操控方法和切换装置与流程

文档序号:17815808发布日期:2019-06-05 21:39阅读:208来源:国知局
操控方法和切换装置与流程

本发明涉及一种用于在混合动力车辆或电动车辆中作为驱动器的外部激励同步电机的操控方法和切换装置。



背景技术:

在已知的上述类型的驱动器中,对于外部激励同步电机(简称ssm)来说,其ssm转子具有滑环用于电流供应并且通过碳刷接触并且被提供电能,通过不对称全桥或h型线路的操控是常见的,参见图3a。设置在桥接支路中的ssm转子的根据希望的ssm马达转速或功率经脉冲宽度调制的操控通常在例如构造成igbt的两个开关t1和t2中的一个开关上进行,而另一个开关持续地保持接入或者说接通。相应第二开关仅被用于ssm转子的快速去激励。

在正常的电流调节运行中,在利用例如10khz频率的脉冲宽度调制或者说pwm中在状态“激励(ex)”与“短路(sc)”之间来回切换,如接下来还将对图3b的图进行描述。在此,根据所需电流强度提高或相应地降低每个周期切换状态“激励(ex)”的时间份额。由于在短路(sc)中通过ssm转子的电流仅非常缓慢地变化,可实现总体上非常好的调节,该调节根据电源电压以及希望的电流利用所述调节宽范围的可能的占空比。

然而,所述类型的不对称操控的缺点是原则上在每个ssm中存在的寄生电容的转载。所述转载过程导致高频干扰电流,该高频干扰电流能够从ssm的转子经由马达轴并且经由直流电或dc接口通过功率电子装置扩散到车辆车载电网中并且通过变速器扩散。所述现象可能导致高的轴承电流,所述轴承电流可能由电腐蚀轴承损坏引起。高频干扰电流还导致在电磁兼容性方面的问题,简称emv或者说emv干扰。在后一种结果中,上述影响可能导致不能满足emv极限值。使用已知的emv滤波器仅可以减轻所述影响。

替代地,当两个开关t1、t2始终同时被接通和断开时,不对称全桥也可以对称地运行,这等同于在激励(ex)的ssm运行状态与ssm的空载(fw)之间的变换,对此也参见图4a的图。在此,在ssm转子区域中的寄生电容反向地转换极性。因此,所述干扰电流基本上抵消接地电位。然而,通过调节转子电流非常强的波度来换取所述积极影响,因为在空载(fw)的状态下电流现在相对强地减小,以便在接着的周期中再次必须通过较长的激励或ex脉冲得到补偿。结果是占空比总体上增加,以便能够施加总共相同的平均转子电流。通过所述电影响,外部激励同步电机的声学发射或电动产生的运行噪声明显增大并且驱动力矩的调节质量由于磁通量中的波度而明显降低。



技术实现要素:

本发明的任务在于,提供一种操控方法以及一种相应的切换装置,通过其明显减少上述emv问题。

按照本发明,所述任务通过具有相应独立权利要求的特征的一种方法和一种切换装置来解决。

因而,按照本发明规定使用新的短路支路,该短路支路并联于桥接支路连接,如接下来也借助图2a描述的那样。因此,按照本发明的装置构造成不对称全桥,在该不对称全桥中ssm转子设置在桥接支路中,其中,与桥接支路并行地设置有短路支路。

本发明有利的扩展方案是相应从属权利要求的主题。因而,所述开关t1和t2同步地被切换。因此实现,在ssm的转子绕组与转子轴之间的寄生电容的影响基本上电补偿。

在本发明的一种扩展方案中,在该短路支路中使用二极管,以便该短路支路仅沿一个方向可通过地作用并且沿相反方向截止,下文又参见图2b。因此,确保即使t1和t2断开,仍保持通过ssm的转子的持续电流流通。此外,特别优选的是,在该短路支路中代替仅用一个二极管也仅使用一个开关,该短路支路本身通过该开关被接通和切断。在此,在该短路支路中使用晶体管或晶闸管作为可切换的半导体元件。在另一种实施形式中,在该短路支路中也仅使用以上述半导体构件为形式的开关。接下来借助各实施例的描述还将详细讨论上述实施形式的相应特性。

附图说明

接下来,参考各实施例借助附图详细阐述按照本发明的实施方式的其它特征和优点。附图中以示意性示图示出:

图1示出在混合动力车辆或电动车辆中通过高压电网操控行驶马达的电能量供应的方框电路图;

图2a-2c示出根据三个实施例的用于操控行驶马达的不对称全桥的等效电路;

图3a和3b示出在运行模式“激励”和“短路”中用于操控行驶马达的不对称全桥的等效电路;

图3c示出根据图3a和3b的模式的相应地在运行模式“短路”中随后有缓慢激励的电流和电压变化过程的曲线;

图4a示出在运行模式“快速去激励(fw)”中用于操控行驶马达的不对称全桥的等效电路;

图4b示出根据在图3a和3b的模式的用于运行模式“短路”和“空载”以及它们之间的过渡以及随后的“快速去激励”的电流和电压变化过程的曲线;

图5a和5b示出根据图3a和3b的运行模式的扩展为寄生效应的两个等效电路,并且

图6a-6c示出根据图3a接下来在用于操控行驶马达的不对称全桥的线路变型方案中电压和电流的时间变化曲线。

具体实施方式

在不同的图上相同的附图标记始终被用于相同的元件。在此,非限制性地、接下来仅考虑在由蓄电池或高压存储器供应电能量的车辆中的使用。

图1示出在由现有技术已知的混合动力车辆或电动车辆1中电能量供应的基本结构的方框线路图。在这里,在粗略简化的示图中,电池或者说蓄电池2经由高压电势v+、v-或者说在高压逆变器3上相应的接口并且经由所述高压逆变器与电驱动马达4或发电机连接。快速地示出蓄电池2作为一般能量供应商以及例如通过再利用获得制动能的存储器的作用,而高压逆变器3的作用明显更复杂。高压逆变器3不仅仅是一个在蓄电池2与电动机/发电机单元4之间的连接构件。高压逆变器3的任务是多样化的,特别是因为高压逆变器必须在各运行模式下正确地操控电动机/发电机单元4并且必须根据系统的不同要求分配和监控整个车辆中的电能。此外,在使用电流激励式同步电机ssm的情况下必须通过高压逆变器3也提供励磁电流i_exc在电压uh时用于同步电机smm的转子,所述励磁电流通过在高压逆变器3的区域中的桥接电路5提供。与其分开地,电动机/发电机单元4的定子也通过高压逆变器3经由供应线路w提供相应处理的电能。

电动机/发电机单元4的转子或同步电机ssm的转子接下来示出电感l。所述电感l设置在实施成不对称全桥或h型电路的桥接电路5的桥接支路6中,尤其是参见图3a。对于在桥接支路6中呈点对称的电感l,在不对称全桥5的相应两个支路中分别设置有一个开关t1或t2以及一个二极管d1或d2。

在激励转子以便驱动在未进一步示出的机座上具有旋转场的同步电机ssm时,通过在此实施成晶体管的半导体开关t1和t2,转子的具有电感l的励磁绕组被置于电压下。控制电压us1、us2为此处于高的电平hi上。因此,提高了励磁电流i_exc。在正常的电流调节运行中,以例如10khz的pwm频率在运行模式ex与sc之间来回切换。根据所需电流强度,每个周期的ex时间份额提高或降低。

对励磁电流i_exc的调节以存在的电压uh的脉冲宽度调制pwm的形式进行。在开关t1的需要用于调节一确定的励磁电流i_exc的pwm停顿中,开关t2保持接通。对此,控制电压us2保持在高电平hi上,而控制电压us1被置于低电平lo上。励磁绕组在所述情况下短路,参见图3b。励磁电流i_exc可以通过d1进一步流动,其中,通过励磁绕组的或转子的内阻的励磁电流“稍微”减小。因此,在短时间的pwm停顿时得出所存在的电压u以及励磁电流i_exc的时间变化曲线,如在图3c的左半部中示出用于50%的脉冲宽度调制程度的去激励。在根据图3b短路或者说sc持续较长时,根据图3c右半部的励磁电流i_exc的曲线变化过程随着励磁电流i_exc非常缓慢的衰减而调节。

因此,根据所需电流强度i_exc,每个周期的激励ex运行状态的时间份额提高或降低。由于在短路sc中励磁电流i_exc仅非常缓慢地变化,可实现总体上非常好的调节,该调节根据电源电压以及所希望的电流而利用存在的电压u的脉冲宽度调制pwm的宽范围的占空比。

所述“不对称操控”的缺点是寄生电容的转载,在此在等效电路中示出为相对于同步电机ssm转子轭的cp1和cp2。图5a和5b的图示出对于运行模式“激励ex”和“短路sc”的图3a和3b的图的相应的扩展方案。通过所述寄生电容cp1和cp2调节的位移电流导致高频emv干扰电流,该高频emv干扰电流可以通过转子轴和变速器、而且通过经由功率电子装置的dc接口的传播来传播。此外,两种影响可能导致不能满足emv极限值和/或例如在转子的轴承中出现电子腐蚀。已知的emv保护电路和hf滤波器仅可减少所述影响、但原则上不能消除所述影响。

而如果两个开关t1、t2从根据图3a的激励ex被打开,与此对应地晶体管t1和t2被断开,则切换所谓的空载fw,参见图4a。在此,ssm转子的励磁绕组通过二极管d1和d2明显比在短路情况下更快地放电,相比于此参见具有图3b的等效电路图连同图3c的右半部。在所述情况下,ssm转子或l的能量在高压逆变器中被放电或去激励,参见图4b。当然在转换时区别于根据图3b的情况,励磁电压在电流流动不变的情况下极性反转到电源电压数值相同的相反的极性上,参见在图4b中虚线划圈的区域。由此,随后电流在反馈到高压车载网络中的情况下在明显较短的时间内降低直到转子无电流。

图6a示出根据图3c或4b的左半部的ex切换过程的时间放大示图。图6b进一步示出在相应的寄生电容cp1和cp2上的位移电流icp1和icp2的变化过程。在图6a的假定不对称操控桥5或不对称操纵开关t1、t2时,尤其是寄生电容cp1的转载是不利的。图6b的曲线变化概观以两个位移电流icp1和icp2示出,转载电流的所述寄生效应甚至还相长地叠加并且因此增强干扰效应。

替代地,所述不对称全桥5可以对称地被操控和运行。为此,两个开关t1、t2始终同时被接通和断开。因此,在运行模式“激励ex”与“空载fw”之间进行变换。在此,寄生电容cp1和cp2现在极性相反地加载或者说反向地极性化。这样得出的叠加与图6b的示图相反不再是相长的或增强的,而是相消的。在相应寄生电容cp1和cp2上的两个位移电流icp1和icp2之和因此非常明显地消减。当cp1和cp2具有相同的值时,向着接地部的两个位移电流icp1和icp2基本上抵消。然而,在根据图6c的解决方案中得出转子电流的更明显的波度,因为在空载状态中通过转子的电流明更显著地减少,以便在其之后的周期中再次通过较长的励磁电流ex得到补偿。因此,所述占空比总体上明显增加,以便能够施加总共与之前相同的转子电流。因此,通过在绕组和中间电路之间来回摆动的无功功率,电路和转子的声放射作为环境噪声污染也明显增加。

接下来,借助在图2a和2b的图中示出的实施例阐明按照本发明的解决方案。这两个图示出不对称全桥5的等效电路,所述不对称全桥用于操控仅通过转子的电感l代表的行驶马达4。在此,通过添加无电位短路路径或并联于桥接支路6的支路7提供新的可行性,以便在运行模式“激励ex”与修改的“短路sc2”之间来回切换或变换。在图2a中示出的状态下,t3应持续地接通,因为转子应快速被去激励。

在激励阶段ex期间,开关t1和t2导电地接通,并且短路支路7由于二极管d3截止而被断开。在新提出的短路运行状态sc2期间,开关t1和t2都断开。在此,二极管d3和开关t3承担持续通过转子绕组的电感l继续流动的电流i_exc。

图2b示出图2a的实施形式的一种替代方案。在此,按照本发明切换电路在没有晶体管t3的情况下运行。此外,省去在桥接支路中的空载二极管d1和d2。因此,在所述实施例中相同地在多个位置上节省耐高电流的半导体构件。但在此的缺点是不可能快速地去激励(fw),参见图4b。

替代地,在没有其它绘制的示图的情况下晶闸管(scr)可以承担所述功能。因此,相对于最先提到的通过省略二极管d3的解决方案节省适合于高电流和高电压的构件。晶闸管借助激发变换器被接通。在断路-转换过程(ausschalt-kommutierungsvorgang)期间,转子电流从空载fw振荡到晶体管t1、t2上,并且因此晶闸管低于其保持电流并且自动截止。对于所述电路来说强制需要的是缓冲网络或者说阻尼网络。

代替晶闸管也可以使用igbt。所述igbt因此必须主动被接通和断开。这是有利的,因为相对于晶闸管可以使用与用于t1和t2相同的栅极操控和相同的构件类型。当然,缺点是现在需要的停滞时间监控,其中,t1和t2必须在t3接通之前断开,反之亦然。

为此,开关t3作为igbt或mos-fet在电路中由晶闸管替换。晶闸管相对于晶体管的大缺点在于,晶闸管每次必须重新被激发,因为晶闸管在将空载fw转换到激励ex时以因此存在的较高的供应直流电压hvdc或hv±下降低于保持电流并且因此截止。而根据图2a的igbt或mos-fet解决方案仅每周期被接通一次并且保持接通只要直到需要快速放电或直到场激励被关断。

附图标记列表

1电动车辆

2蓄电池/hv存储器

3高压逆变器

4电驱动马达/外部激励同步电机ssm

5不对称全桥

6桥接支路

7短路支路

a不同步地切换所述开关t1、t2

di二极管,i=1、2、3

ex激励

fw空载

hi高信号电平

uh在外部激励同步电机ssm的转子上的高压电势

hv±高电压

i_exc用于ssm转子的励磁电流作为用于外部激励同步电机ssm的调节变量

cp1转子相对于ssm的转子轭的寄生电容

cp2转子相对于ssm的转子轭的寄生电容

icp1、icp2在相应寄生电容cp1、cp2上的位移电流

l同步电机ssm的转子的电感

lo低信号电平

s同步地切换所述开关t1、t2

sc短路

ssm电流激励式同步电机

ti开关/晶体管,i=1、2、3

usi开关ti上的控制电压,i=1、2、3

v蓄电池/hv存储器相对于hv逆变器3的电势

w从hv逆变器3到电动机/发电机单元4的供应线路

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1