450℃的温度下提供j-r夹持。该静电卡盘300可具有连接至轴302的板组装件301。该轴302可以是中空的,并可以具有安装法兰303。该板组装件301具有适于在加工过程中支承晶片或其它衬底的顶表面308。该顶层305可用钎焊层306连接到板下部304。夹持电极307可以位于顶层305和板下部304之间。该夹持电极307可以通过间隙309与该钎焊层306分离。该间隙309可以包括曲径(labyrinth),其消除了该钎焊层306与夹持电极307之间的直线路径。根据间隙的宽度和所用电压,可能不需要曲径。在一些实施方案中,该静电卡盘不具有轴。

在一些方面,选择该顶层305以便在需要该静电卡盘300提供j-r夹持的温度范围内具有10e9至10e11ohm-cm的体电阻率。在一些方面,选择该板下部304以使其热膨胀系数相对于顶层305呈现紧密匹配。热膨胀系数可以随温度而改变,因此选择热膨胀系数的匹配可以考虑从室温直到寻求支持的加工温度并进一步直到连接层的钎焊温度的匹配程度。

在一个实施方案中,该顶层305是蓝宝石,该板下部是氧化铝。蓝宝石(单晶铝氧化物)在20℃(293k)、517℃(800k)和1017℃(1300k)下的热膨胀系数分别为5.38、8.52和9.74×10e-6/k。烧结氧化铝在20℃、500℃和1000℃下的热膨胀系数分别为4.6、7.1和8.1×10e-6/k。这些呈现良好的匹配。在一个示例性实施方案中,该钎焊层是纯度超过89%的铝,并可以是按重量计超过99%的al。

使用蓝宝石作为夹持电极上方的顶层允许在约500℃至750℃的温度范围内的j-r夹持。蓝宝石在500℃下的体电阻率为10e11ohm-cm,在750℃下为10e9ohm-cm。蓝宝石在用于j-r夹持的500℃至750℃的温度范围内提供适当的体电阻率,并且氧化铝和蓝宝石的组合提供热膨胀系数的匹配以便在用适当的耐化学性钎焊层(如铝)钎焊时允许成功地使用。

在一个实施方案中,该顶层305可以是蓝宝石并且为0.05毫米厚。该钎焊层306和该夹持电极307可以为0.05毫米厚并且是>99%的al。在一些方面,该钎焊层具有0.05毫米至0.10毫米的厚度。在一些方面,下板层可以是台阶形的,以使该钎焊层和该夹持电极厚度不同。例如,该钎焊层可以为0.05毫米厚,该夹持电极可以为0.10毫米厚。这有助于促进其中该夹持电极还充当射频天线的用途,额外的厚度对于可能在此类情况下出现的更高电流水平可为有用的。该板下部可以是氧化铝并且为3毫米厚。这个实施方案可以不见轴。

在具有轴的一个实施方案中,该顶层305可以是蓝宝石并且为0.5毫米厚。该钎焊层306和该夹持电极307可以为0.05毫米厚并且是>99%的al。在一些方面,该下板层和/或该蓝宝石层可以是台阶形的,以使该钎焊层和该夹持电极具有不同的厚度。该板下部可以是氧化铝并且为12毫米厚。

如上文可见,该钎焊层的厚度可以调节以便能够承受由各种材料之间不同的热膨胀系数造成的应力。在钎焊步骤的冷却过程中可能产生残余应力,这在下文中描述。此外,由室温开始的快速初始温度升高(ramping)可能跨卡盘造成某些温度不均匀,这可能与钎焊过程中产生的残余应力结合。

铝具有形成氧化的铝的自限层的性质。该层通常是均匀的,一旦形成将防止或显著限制额外的氧或其它氧化性化学品(如氟化学品)渗透到基底(base)铝并继续进行氧化过程。以这种方式,存在初始的短暂的铝氧化或腐蚀时期,其随后被铝表面上形成的氧化物(或氟化物)层基本停止或减慢。该钎焊材料可以是箔片材、粉末、薄膜的形式,或可以具有适于本文中所述钎焊过程的任何其它形状因子。例如,该钎焊层可以是厚度为0.00019英寸至0.011英寸或更高的片材。在一些实施方案中,该钎焊材料可以是厚度为约0.0012英寸的片材。在一些实施方案中,该钎焊材料可以是厚度为约0.006英寸的片材。通常,铝中的合金成分(例如镁)以铝晶界之间的沉淀物形式形成。虽然它们可以降低铝结合层的耐氧化性,但通常这些沉淀物不会形成穿过铝的连续通路,因此不允许氧化剂渗透穿过整个铝层,并由此使提供其耐腐蚀性的铝的自限制氧化物层特性保持完好。在使用含有可以形成沉淀物的成分的铝合金的实施方案中,可以调整工艺参数(包括冷却方案)以最小化晶界中的沉淀物。例如,在一个实施方案中,该钎焊材料可以是纯度为至少99.5%的铝。在一些实施方案中,可以使用市售的铝箔(其可能具有大于92%的纯度)。在一些实施方案中,使用合金。这些合金可以包括al-5重量%zr、al-5重量%ti、市售合金#7005、#5083和#7075。在一些实施方案中,这些合金可以在1100℃的连接温度下使用。在一些实施方案中,这些合金可以在800℃至1200℃的温度下使用。在一些实施方案中,这些合金可以在更低或更高的温度下使用。

根据本发明的一些实施方案的连接方法依赖于控制连接材料相对于待连接的陶瓷工件的润湿和流动。在一些实施方案中,在连接过程中不存在氧允许适当地润湿,而不存在在连接区域中改变该材料的反应。采用连接材料的适当润湿和流动例如可以在相对于液相烧结的低温下实现气密密封接头。

在其中使用连接陶瓷的最终产品的一些应用中,接头强度可能不是关键设计因素。在一些应用中,可需要接头密封性以便能够分离接头两侧的气氛。在一些应用中,可需要接头密封性以防止在该钎焊层中的虚漏。同样,连接材料的组成可为重要的,以使其耐受陶瓷组装件最终产品可暴露在其之下的化学品。该连接材料可需要耐受化学品,否则可导致接头劣化,并丧失该气密密封。该连接材料还可需要为不会不利地干扰随后由成品陶瓷器件支持的工艺的材料类型。

在一些实施方案中,在适于提供极低压力的加工室中进行连接过程。根据本发明的实施方案的连接过程可要求不存在氧以便实现气密密封的接头。在一些实施方案中,在低于1×10e-4torr的压力下进行该过程。在一些实施方案中,在低于1×10e-5torr的压力下进行该过程。在一些实施方案中,通过在加工室中放置锆或钛来实现进一步去除氧。例如可以在要连接的工件周围放置锆内腔室。

在一些实施方案中,除真空之外的气氛可用于实现气密密封。在一些实施方案中,氩(ar)气氛可用于实现气密接头。在一些实施方案中,其它惰性气体用于实现气密接头。在一些实施方案中,氢气(h2)气氛可用于实现气密接头。

在一些实施方案中,支座可用于对该接头产生最小钎焊层厚度。在其它实施方案中,通过向钎焊层填料材料中掺入粉末状材料来产生该接头的最小钎焊层厚度。掺入的粉末材料的最大颗粒尺寸决定了最小接头厚度。该粉末状材料可以与粉末状钎焊层填料材料混合,或涂布到陶瓷接头表面上,或涂布到具有适当厚度的钎焊层填充箔上,或直接掺入具有适当厚度的钎焊层填料材料箔中。在一些实施方案中,该钎焊层材料在钎焊之前可能比轴末端与板之间的台面(mesas)或粉末颗粒所保持的距离更厚。在一些实施方案中,其它方法可用于建立最小钎焊层厚度。在一些实施方案中,陶瓷球可用于建立最小钎焊层厚度。在一些方面,该接头厚度可能比该支座或其它最小厚度决定装置的尺寸稍厚,因为并非所有钎焊材料可从支座和相邻界面表面之间挤出。在一些方面,一些铝钎焊层可出现于该支座与相邻界面表面之间。在一些实施方案中,该钎焊材料可为溅射到陶瓷表面上至0.0003英寸厚度的铝。在一些实施方案中,该钎焊材料在钎焊前可为0.006英寸厚,而完成的接头最小厚度为0.004英寸。该钎焊材料可为含有0.4重量%的fe的铝。

由于显著的铝蒸发,过长时间使用过高的温度可导致在连接层中形成空隙。当在连接层中形成空隙时,该接头的密封性可能丧失。使用过低的温度可导致不密封的接头。可以控制该工艺温度和该工艺温度的持续时间,以使铝层不会被蒸发,并获得气密接头。除了上述其它工艺参数之外,采用适当的温度和工艺持续时间控制,可形成连续的接头。根据本文中所述的实施方案实现的连续接头将获得部件的气密密封,以及结构性连接。

气密接头和非气密接头均可以牢固地连接工件,因为需要显著的力来分开工件。但是,接头牢固的事实并不能决定该接头是否提供气密密封。获得气密接头的能力可与接头的润湿相关。润湿描述了液体散布在另一材料表面上方的能力。如果在钎焊接头中存在不充分的润湿,将会存在未结合的区域。如果存在足够的未润湿区域,那么气体将会穿过该接头,造成泄漏。

本文中讨论的接头使用陶瓷或多种陶瓷,其在连接过程中不易受扩散的影响。新的研究表明,采用本文中描述的方法,这类陶瓷已经显示出能够与其自身连接或能够连接至该类别中的其它陶瓷。这类别中的非扩散陶瓷尤其是蓝宝石、氧化钇、氮化铝、氧化铝、氧化锆和氧化铍。连同使用在非典型标准钎焊温度范围的温度,并使用本文中描述的钎焊材料,采用本文中所述气氛,这类陶瓷可与先前不可实现的气密接头连接。在本发明的实施方案的接头中,通过<1×10e-9sccmhe/sec的真空泄露速率来验证气密性;如通过标准市售质谱仪氦泄漏检测仪所验证的那样。

在钎焊过程中存在大量氧或氮可产生干扰接头界面区域完全润湿的反应,这又可导致不气密的接头。在没有完全润湿的情况下,在接头界面区域中,未润湿区域被引入最终的接头中。当引入足够的连续未润湿区域时,接头的气密性丧失。

氮的存在可导致氮与熔融的铝反应形成氮化铝,该反应的形成可干扰接头界面区域的润湿。类似地,存在氧可导致氧与熔融的铝反应形成氧化铝,该反应的形成可干扰接头界面区域的润湿。采用压力低于5×10-5torr的真空气氛已经显示移除了足够的氧和氮以允许完全鲁棒地(robust)润湿该接头界面区域,并获得气密接头。在一些实施方案中,在钎焊步骤过程中在加工腔室中使用更高的压力(包括大气压)但是使用非氧化性气体如氢或纯净的惰性气体(如氩)也导致接头界面区域的鲁棒的润湿,以及气密接头。为了避免上述氧反应,钎焊过程中加工室中氧的量必须足够低,使得不会不利地影响接头界面区域的完全润湿。为了避免上述氮反应,钎焊过程中加工室中存在的氮的量必须足够低,使得不会不利地影响接头界面区域的完全润湿。

在钎焊过程中选择适当的气氛,结合保持最小接头厚度,可以允许接头的完全润湿。相反,选择不适当的气氛可导致不佳的润湿,并导致非气密接头。受控气氛与受控接头厚度的适当组合以及钎焊过程中适当的材料选择与温度允许以气密接头连接材料。

在本发明的一些实施方案中,如图8中可见,适于在高温下提供夹持的静电卡盘315具有多层板组装件319和轴320。该轴320可以是中空轴,并可以含有电和气的导管以支持加工操作。该多层板组装件319可以具有在单个连接步骤中或在多个步骤中连接在一起的多个板316、317、318。顶板层316可以支承顶表面327上的衬底。该顶板层316可以用第一密封接头321连接到中间板层317,其可以是环形圆周接头。夹持电极323可以位于顶板层316和中间板层317之间。在一些方面,第一密封接头321和夹持电极323为铝。间隙325可用于将夹持电极323和第一密封接头321隔开。该间隙325可以处于真空下。在一些方面,在间隙325中可存在结构曲径。在一些方面,顶板层316可为蓝宝石,中间板层317可为氧化铝。在一些方面,第一密封接头321和夹持电极323具有相同的材料。在一些方面,第一密封接头321和夹持电极323均以气密接头连接到顶板层316和中间板层317。在一些方面,第一密封接头321和夹持电极323在单个钎焊过程中连接到顶板层316和中间板层317上。

该中间板层317可以用第二密封接头322连接到下板层318上。加热器324可以位于中间板层317和下板层318之间。在一些方面,一起在单个钎焊过程中,第一密封接头321和夹持电极323均连接到顶板层316和中间板层317,且中间板层317连接到底板层318。轴320可以用第三密封接头326连接到底板层318。在一些方面,一起在单个钎焊过程中,第一密封接头321和夹持电极323均连接到顶板层316和中间板层317,且中间板层317连接到底板层318,且底板层318连接到轴320。

在一个实施方案中,顶板层316为蓝宝石,中间板层317和下板层318为氧化铝,轴320为氧化铝或另一种陶瓷,其可以是具有较低热导率的陶瓷。该第一、第二和第三连接层321、322、326为纯度大于99%的铝。在单个钎焊步骤中在800℃的温度下连接整个组装件。在一些方面,该钎焊温度为770℃-1200℃。该钎焊步骤在低于10e-4torr的压力下进行,持续时间为1至60分钟。

在一个实施方案中,顶板层316为蓝宝石并且为0.5毫米厚,上钎焊层321和夹持电极323为>99%的al并且为0.15毫米厚。在一些方面,中间板层317和/或蓝宝石层316可以是台阶形的,以使钎焊层321和夹持电极323具有不同的厚度。该中间板层317为aln并且为5.5毫米厚,下钎焊层为>99%的al并且为0.05毫米厚,且下板层318为aln并且为5.5毫米厚。

在一个实施方案中,顶板层316为蓝宝石并且为0.5毫米厚,上钎焊层为>99%的al并且为0.05米厚,中间板层317为氧化铝并且为3毫米厚,下钎焊层为.99%的al并且为0.10毫米厚,下板层318为aln并且为6毫米厚。

图9显示了可与静电卡盘一起使用的夹持电极336的外观,该静电卡盘具有用于移除衬底的引脚。图9可以看做是穿过上板层和中间板层之间的第一密封环334的垂直截面图。该夹持电极336适用于向由该静电卡盘支承的衬底提供夹持力。该夹持电极可以是填充图9中所示边界中所有区域的实心材料。在板层330的圆周周边附近见到第一密封环334。在第一密封环334与夹持电极336之间的间隙333经由间隙335提供电隔离。销孔331各自具有在其外周附近的密封环332。该密封环332具有在密封环332与夹持电极336之间的间隙333。

上述静电卡盘提供超越现有技术的装置的至少以下改进。首先,其可以提供能够在此前无法达到的温度下(例如在超过450℃或超过500℃的温度下)提供夹持的静电卡盘。其次,其可以提供能够保持此前无法获得的衬底与温度均匀性的静电卡盘。第三,其可以提供高温夹持卡盘,当它损坏时其有机会通过去除该板的顶层来返工和修复。

由能够在超过450℃,例如在500℃-700℃范围内的温度下进行j-r夹持的静电卡盘提供的夹持力允许极大改善加工性能。由于没有静电卡盘能够在高于约400-450℃的温度下提供夹持力,需要更高温度的工艺可依靠重力将晶片或其它衬底固定到支承底座。一些化学气相沉积(cvd)过程对温度非常敏感,其通过实现高温静电夹持衬底支承将得到极大的增强。该夹持力可以显著改善并均化该衬底的底表面与衬底支承件的顶表面之间的接触。增强和均化的接触允许获得来自加热的衬底支承件的更均匀的热流。

采用本发明的实施方案的静电卡盘可以得到显著改善的cvd法的一个实例是在集成电路制造中施加无定形碳的薄膜(acl)。acl膜通常使用化学气相沉积来施加,并通常在500-650℃的温度下施加。示例性cvdacl法可以获得1,800埃的层,这可以在约6分钟内实现。该膜的生长速率高度依赖于温度。对此类工艺规定的均匀性为1.2-1.5%。在此类工艺中加入夹持力,预期达到的均匀性将低于1%。

在运行此类工艺的加工机械中,需要清洁步骤来除去可发生在所有暴露表面上的涂层积累。在某些情况下,可以在接受沉积的各衬底之间进行清洁。清洁化学通常是离子化的氟的来源,其被激发至等离子态用于提高不想要的表面沉积物的蚀刻速率。该清洁步骤对材料兼容性而言也是关键的,因为该静电卡盘的所有暴露部分必须耐受氟(及其它)化学。暴露于这种化学环境的钎焊层有利地耐受此类化学。

在一个实施方案中,提供能够在高温下提供静电夹持的静电卡盘,该静电卡盘可包括板组装件,所述板组装件包括包含蓝宝石的顶板层、包含陶瓷的下板层、布置在顶板层与下板层之间的夹持电极和用气密接头围绕该夹持电极的外周将顶板层连接到下板层的第一密封接头,该第一密封接头包含大于89重量%的金属铝。

该第一密封接头可以包括大于99重量%的金属铝。该静电卡盘可以包括用第二密封接头连接到板组装件底部的轴,该轴包括陶瓷,第二密封接头包括大于89重量%的金属铝。该静电卡盘可以包括用第二密封接头连接到该板组装件底部的轴,该轴包括陶瓷,第二密封接头包括大于99重量%的金属铝。该下板层可以包括铝氧化物。该下板层可以包括氮化铝。该夹持电极可以包括大于89重量%的金属铝。该夹持电极可以包括大于99重量%的金属铝。

在一个实施方案中,提供了能够在高温下提供静电夹持的静电卡盘,并且该静电卡盘可包括板组装件,所述板组装件包括在500℃至750℃的温度范围内具有10e9ohm-cm至10e11ohm-cm的体电阻率的材料的顶板层、包含陶瓷的下板层、布置在顶板层与下板层之间的夹持电极和用气密接头围绕该夹持电极的外周将顶板层连接到下板层的第一密封接头,该第一密封接头包含大于89重量%的金属铝。

该第一密封接头可以包括大于99重量%的金属铝。该静电卡盘可以包括用第二密封接头连接到板组装件底部的轴,该轴包括陶瓷,第二密封接头包括大于89重量%的金属铝。该静电卡盘可以包括用第二密封接头连接到该板组装件底部的轴,该轴包括陶瓷,第二密封接头包括大于99重量%的金属铝。该下板层可以包括铝氧化物。该下板层可以包括氮化铝。该夹持电极可以包括大于89重量%的金属铝。该夹持电极可以包括大于99重量%的金属铝。

在一个实施方案中,提供了用于半导体加工的静电卡盘,该静电卡盘可以包括板组装件,该板组装件具有蓝宝石的顶板层和陶瓷的下板层,该板组装件具有周缘,以及适于承受半导体加工环境的在该周缘处在该顶板层与下板层之间的气密密封接头。

该静电卡盘在该周缘内可以包括设置在顶板层与下板层之间的夹持电极。该夹持电极可以包括大于89重量%的金属铝或大于99重量%的金属铝。该气密密封接头可以包括大于89重量%的金属铝或大于99重量%的金属铝。该板组装件可以包括连接到该板组装件底部的轴。该静电卡盘在该板组装件底部与该轴之间可以包括适于承受半导体加工环境的附加的气密密封接头。该下板层的陶瓷可以包括铝氧化物或氮化铝。

在一个实施方案中,提供了用于半导体加工的静电卡盘,并且该静电卡盘可包括板组装件,所述板组装件具有在500℃至750℃的温度范围内具有10e9ohm-cm至10e11ohm-cm的体电阻率的材料的顶板层,以及陶瓷的下板层,该板组装件具有周缘,以及适于承受半导体加工环境的在该周缘处在该顶板层与下板层之间的气密密封接头。

该静电卡盘在该周缘内可以包括设置在顶板层与下板层之间的夹持电极。该气密密封接头可以包括大于89重量%的金属铝或大于99重量%的金属铝。该板组装件可以包括连接到该板组装件底部的轴。

在一个实施方案中,提供了用于半导体加工的多层板装置的制造方法,该方法可以包括:将多个板组件排列成堆叠体,该多个板组件包括包含蓝宝石的顶板层,包含陶瓷的下板层,以及包含大于89重量%的铝的布置在顶板层与下板层之间的钎焊层,将顶板层连接到下板层,将上板层连接至下板层的步骤包括将该组件放置到加工腔室中,从加工腔室中除去氧,并加热板组件的堆叠体,由此用气密密封接头将顶板层连接到下板层。

从加工腔室中除去氧的步骤可以包括在加热板组件的堆叠体的过程中向该板组件的堆叠体施加真空,其中真空压力低于1×10e-4。加热板组件的堆叠体的步骤可以包括将板组件的加压堆叠体加热到800℃至1200℃的第一温度。

从以上描述中显而易见的是,可以从本文中给出的说明来配置各种各样的实施方案,并且本领域技术人员容易想到其它优点和修改。因此,本发明的更广泛的方面不限于所示和所述的具体细节和说明性实施例。因此,可以偏离此类细节而不脱离申请人的一般发明的精神或范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1