可调滤波器及便携电话的制作方法

文档序号:7508526阅读:161来源:国知局
专利名称:可调滤波器及便携电话的制作方法
技术领域
本发明涉及具有可变电容器的可调滤波器,其中可变电容器的电容由薄膜压电致动器(thin-film piezoelectric actuator)和电感元件可变地控制。
背景技术
在无线通信领域中,存在实现可连续和自由改变通带及阻带的可调滤波器的强烈要求。例如,可调滤波器所需的特性是大频带变化宽度,连续频带变化,小插入损耗及作为滤波器的陡峭屏蔽特性(precipitous shielding characteristic)(即,高Q特性),紧凑和轻便,以及高可靠性和极好可还原性。然而,当前可以实现的滤波器只具有非常有限的性能。
滤波器是主要具有电感元件和电容器组合的电路。当电感元件的电感或电容器的电容被改变时,可实现可调滤波器。
电感元件的电感由传送路径的长度和形状及空间磁导率确定。实际使用这样的可变电感器,其通过在利用低Q电感元件的线圈的中心放置和取出铁磁体心来改变磁导率。然而,利用在便携电话等等的数百兆赫或更高的高频频带中使用的高Q电感元件,获得大可变电感的尝试未被了解。
另一方面,电容器的电容由一对相对电极的面积和间隔,以及空间磁导率确定。诸如钛酸钡和锆钛酸铅的铁电物质具有这样的特性,即当直流偏压被施加于这个铁电物质时,其介电常数最多改变若干倍。因此,使用这些铁电物质可以构成可变电容器。然而,铁电物质普遍地具有较大介电损耗并且具有低Q。
当电极之间的距离可变时,能够配置可变电容器,因此,可以使用诸如马达的电磁驱动装置。然而,这样的响应慢并且尺寸大。因此,电磁驱动装置不适用于诸如蜂窝电话的移动无线终端。
近来,使用静电驱动型MEMS(微机电系统)的可变电容器引起注意。例如,介绍了把环形线圈(troidal coil)和许多静电驱动型可变电容器连接在一起的可调滤波器的试验例(参见2003 IEEE MicrowaveTheory and Technique Symposium Digest p.1781)。
然而,静电驱动型可变电容器在操作中存在称作引入(pull-in)的现象。当电容在开关操作中按大约2位(digit)的量级改变时,电容不利地在1.5倍范围内连续改变。因此,当静电驱动型可变电容器被应用于可调滤波器时,尽管能够大比例地数字切换频带,然而难以实现大比例连续改变频带的最期望特性。

发明内容
本发明提供一种可调滤波器,其能够在宽频率范围改变通带,能够连续改变通带,具有小插入损耗,具有陡峭屏蔽特性,能够以小型化,并且具有极好的可靠性及可还原性。
根据本发明的一个实施例,可调滤波器包括多个可变电容器及多个电感元件,均在公共基底上形成;滤波电路,通过使用至少一部分所述多个可变电容器及一部分所述多个电感元件构成;监视电路,通过使用至少一部分所述多个可变电容器及一部分所述多个电感元件构成;检测电路,检测所述监视电路的指定电路常数;存储器,存储涉及所述监视电路的参考电路常数的信息;以及电容控制电路,根据由所述检测电路检测的结果以及存储在所述存储器中的信息,控制所述监视电路中所述可变电容器的电容及所述滤波电路中所述可变电容器的电容。
根据本发明的一个实施例,便携电话包括
天线,用于发送和接收相位调制的无线信号;接收器,用于接收所述天线所接收的接收信号;以及发送器,用于发送所述天线所发送的发送信号,其中所述接收器包含高频放大器,用于放大相位调制的接收信号;以及可调滤波器,在所述高频放大器的前级或后级提供,并且提取指定频率分量中的接收信号,所述可调滤波器具有多个可变电容器及多个电感元件,均在相同基底上形成;滤波电路,通过使用至少一部分所述多个可变电容器及一部分所述多个电感元件构成;监视电路,通过使用至少一部分所述多个可变电容器及一部分所述多个电感元件构成;检测电路,检测所述监视电路的指定电路常数;存储器,存储涉及所述监视电路的参考电路常数的信息;以及电容控制电路,根据由所述检测电路检测的结果以及存储在所述存储器中的信息,控制所述监视电路中所述可变电容器的电容及所述滤波电路中所述可变电容器的电容。


图1是基于本发明的第一实施例的可调滤波器的等价电路图。
图2是在图1显示的可调滤波器中使用的可变电容器7和9的顶视图。
图3是沿图2中的A-A′切线分割的可变电容器的剖面图。
图4图解说明了施加到薄膜压电致动器35和36的驱动电压及可变电容器7和9的电容之间的关系。
图5是薄膜体声谐振器(thin-film bulk acoustic resonator)8的剖面结构图。
图6是说明薄膜体声谐振器8的阻抗特性的图。
图7是说明薄膜体声谐振器8的相位特性的图。
图8是说明图1示出的可调滤波器的操作原理的图。
图9是说明图1中所示出的可调滤波器的通过特性(passagecharacteristics)的图。
图10是基于第二实施例的滤波器主体11的电路图。
图11是说明使用图10中所示出的滤波器主体11的可调滤波器的通过特性的图。
图12是基于第三实施例的滤波器主体11的电路图。
图13是说明使用图12中所示出的滤波器主体11的可调滤波器的通过特性的图。
图14是基于本发明的第四实施例的可调滤波器的等价电路图。
图15A及15B是解释图14所示可调滤波器的操作原理的图。
图16是基于本发明的第五实施例的可调滤波器的等价电路图。
图17A及17B是解释图16所示可调滤波器的操作原理的图。
图18是基于本发明的第六实施例的可调滤波器的等价电路图。
图19是基于本发明的第七实施例的可调滤波器的等价电路图。
图20图解说明了一个致动器121被用于在多个谐振器内驱动可变电容器的状态的例子。
图21是说明表面声波元件(surface acoustic wave element)的一个例子的顶视图。
图22是沿A-A切线分割图21示出的表面声波元件的剖面图。
图23图解说明了由串联连接的可变电容器和薄膜体声谐振器及与它们并联连接的可变电容器构成的谐振器的例子。
图24的模块图说明了引入基于上述实施例的可调滤波器的便携电话的示意结构的一个例子。
具体实施例方式
此后,参照附图更具体地描述本发明的实施例。
(第一实施例)图1是基于本发明的第一实施例的可调滤波器的等价电路图。图1所示的可调滤波器包含滤波器主体11及控制滤波器主体11的控制电路12。
滤波器主体11是梯状滤波器(ladder filter),包含具有2个串联连接的谐振单元1和2的串联谐振单元3,和分别连接到谐振单元1和2的一端和输入/输出公共端之间的并联谐振单元4和5。每个谐振单元1,2,4和5具有并联连接的可变电容器7和薄膜压电谐振器,即薄膜体声谐振器(FBAR)8,以及与它们串联连接的可变电容器9。串联谐振单元3内的薄膜体声谐振器8的上电极和并联谐振单元6内的薄膜体声谐振器8的上电极相互具有厚度。基于此,串联谐振单元3的谐振频率和并联谐振单元6的谐振频率彼此略微不同。以后描述可变电容器7和9以及薄膜体声谐振器8的结构。
控制电路12包含以第一振荡频率振荡的第一压控振荡器(VCO1)13,以第二振荡频率振荡的第二压控振荡器(VCO2)14,产生参考频率信号的温度补偿晶体振荡器(TCXO)15,控制第一压控振荡器13的振荡频率的PLL(锁相环)电路(PLL1)16,控制可调滤波器内一部分可变电容器的电容的电压施加电路17,控制第二压控振荡器14的振荡频率的PLL电路(PLL2)18,控制可调滤波器内其它部分可变电容器的电容的电压施加电路19,基带电路20,以及存储第一和第二压控振荡器13和14的参考频率的存储电路21。第一压控振荡器13和第二压控振荡器14构成监视电路。
图2是在图1显示的可调滤波器中使用的可变电容器7和9的顶视图。图3是沿图2中的A-A′切线分割的可变电容器的剖面图。如这些图所示,每个可变电容器7和9具有在硅质基底31上形成的固定电极32,在固定电极32上表面形成的电介质薄膜33,以及在电介质薄膜33上方相对布置的可变电极34。
双压电晶片型薄膜压电致动器35和36在可变电极34的左和右侧形成。每个薄膜压电致动器35和36具有经由固定器(anchor)37在硅质基底31上形成的第一电极38,在第一电极38的上表面上形成的压电薄膜39,在压电薄膜39上形成的第二电极40,以及在第二电极40的上表面上形成的支梁(support beam)41。
当电压被施加到第一电极38和第二电极40之间时,发生双压电晶片操作以移动致动器35和36。当可变电极34和电介质薄膜33彼此产生接触时,获得最大电容。当可变电极34距离电介质薄膜33最远时,获得最小电容。在固定电极32的上表面上形成的电介质薄膜33阻止在固定电极32和可变电极34之间出现短路。
图4图解说明了施加到薄膜压电致动器35和36的驱动电压及可变电容器7和9的电容之间的关系。电极之间距离与所施加电压成比例变化。电容与电极之间距离成反比变化。电容能够按照大约2个位的量级连续变化。当电极具有较大薄膜厚度以具有较低直流电阻时,Q也变得非常大。
通过考虑电阻,薄膜压电致动器35和36的第一电极38和第二电极40,以及可变电容器7和9的可变电极34和固定电极32可以分别具有10纳米到1微米范围内的厚度。基于本实施例,假设这些电极分别具有50纳米的厚度。通过考虑位移(displacement),压电薄膜39可以具有10纳米到1微米范围内的厚度。基于本实施例,假设压电薄膜39具有500纳米的厚度。假设电介质薄膜33具有50纳米厚度,并且假设可变电容器7和9的等价区域为6400微米。
通过在0到3伏范围内改变施加到薄膜压电致动器35和36的控制电压Vtune,测量可变电容器7和9的电容。结果,最小电容是34pF并且最大电容是286pF,这说明8.4倍的较大变化。
图5是薄膜体声谐振器8的剖面结构图。图5示出的薄膜体声谐振器8包含经由固定器52在硅质基底51上形成的下电极53,覆盖下电极53周围的压电单元54,以及在压电单元54的上表面上形成的上电极55。沿轴C指示的取向生长的氮化铝薄膜被用于压电单元54。铝被分别用于上电极55和下电极53。包含下电极53,压电单元54和上电极55的谐振器56通过固定器52被固定到基底上。
当交流电被施加到上电极55和下电极53之间时,由于压电逆效应,交变应力出现,从而以厚度垂直模式激励弹性波的谐振。压电单元54的薄膜厚度基本上对应于谐振频率的半波。
图6是说明薄膜体声谐振器8的阻抗特性的图。图7是说明薄膜体声谐振器8的相位特性的图。阻抗在谐振点Fr变得最小,并且阻抗在反谐振点Fa变得最大。电感器可以在Fr和Fa之间具有非常高的Q。
当氮化铝或氧化锌的取向薄膜被用于压电单元54时,Fr和Fa之间的距离可以占百分之5到6。因此,可以构造具有相对宽的频带的滤波器。
通过图3和图5之间的比较可以明白,用薄膜压电致动器35和36驱动的可变电容器7和9和薄膜体声谐振器8具有非常类似的结构。因此,这些单元可以在普通制造工艺中制造。当它们被挖空密封时,可以获得更大好处。特别当在相同基底上制备多个单元时,单元之间的差异可以降低,这利于改进滤波器的性能。
基于本实施例,为了获得2GHz的谐振频率,压电单元54具有1100纳米的薄膜厚度,下电极53具有100纳米的薄膜厚度,以及上电极55具有150纳米的薄膜厚度。
图1示出的第一压控振荡器13具有并联连接的储能电路61和放大器62。第二压控振荡器14具有并联连接的储能电路63和放大器64。储能电路61具有串联连接的薄膜体声谐振单元65和可变电容器66。储能电路63也具有串联连接的薄膜体声谐振单元67和可变电容器68。储能电路61和63内的薄膜体声谐振器65和67具有类似于图5示出的结构。可变电容器66和68具有类似于图3示出的结构。
电压施加电路17控制第一压控振荡器13内可变电容器的电容,并且控制串联谐振单元3内可变电容器9的电容以及并联谐振单元6内可变电容器9的电容。
电压施加电路19控制第二压控振荡器14内可变电容器68的电容,并且控制串联谐振单元3内可变电容器7的电容以及并联谐振单元6内可变电容器7的电容。
图8是解释图1所示可调滤波器的操作原理的图。通过从电压施加电路17输出的控制电压V1确定第一压控振荡器13的振荡频率。通过从电压施加电路19输出的控制电压V2确定第二压控振荡器14的振荡频率。
存储电路21存储涉及第一压控振荡器13和第二压控振荡器的振荡频率的信息,使得在制造可调滤波器时获得对于选择专用于通信系统的信道而言最优的频带通过特性。基带电路20读取这个信息,并且控制PLL电路16和18,从而精确控制第一压控振荡器13和第二压控振荡器14的振荡频率。
通过从电压施加电路17和19分别输出的控制电压V1和V2确定梯状滤波器(即,滤波器主体)11的通过特性中的中心频率和带宽。更具体地如图8所示,通过从电压施加电路19输出的控制电压V2确定滤波器的中心频率,并且通过从电压施加电路17输出的控制电压V1确定滤波器的带宽。
图9是说明图1中所示出的可调滤波器的通过特性的图。如图9所示,当通过电压施加电路17和19施加的电压在0到3伏范围内变化时,中心频率在2.95兆赫到3.08兆赫范围内变化,从而获得百分之51的大频率变化范围。同时,可以获得非常陡峭的屏蔽特性。
如上所述,基于第一实施例,通信期间连续执行反馈控制,其中根据作为监视电路的第一和第二压控振荡器13和14内的振荡频率控制滤波器主体11内可变电容器7和9的电容。使用这个方案,不受设备温度上升导致的频率漂移的影响地获得稳定滤波器特性。
虽然在图1中使用包含第一和第二压控振荡器13和14的监视电路,然而监视电路的结构不限于此。通过使用这类监视电路,操作期间可变电容器的电容被精确测量。此外,与电感元件组合的谐振电路的谐振频率被精确监视。基于监视谐振频率的结果计算电容,并且电容被反馈到驱动可变电容器的电压施加电路17和19。结果,包括可变电容器7和9和薄膜体声谐振器8的滤波电路的特性可以被精确控制。
(第二实施例)除了滤波器主体11的电路结构不同外,基于第二实施例的可调滤波器与基于第一实施例的可调滤波器相同。因此,此后主要解释差异。
图10是基于第二实施例的滤波器主体11的电路图。图10示出的滤波器主体11包含串联连接的2个电容器71和72,和具有分别连接在电容器71和72的一端和输入/输出公共端之间的2个谐振单元73和74的并联谐振单元75。每个谐振单元73和74具有并联连接的薄膜体声谐振器8和可变电容器7,以及与它们串联连接的可变电容器9,这类似图1所示的谐振器。构成并联谐振单元6的谐振器的数量没有特别限于2个。
图11是说明使用图10中所示出的滤波器主体11的可调滤波器的通过特性的图解。图11说明了当从图1所示的电压施加电路17和19输出的施加电压变化时通过特性的变化。
从图1和图10之间的比较可以明白,图10示出的滤波器主体11的单元数量小于图1所示滤波器主体的单元数量。因此,形成单元的面积可以被降低,并且通过带宽变成图9中通过带宽的一半。此外,当可变电容器7和9的电容变化时,滤波器阻抗的总变化较小。另一方面,衰减特性比图9中的衰减特性缓和。在除了通过频带之外的区域的屏蔽特性在低频侧和高频侧之间是不同的。
如上所述,基于第二实施例,滤波器主体11可以更小。
(第三实施例)除了滤波器主体11的电路结构不同外,基于第三实施例的可调滤波器与基于第一实施例的可调滤波器相同。因此,主要解释差异。
图12是基于第三实施例的滤波器主体11的电路图。图12示出的滤波器主体11具有由桥接的4个谐振器76构成的网格滤波器。每个谐振单元76具有并联连接的薄膜体声谐振器8和可变电容器7,以及与它们串联连接的可变电容器9,这类似于图1所示的谐振器。
在图12示出的4个谐振器76中,包含在一个对角线方向上的2个谐振器中的薄膜体声谐振器8,和包含在另一个对角线方向上的2个谐振器中的薄膜体声谐振器8在其上电极55具有互不相同的厚度。因此,一个对角线方向上谐振器的谐振频率和另一个对角线方向上谐振器的谐振频率彼此相差预定水平。
图13是说明使用图12中所示出的滤波器主体11的可调滤波器的通过特性的图解。这个图解说明了当电压施加电路在控制电压为0到3伏范围内控制可变电容器7和9的电容时的通过特性。中心频率在2.98兆赫到3.12兆赫的范围内变化,从而获得百分之5.2的大频率变化范围。同时,可以获得非常大的带外衰减特性。
如上所述,当网格滤波器由多个谐振器构成时,可以基于第一实施例以类似方式获得较大可变频率范围。
(第四实施例)基于第四实施例,控制电路12的电路结构不同于基于第一实施例的电路结构。
图14是基于本发明第四实施例的可调滤波器的等价电路图。图14示出的可调滤波器具有控制电路12,其中控制电路12具有不同于图1所示的电路结构。图14示出的控制电路12具有构成压控振荡器的监视电路81,温度补偿晶体振荡器15,电压施加电路17和19,基带电路20,存储电路21以及运算电路82。
监视电路81具有并联连接的放大器62和谐振单元83。谐振单元83具有并联连接的薄膜体声谐振器8和可变电容器7,以及与它们串联连接的可变电容器9,这类似于图1所示的谐振器。
电压施加电路17控制监视电路81内可变电容器的电容,滤波器主体11的串联谐振单元3内可变电容器9的电容,以及并联谐振单元6内可变电容器9的电容。电压施加电路19控制监视电路81内可变电容器7的电容,滤波器主体11的串联谐振单元3内可变电容器7的电容,以及并联谐振单元6内可变电容器7的电容。
图15A及15B是解释图14所示可调滤波器的操作原理的图解。如图15A所示,当电压施加电路17控制提供给监视电路81的控制电压V1时,监视电路81的振荡频率在Fr到Fa范围内变化。如图15B所示,通过从电压施加电路19输出的控制电压V2确定中心频率,并且通过从电压施加电路17输出的控制电压V1确定通过带宽。
存储电路21在制造时预先存储对应于频带通过特性的监视电路81的振荡频率,该频带通过特性对于选择特定于通信系统的信道而言是最优的。使用这个方案,与通信期间的期望通过特性相对应地,运算电路82可以精确控制监视电路81的振荡频率。在通信期间连续执行振荡频率的这个反馈控制。
如上所述,基于第四实施例,能够不受设备温度上升导致的频率漂移的影响地,以基于第一实施例的类似方式获得稳定滤波器特性。
(第五实施例)基于第五实施例,监视电路的电路结构不同于基于第四实施例的电路结构。
图16是基于本发明的第五实施例的可调滤波器的等价电路图。图16示出的可调滤波器的监视电路91具有不同于图14示出的监视电路81的电路结构。来自外部提供的压控振荡器的预定频率的振荡信号被输入图16示出的可调滤波器。
图16示出的监视电路91包含谐振器,其类似于图1所示的谐振器。每个谐振器具有并联连接的薄膜体声谐振器8和可变电容器7,以及与薄膜体声谐振器8和可变电容器7串联连接的可变电容器9。
电压施加电路17控制监视电路91内可变电容器9的电容,滤波器主体11的串联谐振单元3内可变电容器9的电容,以及并联谐振单元6内可变电容器9的电容。电压施加电路19控制监视电路91内可变电容器7的电容,滤波器主体11的串联谐振单元3内可变电容器7的电容,以及并联谐振单元6内可变电容器7的电容。
图17A及17B是解释图16所示可调滤波器的操作原理的图。如图所示,分别基于从电压施加电路17输出的控制电压V1和从电压施加电路19输出的控制电压V2控制监视电路91内可变电容器7和9的电容。结果,振荡频率变化,并且滤波器主体11的通过带宽和中心频率被控制。主要地,如图17B所示,基于控制电压V1控制滤波器主体11的中心频率,并且基于控制电压V2控制滤波器主体11的带宽。
在通信期间,电压施加电路间歇控制控制电压V1和V2。
如上所述,基于第五实施例,能够不受设备温度上升导致的频率漂移的影响地,以基于第一实施例的类似方式获得稳定滤波器特性。
(第六实施例)
基于第六实施例,滤波器主体11的可变电容器7和9及薄膜体声谐振器8被用作控制电路12的一部分。
图18是基于本发明的第六实施例的可调滤波器的等价电路图。图18示出的可调滤波器具有控制电路12,其中控制电路12的电路结构不同于图1所示的电路结构。
图18示出的控制电路12具有温度补偿晶体振荡器15,电压施加电路101,基带电路20,存储电路21,运算电路82,开关电路102,103和104,检测滤波电路11输出信号幅度的检测电路106,以及检测环境温度的温度检测器107。滤波器主体11的电路类似于图1所示电路。在调整滤波器特性时,外部压控振荡器92通过开关电路104向滤波器主体11输入具有预定频率的振荡信号。
作为监视电路81的一部分,开关电路103利用滤波器主体11的任何一个谐振器的可变电容器7和9,并且用于控制这些可变电容器7和9的电容。
当这些可变电容器被连接到开关电路102之前时,开关电路102未选择的可变电容器7和9保持所充的电荷。
在监视滤波器主体11的任何一个谐振器的可变电容器7和9时,切换开关电路103。
基于本实施例,当电源启动或在通信期间时,压控振荡器的输出通过开关电路104被间歇扫描输入到滤波器主体11。检测电路106检测滤波器主体11输出信号的幅度。基于检测电路106检测幅度的结果以及温度检测器107检测温度的结果,运算电路82控制可变电容器7和9的电容。更具体地,运算电路82控制可变电容器7和9的电容,使得滤波器主体11的输出信号的幅度最大。使用这个方案,能够不受设备温度上升导致的频率漂移的影响地,获得稳定滤波器特性。
如上所述,基于第六实施例,通过切换开关电路102至104,能够把滤波器主体11用作监视电路。结果,专用监视电路不必要,从而简化电路结构。
(第七实施例)基于第七实施例,监视电路的电路结构不同于基于前面实施例的电路结构。
图19是基于本发明的第七实施例的可调滤波器的等价电路图。图19示出的可调滤波器包含电压施加电路17和19,基带电路20,存储电路21,监视电路111和112,以及温度检测电路113。
每个监视电路111和112具有并联连接的可变电容器113和电容检测电路114。电容检测电路114测量并联连接的可变电容器7和9的电容,并且向运算电路82发送测量结果。
电压施加电路17控制监视电路111内可变电容器113的电容,滤波器主体11的串联谐振单元3内可变电容器9的电容,以及并联谐振单元6内可变电容器9的电容。电压施加电路19控制监视电路112内可变电容器113的电容,滤波器主体11的串联谐振单元3内可变电容器7的电容,以及并联谐振单元6内可变电容器7的电容。
此后解释图19示出的可调滤波器的操作原理。基于下列表达式(1)和(2)(使用薄膜体声谐振器8的谐振频率Fr和反谐振频率Fa,并联连接的可变电容器7的电容VC1,以及串联连接的可变电容器9的电容VC2)能够计算滤波器主体11中谐振器的谐振频率Fr′和反谐振频率Fa′。
fR=fR1+C1C0+VC1+VC2---(1)]]>fA=fR1+C1C0+VC1---(2)]]>当通过BVD模型等价电路表示薄膜体声谐振器8时,电容器C0和C1分别对应于等价电容和并联等价电容。
因此,当基于监视电路111和112内可变电容器113的测量电容控制滤波器主体11中每个谐振器的谐振频率和反谐振频率,以及每个谐振器内并联连接的可变电容器7和串联连接的可变电容器9的电容时,滤波电路的频带通过特性可以被设置成对于选择特定于通信系统的信道而言最优的值。
如上所述,基于第七实施例,可以简化监视电路111和112的结构。使用比基于第一实施例的电路简单的电路,能够不受设备温度上升导致的频率漂移的影响地获得稳定滤波器特性。
(第八实施例)基于第四,第五和第七实施例,当监视电路111和112内的可变电容器113和滤波器主体11内的可变电容器7和9向相应压电驱动致动器施加相同电压时,需要获得相同电容。此外,滤波器主体11内的谐振器中并联连接的可变电容器7或串联连接的可变电容器9需要表现出相同特性和相同响应。
基于半导体工艺在相同基底上形成的MEMS元件,即使当批次或晶片中间存在较大差异时,通常也能至少在相同晶片的窄区域内获得相同特性。因此,可以使用基于第四,第五和第七实施例的控制系统。
为了使谐振器能够通过接收来自电压施加电路的控制电压而具有相同电容,与单独向可变电容器提供致动器的方式不同,可以如图20所示共享一个致动器。
图20示出了一个致动器121被用于在多个谐振器内驱动可变电容器的情况的例子。使用这个方案,可以降低个体可变电容器的特性差异。
由一个电压施加电路提供控制电压的所有可变电容器的致动器可以被合成一个致动器。所有串联连接的谐振器3内可变电容器的致动器可以被合成一个致动器。所有并联连接的谐振器6内可变电容器的致动器可以被合成一个致动器。
如上所述,基于第八实施例,一个致动器被用于控制多个可变电容器的电容。因此,可变电容器7和9的特性可以得到安排。
(其它实施例)在上述实施例中,薄膜体声谐振器被用于电感元件。可选地,可以使用表面声波元件(即,SAW器件)。还可以使用包含普通波导和线圈的电感器。
图21是说明表面声波元件的一个例子的顶视图。图22是沿图21示出的A-A切线分割的表面声波元件的剖面图。如这些图所示,表面声波元件具有梳型电极132和在压电单晶基底131上形成的输入/输出电极133。
上述可变电容器的监视电路可以具有各种形式。例如,可以使用得用薄膜体声谐振器和可变电容器的压控振荡器,或可以使用具有串联或并联连接的薄膜体声谐振器和可变电容器的滤波器模块。可选地,可调滤波器自身可以被用于在操作期间实现监视。
由可变电容器和电感元件构造的滤波器主体具有诸如梯状型和网格型的不同类型。许多电路系统还可以被应用于监视电路。
在上述实施例中,谐振器使用并联连接的可变电容器7和薄膜体声谐振器8,以及与它们串联连接的可变电容器9。然而,谐振器的电路结构不限于此。例如,图23示出了由串联连接的可变电容器和薄膜体声谐振器,以及与它们并联连接的可变电容器构造的谐振器的例子。图23中示出的谐振器可以被用于图1所示的滤波器主体11等等,以及图14中示出的监视电路83。
在上面实施例中解释的可调滤波器被用于各种电气设备。因为基于本发明的可调滤波器在半导体基底上形成,所以设备可以较小。因此,可调滤波器可以被应用于诸如便携电话的各种便携设备。
图24的模块图说明了引入基于上述实施例的可调滤波器的便携电话的示意结构的一个例子。这个便携电话是直接转换型的。图24中示出的便携电话包含天线141,在发送和接收之间切换的有向耦合器142,发送器143,接收器144,以及基带处理器145。
接收器144包含上述可调滤波器146,低噪声放大器(LNA)147,解调LNA 147输出信号相位的相位解调器148,以及A/D转换相位调制信号的A/D转换器149。发送器143包含D/A转换基带处理器产生的发送信号的D/A转换器151,只提取D/A转换器151输出信号的预定频率分量的低通滤波器152,调制低通滤波器152输出相位的相位调制器153,以及调制相位调制信号幅度的幅度调制器154。
可调滤波器可以被连接到LNA的后级。
权利要求
1.一种可调滤波器,包括多个可变电容器及多个电感元件,均在公共基底上形成;滤波电路,通过使用至少一部分所述多个可变电容器及一部分所述多个电感元件而形成;监视电路,通过使用至少一部分所述多个可变电容器及一部分所述多个电感元件而形成;检测电路,其检测所述监视电路的指定电路常数;存储器,其存储涉及所述监视电路的参考电路常数的信息;以及电容控制电路,其根据由所述检测电路检测的结果以及存储在所述存储器中的信息,控制所述监视电路中所述可变电容器的电容及所述滤波电路中所述可变电容器的电容。
2.如权利要求1所述的可调滤波器,其中所述监视电路是压控振荡器;所述检测电路检测所述监视电路的振荡频率以作为指定电路常数;所述存储器存储涉及所述监视电路的参考振荡频率的信息;所述电容控制电路控制所述监视电路中所述可变电容器的电容和所述滤波电路中所述可变电容器的电容,使得所述监视电路以参考振荡频率振荡。
3.如权利要求1所述的可调滤波器,其中所述检测电路检测所述监视电路中所述可变电容器的电容以作为指定电路常数;所述存储器存储涉及所述监视电路的参考电容的信息;以及所述电容控制电路控制所述监视电路中所述可变电容器的电容以及所述滤波电路中所述可变电容器的电容,使得所述监视电路中所述可变电容器变成参考电容。
4.如权利要求1所述的可调滤波器,还包括薄膜压电致动器,其在所述基底上形成,并且可变控制对应可变电容器的电容,其中所述电容控制电路基于所述检测电路检测的结果以及存储在所述存储器中的信息,驱动所述薄膜压电致动器。
5.如权利要求4所述的可调滤波器,其中所述滤波电路中的至少一部分所述可变电容器和所述监视电路中的至少一部分所述可变电容器被相同薄膜压电致动器驱动。
6.如权利要求4所述的可调滤波器,其中所述滤波电路中的所述多个可变电容器被相同薄膜压电致动器驱动。
7.如权利要求1所述的可调滤波器,其中所述多个电感元件是薄膜压电谐振器或表面声波元件。
8.如权利要求1所述的可调滤波器,其中所述滤波电路包含串联谐振器,具有在输入端子和输出端子之间串联连接的一或多个谐振单元;以及并联谐振器,其被连接在串联连接的所述串联谐振器的输入部分和输出部分中的至少一个,和参考电压端之间,并且具有一或多个谐振单元,其中所述串联谐振器和所述并联谐振器中的所述谐振单元通过组合所述可变电容器和所述电感元件而形成。
9.如权利要求8所述的可调滤波器,其中所述串联谐振器中的所述谐振单元的谐振频率和所述串联谐振器中的所述谐振单元的谐振频率彼此相差指定的量。
10.如权利要求1所述的可调滤波器,其中所述监视电路具有以互不相同的振荡频率振荡的第一和第二压控振荡器;其中所述检测电路包含第一检测器,其检测所述第一压控振荡器的振荡频率;以及第二检测器,其检测所述第二压控振荡器的振荡频率,所述电容控制电路包含第一电压施加电路,其基于所述第一检测器检测的结果控制所述第一压控振荡器的振荡频率,并且控制所述滤波电路中所述可变电容器的电容;以及第二电压施加电路,其基于所述第二检测器检测的结果控制所述第二压控振荡器的振荡频率,并且控制所述滤波电路中所述可变电容器的电容。
11.如权利要求10所述的可调滤波器,其中所述滤波电路包含串联谐振器,具有在输入端子和输出端子之间串联连接的一或多个谐振单元;以及并联谐振器,其被连接在串联连接的所述串联谐振器的输入部分和输出部分中的至少一个,和参考电压端之间,并且具有一或多个谐振单元,其中所述第一和第二电压施加部分控制所述串联谐振器和所述并联谐振器中彼此不同的所述可变电容器的电容。
12.如权利要求1所述的可调滤波器,其中所述监视电路具有压控振荡器,该压控振荡器包含通过使用至少一部分所述多个可变电容器和至少一部分所述多个电感元件而形成的谐振单元;所述检测电路检测所述压控振荡器的振荡频率;以及所述电容控制电路包含第一电压施加部分,其基于所述检测电路检测的结果控制所述谐振单元中一部分所述可变电容器的电容;以及第二电压施加部分,其基于所述检测电路检测的结果控制所述谐振单元中至少另一部分所述可变电容器的电容。
13.如权利要求8所述的可调滤波器,其中所述串联谐振器和所述并联谐振器中的所述谐振单元具有并联连接的第一可变电容器和电感元件,以及与它们串联连接的第二可变电容器。
14.如权利要求8所述的可调滤波器,其中所述串联谐振器和所述并联谐振器中的所述谐振单元具有串联连接的第一可变电容器和电感元件,以及与它们并联连接的第二可变电容器。
15.如权利要求1所述的可调滤波器,其中所述滤波电路包含在输入端子和输出端子之间串联连接的多个电容器;以及多个谐振单元,其被连接在所述多个电容器的相应端子和参考电压端子之间,并且通过组合所述可变电容器和所述电感元件而形成。
16.如权利要求1所述的可调滤波器,其中通过以桥接形式连接经由组合所述可变电容器和所述电感元件而形成的多个谐振单元,形成所述滤波电路。
17.如权利要求1所述的可调滤波器,其中至少一部分所述多个可变电容器能够被用作所述滤波电路和所述监视电路,所述可调滤波器还包括开关电路,用于在使用所述可变电容器作为所述滤波电路,以及作为所述监视电路之间切换。
18.如权利要求17所述的可调滤波器,还包括振荡器,其在由所述开关电路使用所述可变电容器作为所述监视电路的情况下,向所述滤波电路输入具有指定频率的振荡信号,其中当振荡信号被输入到所述滤波电路时,所述检测电路检测通过所述滤波电路的信号的幅度;以及所述电容控制电路控制所述滤波电路中至少一部分所述可变电容器的电容,使得所述检测电路检测的幅度最大。
19.如权利要求18所述的可调滤波器,还包括检测温度的温度检测器,其中所述电容控制电路基于所述温度检测器检测的结果,控制所述滤波电路中至少一部分所述可变电容器的电容。
20.一种便携电话,包括天线,用于发送和接收相位调制的无线信号;接收器,用于接收所述天线所接收的接收信号;以及发送器,用于发送所述天线所发送的发送信号,其中所述接收器包含高频放大器,用于放大相位调制的接收信号;以及可调滤波器,其在所述高频放大器的前级或后级提供,并且提取指定频率分量中的接收信号,所述可调滤波器具有多个可变电容器及多个电感元件,均在相同基底上形成;滤波电路,通过使用至少一部分所述多个可变电容器及一部分所述多个电感元件而形成;监视电路,通过使用至少一部分所述多个可变电容器及一部分所述多个电感元件而形成;检测电路,其检测所述监视电路的指定电路常数;存储器,存储涉及所述监视电路的参考电路常数的信息;以及电容控制电路,其根据由所述检测电路检测的结果以及存储在所述存储器中的信息,控制所述监视电路中所述可变电容器的电容及所述滤波电路中所述可变电容器的电容。
全文摘要
可调滤波器具有均在公共基底上形成的多个可变电容器和多个电感元件,通过使用至少一部分多个可变电容器和一部分多个电感元件形成的滤波电路,通过使用至少一部分多个可变电容器和一部分多个电感元件形成的监视电路,检测电路用于检测监视电路的指定电路常数,存储器用于存储涉及监视电路的参考电路常数的信息,以及电容控制电路基于检测电路检测的结果以及存储器存储的信息控制监视电路中可变电容器的电容和滤波电路中可变电容器的电容。
文档编号H03H9/60GK1649265SQ200510006848
公开日2005年8月3日 申请日期2005年1月28日 优先权日2004年1月30日
发明者川久保隆, 尾原亮一, 阿部和秀, 吉田弘, 鹤见博史 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1