校准装置及校准方法与流程

文档序号:19791504发布日期:2020-01-24 14:21阅读:305来源:国知局
校准装置及校准方法与流程

本发明涉及通信系统,更具体地,涉及用于对发送器中功率放大器的特征进行校准的装置和方法。



背景技术:

高效率和高线性度是功率放大器(poweramplifier,pa)必不可少的要求。不幸的是,难以同时获得高效率和高线性度,因为高效率pa是非线性的而线性pa则可能具有低效率。为了满足效率和线性度要求,电路设计者可以在设计过程中优先考虑pa的效率,然后使用线性化技术来恢复线性度。在线性化技术中,数字预失真(digitalpre-distortion,dpd)由于其可以在线性度性能和实现复杂度之间提供良好的折衷,引起了最多的关注。

然而,由于电压驻波比(voltagestandingwaveratio,vswr)和工艺变化,pa特征可能超出dpd补偿范围。这样将会严重降低发送器的最大的可实现的输出功率。此外,如果用户不正确地操作dpd,则可能发生pa损坏。因此,需要一种pa的创新性校准设计,以便能够减轻vswr和工艺变化和/或避免pa损坏。



技术实现要素:

因此,本发明提供一种用于校准发送器中功率放大器的特征的装置和方法,以解决上述问题。

根据本发明的第一方面,公开了一种校准装置,用于校准发送器中功率放大器的特征。所述校准装置包括自适应偏置发生器电路,自适应偏置发生器电路被设置为跟踪功率放大器的输入晶体管的控制端子接收的输入信号的包络,并且响应于输入信号的包络产生自适应偏置电压至输入晶体管的所述控制端子。

根据本发明的第二方面,公开了一种校准方法,用于校准发送器中功率放大器的特征。示例性校准方法包括跟踪功率放大器的输入晶体管的控制端子所接收的输入信号的包络;以及响应于输入信号的包络,产生自适应偏置电压至输入晶体管的控制端子。

根据本发明能够补偿vswr和工艺变化,并且保持了发送器最大的可实现输出功率。

在阅读了在各个附图和附图中示出的优选实施例的以下详细描述之后,本发明的这些和其他目的无疑将对本领域普通技术人员变得显而易见。

附图说明

图1是示出根据本发明的实施例的通信系统的示意图。

图2是示出图1中所示的tx前端的示例性电路结构的示意图。

图3是示出图1/图2中所示的功率放大器的示例性电路结构的示意图。

图4是示出功率放大器的自适应偏置电压与功率放大器的输入信号的包络之间的正相关的示意图。

图5是示出根据本发明的实施例的第一自适应偏置发生器电路的示意图。

图6是示出功率放大器的自适应偏置电压与功率放大器的输入信号的包络之间的负相关的示意图。

图7是示出根据本发明的实施例的第二自适应偏置发生器电路的示意图。

图8是示出根据本发明的实施例的dc检测器电路的示意图。

图9是示出根据本发明的实施例的下变频器电路的示意图。

具体实施方式

在说明书及后续的权利要求书中使用了某些词汇来指称特定的组件。本领域一般技术人员应可理解,电子设备制造商可以会用不同的名词来称呼同一组件。本说明书及后续的权利要求并不以名称的差异来作为区别组件的方式,而是以组件在功能上的差异来作为区别的基准。在通篇说明书及后续的权利要求书中所提及的“包含”是开放式的用语,故应解释成“包含但不限定于”。此外,“耦接”一词在此是包含任何直接及间接的电气连接手段。因此,若文中描述第一装置电性连接于第二装置,则代表该第一装置可直接连接于该第二装置,或通过其他装置或连接手段间接地连接至该第二装置。

图1是示出根据本发明的实施例的通信系统的示意图。通信系统100包括发送器102,其接收基带信号s_bb并将基带信号s_bb转换为经由天线101进行无线电传输的射频(rf)信号s_rf。例如,发送器102可具有多个电路,包括预失真补偿器103、同相/正交(in-phase/quadrature,iq)失配和直流(directcurrent,dc)补偿器104、数模转换器(digital-to-analogconverter,dac)105、滤波器106和发送器(tx)前端107。tx前端107包括功率放大器(用“pa”表示)108、自适应偏置发生器(adaptivebiasgenerator)电路(用“adb”表示)109、上变频器(up-converter)电路(用“uc”表示)114、以及其他电路(未示出)。上变频器电路114用于执行从基带到rf的上变频。另外,在通信系统100中实现校准装置,用于校准发送器102中功率放大器108的特征。在该实施例中,校准装置可以具有多个电路,包括自适应偏置发生器电路109(其也是发送器102的一部分)、预失真引擎(engine)110、偏置控制器电路111、dc检测器电路112和下变频器电路113。

自适应偏置发生器电路109用于产生自适应偏置电压至功率放大器108。偏置控制器电路111用于产生偏置控制信号s1,用于控制自适应偏置发生器电路109提供的自适应偏置电压,并对功率放大器108设置固定的(constant)偏置电压。dc检测器电路112监测与功率放大器108的输出信号相关联的dc电平,产生表示该dc电平的反馈dc信号s_dc,并将反馈dc信号s_dc输出到偏置控制器电路111。下变频器电路113用于根据功率放大器的输出信号产生反馈基带信号s_bbfb,并将反馈基带信号s_bbfb输出到预失真引擎110。预失真补偿器103是数字预失真电路,用于补偿功率放大器108的非线性,并且预失真补偿器103由预失真引擎110产生的预失真控制信号s2控制。可以重新使用预失真引擎110的一些硬件组件,以产生质量指标信号(qualityindexsignal)s_q到偏置控制器电路111。参考附图描述了所提出的校准装置的进一步细节。

图2是示出图1中所示的tx前端107的示例性电路结构的示意图。tx前端107可以包括功率放大器驱动器(由“pad”表示)204、匹配网络206、以及前述功率放大器(由“pa”表示)108和上变频器电路114。施加到功率放大器108的自适应偏置电压208由自适应偏置发生器电路109自适应地调整,并且自适应偏置发生器电路109的配置由偏置控制器电路111控制。施加到功率放大器108的固定偏置电压210由偏置控制器电路111确定。

图3是示出图1/图2中所示的功率放大器108的示例性电路结构的示意图。在该示例中,功率放大器108由具有第一级和第二级的串接放大器(cascodeamplifier)实现,其中第一级包括一对输入晶体管m1和m2,第二级包括一对输出晶体管m3和m4。例如,输入晶体管m1和m2以及输出晶体管m3和m4是n沟道金属氧化物半导体场效应晶体管(nmos晶体管)。功率放大器驱动器(pad)204的输入信号pad_in通过由电感器l1和l2组成的变压器传送至功率放大器108的输入信号pa_in。电感器l2的中心抽头连接到自适应偏置电压(由“pa_vg1”表示208),使得相同的自适应偏置电压pa_vg1被施加到输入晶体管m1和m2的控制端子(例如,栅极端子)。

自适应偏置发生器电路109用于跟踪由输入晶体管m1和m2的控制端子(例如,栅极端子)接收的输入信号pa_in的包络,并且响应于输入信号pa_in的包络产生自适应偏置电压pa_vg1至输入晶体管m1和m2的控制端子(例如,栅极端子)。换句话说,根据输入信号pa_in的包络的变化,自适应地调整自适应偏置电压pa_vg1。

在一个示例性设计中,自适应偏置电压pa_vg1与输入信号pa_in的包络正相关,如图4所示。图4是示出功率放大器的自适应偏置电压与功率放大器的输入信号的包络之间的正相关的示意图。因此,当输入信号pa_in具有较大的包络时,自适应偏置电压pa_vg1具有较高的电压电平,当输入信号pa_in具有较小的包络时,自适应偏置电压pa_vg1具有较低的电压电平。图5是示出根据本发明的实施例的第一自适应偏置发生器电路的示意图。图3中所示的自适应偏置发生器电路109可以使用自适应偏置发生器电路500来实现,该自适应偏置发生器电路500被设计用于产生与输入信号pa_in的包络正相关的自适应偏置电压pa_vg1。

在另一示例性设计中,自适应偏置电压pa_vg1与输入信号pa_in的包络负相关,如图6中所示。图6是示出功率放大器的自适应偏置电压与功率放大器的输入信号的包络之间的负相关的示意图。因此,当输入信号pa_in具有较小的包络时,自适应偏置电压pa_vg1具有较高的电压电平,当输入信号pa_in具有较大的包络时,自适应偏置电压pa_vg1具有较低的电压电平。图7是示出根据本发明的实施例的第二自适应偏置发生器电路的示意图。图3中所示的自适应偏置发生器电路109可以使用自适应偏置发生器电路700来实现,该自适应偏置发生器电路700被设计用于生成与输入信号pa_in的包络负相关的自适应偏置电压pa_vg1。

应当注意,自适应偏置发生器电路109可以利用自适应偏置发生器电路500和700中其中之一来实现,这取决于实际的偏置考虑。由于自适应偏置电压pa_vg1被自适应地调整,因此自适应偏置发生器电路109能够补偿vswr和工艺变化。通过这种方式,pa特征可以在数字预失真补偿范围内,从而保持了发送器最大的可实现输出功率。

如图3所示,电感器l3耦接在输入晶体管m1和m2的第一连接端子(例如,漏极端子)之间,并且还耦接在输出晶体管m3和m4的第二连接端子(例如,源极端子)之间。另外,输入晶体管m1和m2的第二连接端子(例如,源极端子)耦接到接地电压avss_pa。功率放大器108的输出信号{dpd_lb+,dpd_lb-}是差分信号,并且通过具有两个电感器l4和l5的平衡-不平衡变换器(balancedtounbalanced)被转换为单端信号。电感器l5的一端耦接到天线101,电感器l5的另一端耦接到接地电压avss_balun。电感器l4耦接在输出晶体管m3和m4的第一连接端子(例如,漏极端子)之间,其中电感器l4的中心抽头连接到电源电压avdd_pa。另外,固定偏置电压(由“pa_vg2”表示)210是施加至输出晶体管m3和m4的控制端子(例如,栅极端子)的串接式栅极偏置(cascodegatebias)。

电感器l3的中心抽头提供与功率放大器108的输出信号{dpd_lb+,dpd_lb-}相关联的dc电平dc_lb(例如,串接(cascode)dc电平)。通过dc电平dc_lb和输出信号{dpd_lb+,dpd_lb-}可以监控固定偏置电压pa_vg2是否适当。图1/图2中所示的dc检测器电路112被设置为监测dc电平dc_lb并产生指示dc电平dc_lb的反馈dc信号s_dc。图8是示出根据本发明的实施例的dc检测器电路的示意图。图1/图2中所示的dc检测器电路112可以使用dc检测器电路800来实现。

dc检测器电路800包括滤波器(例如,低通滤波器)802和模数转换器(analog-to-digitalconverter,adc)804。dc电平dc_lb被馈送到滤波器802,adc804将滤波器802的模拟输出转换为作为数字信号的反馈dc信号s_dc。偏置控制器电路111监测反馈dc信号s_dc,以确定功率放大器108的饱和功率(saturatedpower)psat是否是最佳的。当功率放大器108的饱和功率psat不是最佳时,偏置控制器电路111可操作为校准提供给输出晶体管m3和m4的控制端子(例如,栅极端子)的固定偏置电压pa_vg2。

功率放大器108的输出信号{dpd_lb+,dpd_lb-}也可以用作反馈rf信号。因此,图1/图2中所示的下变频器电路113可以被设置为根据功率放大器108的输出信号{dpd_lb+,dpd_lb-}产生反馈基带信号s_bbfb。图9是示出根据本发明的实施例的下变频器电路的示意图。图1/图2中所示的下变频器电路113可以使用下变频器电路900来实现。下变频器电路900包括混频器(mixer)902、多个放大器904和906、滤波器(例如,低通滤波器)908和adc910。放大器904接收输出信号{dpd_lb+,dpd_lb-},并产生放大器输出至混频器902。混频器902将放大器904的放大器输出与本地振荡器(localoscillator,lo)信号s_lo混频,以产生混频器输出。放大器906接收混频器输出,并产生放大器输出至滤波器908。adc910被设置为将滤波器908产生的模拟基带信号转换为作为数字信号的反馈基带信号s_bbfb。

预失真引擎110是数字处理电路,其能够通过根据反馈基带信号s_bbfb估计am-am失真和/或am-pm失真来生成质量指标信号(qualityindexsignal)s_q。偏置控制器电路111被设置为根据质量指标信号s_q配置自适应偏置发生器电路109和/或校准固定偏置电压pa_vg2。例如,偏置控制器电路111根据质量指标信号s_q配置自适应偏置发生器电路109,以设置自适应偏置电压pa_vg1与输入信号pa_in的包络之间的映射关系。或者例如,偏置控制器电路111在质量指标信号s_q超过一定范围时,可校准固定偏置电压pa_vg2。

固定偏置电压pa_vg2支配dpd性能。在自适应偏置电压pa_vg1和固定偏置电压pa_vg2两者都需要校准的情况下,偏置控制器电路111可以首先调谐(tune)固定偏置电压pa_vg2,然后调谐自适应偏置电压pa_vg1。然而,这仅用于说明目的,并不意味着是对本发明的限制。

如上所述,如果用户不正确地操作数字预失真,则pa可能损坏。为了解决该问题,所提出的校准设备可以进一步支持pa损坏保护功能。例如,预失真引擎110进一步被设置为将反馈dc信号s_dc与预定阈值进行比较以生成比较结果,并选择性地暂停基带信号s_bb或dpd校准程序。再例如,预失真引擎110进一步被设置为将反馈基带信号s_bbfb与预定阈值进行比较以产生比较结果,并选择性地暂停基带信号s_bb或dpd校准程序。

pa损坏保护功能用于保护pa免遭受过载损坏(overloaddamage)。因此,当比较结果表明pa输出功率接近或高于可接受的功率电平时,暂停数字预失真校准以避免可能的pa损坏。此外,当pa损坏保护功能暂停了基带信号s_bb或dpd校准程序时,可以发送提醒以通知用户。

本领域技术人员将容易地认识到,可以在保留本发明的教导的同时对装置和方法进行多种修改和更改。因此,上述公开内容应被解释为仅受所附权利要求的范围和界限的限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1