带有电感元件的高功率电荷泵的制作方法

文档序号:18220171发布日期:2019-07-19 22:56阅读:326来源:国知局
带有电感元件的高功率电荷泵的制作方法

本发明涉及一种根据权利要求1的前序部分的dc-dc转换器,特别地,涉及一种用于高功率应用的电荷泵,其特别地包括与电容器组合的电感元件,其允许零电流开关过程并因此使得损耗最小化。



背景技术:

在广泛的应用中需要高效且轻量的dc到dc电压转换,这些应用涉及从具有mw级的输出功率的小型电源到大型mw级的输出功率的设备的最为不同的功率水平。

为了得到有效的dc到dc转换,有几种可能的拓扑结构。但是,dc-dc转换背后的基本原理始终是相同的。任何拓扑都呈现出输入dc链路、输出dc链路和一个(或多个)存储元件。在第一步骤中,一些能量从输入dc链路传递到存储元件。在第二步骤中,能量从存储器传递到输出dc链路。然后按此顺序重复。

几乎全部高功率转换器采用电感元件作为存储元件。在非常低功率的应用中,通常使用电容器作为存储元件,通常使用称为电荷泵的电路。

对于高功率应用,实际上从未使用电荷泵(例如:作为存储元件的电容器)。

电荷泵允许关于电流和/或输出电压的极差的控制可能性。然而,电容器作为存储元件的使用在成本重量和制造工艺方面具有显著的益处。

在us6429632b1中公开了一种特定类型的dc到dc功率转换器和转换方法,其使用高频开关的电容器,其中开关由集成电路芯片上的cmos晶体管或二极管实现并且使用电感器来限制充电电流。当电感器电流为零且电容器电压最大化时,使用电感器通过高频开关来降低电路电容器中的能量损耗,从而实现高效率。转换器电路的高频(100mhz或更高)操作允许使用能够直接在集成电路(ic)芯片上制造的具有100nh(100×10-9henrys)量级的低电感值的电感器。cmos集成组件的使用允许整个转换器形成在单个ic芯片上,从而节省便携式系统内的大量空间。输出电压和电流足够高,可以进行eeprom编程。另外,当并联使用几个转换器电路时,基本上消除了输出电压(纹波电压)的波动。虽然这种类型的转换器适用于集成电路内部并且在高电流下操作,但它不适用于高压和高功率应用,例如在混动或电动车辆中。



技术实现要素:

本发明的目的是提供一种适用于高功率应用的电荷泵拓扑结构,其不需要精确的输出电压控制。

该目的通过独立权利要求1的特征部分实现。本发明构思的其他实施例和有利变型在从属权利要求、以下说明书和附图中给出。

与传统的和广泛使用的电荷泵拓扑结构(专为低功率应用而设计)相比,这里提出的设计包括允许零电流开关和转换器的谐振操作的电感元件,其中仅用一个线圈和一个电容器产生特殊的谐振波形。此外,可以显著减少必要的卷绕产品,从而使新的转换器设计更具成本效益且更轻便。

工作频率通常低于500khz,优选地跨越约20至约200khz的范围。额定输入电压通常在大约400v的范围内且可以升压到800v,以允许例如可以在400v电站为800v电池充电,或者通过800v电池为400v系统充电。典型功率值介于20kw至200kw之间,但也可以更低或更高。

附图说明

附图标记列表是本公开的一部分。附图之间相互关联且相互结合。相同的附图标记用于相同的部件。具有不同标识的附图标记用于功能相同或相似的部分。

图1示出了一种将输入电压加倍的电荷泵电路,并示出了主要部件中相应的定性波形。

图2示出了一种将输入电压减半的电荷泵电路,并示出了主要部件中相应的定性波形。

图3示出了一种电荷泵电路的实施例,其允许双向能量流。

图4示出了一种具有预充电元件的电荷泵电路,其允许在器件开启时显著减小涌流。

图5示出了一种使用两级概念产生1.5倍的电压倍增的级联实施例。

图6示出了一种产生1.5倍的电压倍增的单步实施例,并示出了主要部件中相应的波形。

图7示出了一种产生1.5倍的电压倍增的单步实施例,并示出了主要部件中相应的波形。

图8示出了一种电荷泵电路,其以降低的频率工作,以最小化低负载时的开关和栅极驱动损耗。

具体实施方式

图1示出了一种将输入电压加倍的电荷泵电路。通过接通充电开关9,存储电容器2通过电感元件3充电。在稳态条件下,当电容器9上的电压与输入dc链路电压1相比稍微更慢时,该过程开始。由于输入dc链路1和存储电容器2之间的初始电压差,因此会发生与电感3的振荡过程。正弦电流流过充电开关9和充电二极管7。在振荡周期的一半之后,二极管7避免电流沿相反方向流动,因此振荡停止。由此,存储电容器上的电压保持为略高于输入dc链路1的电压。此时,在短暂的“停滞时间”之后,放电开关8接通。由于存储电容器2和始终在电压u_in下充电的上dc链路电容器5之间的电压差,因此会发生在存储电容器2和电感元件3之间的振荡。电流流过放电开关8和放电二极管6。在振荡周期的一半之后,二极管6避免电流沿相反方向流动,因此振荡停止。

再次,在短暂的“停滞时间”之后,充电开关9接通并且重复整个过程。每个所描述的开关过程可以被认为是零电流转换,因此所描述的系统的开关损耗是非常低的。开关全部被激活和去激活,分别为大约50%的占空比。

为了正确运行,组件3和2之间的共振频率等于或大于开关频率是至关重要的。然而,为了最小化停滞时间,从而减小组件中的峰值电流,开关频率应可能地等于谐振频率。

另外,为了避免输出电压的振荡,dc链路电容器4、5必须显著大于存储电容器2。

上述整个过程可概括如下:在第一步骤中,能量从底dc链路电容器4(其连接到输入dc链路)传输到存储电容器2。在第二步骤中,能量传输到顶dc链路电容器5。

图2示出了允许输入电压减半的实施例。基本原理与上述原理非常相似。充电开关9的接通触发半周期振荡,其将能量从顶dc链路电容器传递到存储电容器。放电开关8的激活触发半周期振荡,其将能量传递到底dc链路电容器。

上述两个原理的组合产生了如图3所示的双向的实施例。如果左侧用作输入dc链路,则电荷泵用作倍压器。在这种情况下,激活的半导体元件是8、9、7、6。相反,如果图的右侧用作输入dc链路,则电荷泵用作分压器。在这种情况下,激活的元件是12、13、14、15。二极管-开关组合12-9、13-8、14-7、15-6不一定必须是分开的元件。特别是如果使用mosfet,则采用半导体的体二极管是方便的。体二极管的使用对于双向的实施例具有另外的优点。

利用双向的配置,还可以实现所谓的动态整流,例如,激活与导电二极管并联的开关以减少损耗。但是,在半周期振荡结束之前断开开关是至关重要的。如果开关未被断开,则二极管在半个周期后不能停止振荡,并且电路的运行显著降低。

图4提出了在电荷泵开启时避免高涌流的解决方案。首先,保证两个dc链路电容器4、5以相同的电压充电是非常重要的。这可以通过两个相同的大电阻18来保证。在任何开关事件之前,保证存储电容器中的预充电也是至关重要的。这可以通过位置17和/或17a的电阻来保证。如果将预充电电阻置于位置17,则电容器通过二极管7由底dc链路电容4进行充电。如果将预充电电阻置于位置17a,则电容器通过二极管13由顶dc链路电容器5进行充电。

作为充电电阻的替代,也可以将高电阻开关16与一个或多个主开关并联。以这种方式,在第一次开关事件期间,仅高阻抗路径被激活,从而避免高电流为电容器2、4、5充电。一旦电容器被充电,系统就可以正常运行并且主开关8、9、14、15可以被激活。

避免涌流的另一种选择是以非常短的脉冲操作一个或多个主开关8、9、14、15,直到系统4、5、2的电容被充电。

通过双向拓扑结构(例如图3中所示的双向拓扑结构),为了平衡各dc链路电容器之间的电压,可替代地,也可以工作于降压(分压器)和升压(倍压器)模式中。在分压器的情况下,一些电荷从顶dc链路电容器5传输到底dc链路电容器4。相反,在倍压器的情况下,一些电荷从底dc链路电容器4传输到顶dc链路电容器5。因此,如果顶电容器5的电压太高,则降压模式操作对于均衡两个dc链路电容之间的电压便是有用的。对应地,如果底电容器4的电压太高,则升压模式操作对于均衡两个dc链路电容之间的电压便是有用的。

图5中公开了一种两步的“级联”电荷泵的实施例。顶dc链路电容器5的电压减半,从而以输入电压u_in的一半对输出电容器5a进行充电。通过完全类似的方式,使用两个步骤,可以获得以下u_out/u_in比率:0.25、0.75、1.5。

也可以通过单步获得分数电压比。图6中示出了将电压升高1.5倍的实施例。通过激活开关9和19,充电过程实现于两个串联连接的存储电容器2和2b。因此,单个存储电容上的平均电压只有0.5×u_in。通过激活8和8b,放电过程实现于并联连接的存储电容器2、2b。因此,上dc链路电容器(5)以0.5×u_in进行充电,从而输出电压11为1.5×u_in。

由两个lc振荡电路2、2b、3、3b形成的图6中的串联电路20也可以由这些元件中的两个以上串联组成。通过这种方式,可以获得1.33(如果使用3个元件)、1.25(4个元件)、1.2(5个元件)等较低电压比。

需要注意的是,图6的实施例也可以用作倍压器(如果开关19持续接通且开关8始终断开),事实上允许具有可选电压比的电荷泵(在情形2或1.5等特定情况下)。取决于激活的开关,同一电路允许多个不同的电压比。

利用图7所示的实施例可以获得另一个分数电压比,该实施例将电压乘以系数0.33。同样在这种情况下,通过激活开关9和19,充电过程实现于两个串联连接的存储电容器(2和2b)。因此,单个存储电容上的平均电压仅为0.33×u_in。通过激活8和8b,放电过程实现于并联连接的存储电容器2、2b。因此,底dc链路电容器5以0.33×u_in进行充电。

由两个lc振荡电路2、2b、3、3b组成的图6中的串联电路19也可以由这些元件中的两个以上串联组成。通过这种方式,可以获得0.25(如果使用3个元件)、0.2(4个元件)、0.166(5个元件)等较低电压比。

如图8所示,对于较低的开关频率,也保证了电荷泵的运行。如果电荷泵在非常低的负载下工作,则栅极驱动和开关损耗占主导。因此,降低运行频率是很方便的。降低运行频率可以但不一定必须涉及占空比的减少。另一方面,在dc-dc转换器的运行开始时,高频开关是有利的,以对电容器2、4、5进行预充电。

为了在dc链路电容器上获得较低的电压纹波,设计由两个或更多个电荷泵(相)组成的电路是方便的,其优选地以相同的频率运行。为了最小化电压纹波,将相位延迟设置为360°/n是更明智的,其中n是运行阶段的数量。

优选实施例中的电路依赖于顶和底电容器4、5的平衡以及降压和升压运行的交替的原理,并且包括两个dc链路电容器4、5,两个电容器的总电压是两个电容器电压的总和。顶和底电容器4、5具有大约相同的电压。在升压模式期间,顶电容器5轻微充电,底电容器4轻微放电,而在降压模式下,顶电容器5轻微放电,底部电容器4轻微充电。通过两种模式的交替运行,可以确保两个电容器电压的相等性。

根据另一优选实施例,两个或更多个dc电容器可以在dc链路中彼此切换。

附图标记列表

1-输入dc链路

2-存储电容器

2a-第二步骤电荷泵电路的存储电容器

2b-串联的存储电容器

3-电感元件

3a-第二步骤电荷泵电路的电感元件

3b-串联的电感元件

4-dc链路底电容器

5-dc链路顶电容器

6-对存储电容器放电的二极管

6a-对第二步骤电路的存储电容器放电的二极管

6b-对并联连接的存储电容器放电的二极管

7-对存储电容器充电的二极管

7a-对第二步骤电路的存储电容器充电的二极管

7b-对并联连接的存储电容器充电的二极管

8-对存储电容器放电的开关

8a-对第二步骤电路的存储电容器放电的开关

8b-对并联连接的存储电容器放电开关

9-对存储电容器充电的开关

9a-对第二步骤电路的存储电容器充电的开关

10-负载电阻

11-输出dc链路,电压

12-对存储电容器放电以产生相反的能量流的二极管

13-对存储电容器充电以产生相反的能量流的二极管

14-对存储电容器放电以产生相反的能量流的开关

15-对存储电容器充电以产生相反的能量流的开关

16-用于对激活的电容器预充电的高阻开关

17-为存储电容器预充电的电阻

17a-为存储电容器预充电的电阻(用于分压器)

18-用于平衡dc链路电容器的电阻

19-允许存储电容器的串联连接的附加开关

20-串联连接的存储电容器组

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1