调谐放大器的制作方法

文档序号:7532614阅读:112来源:国知局
专利名称:调谐放大器的制作方法
技术领域
本发明涉及容易实现集成化的调谐放大器,特别涉及用不相互干扰的方式对调谐频率和最大衰减量任意进行调整的调谐放大器。
背景技术
迄今,人们提出了采用有源元件和阻抗元件的各种调谐放大器并进入实用化阶段。
如举例来说,原有的使用LC共振的调谐放大器所具有的特征包括,在调整其调谐频率时,由LC回路确定的Q值和增益会发生变化,在调整其最大衰减量时,调谐频率会发生变化,而在调整最大衰减量时,调谐频率的增益也会发生变化。因此,要想使用原有的调谐放大器,在不相互影响的条件下调整调谐频率、调谐频率增益和最大衰减量C1、C2,是极端困难的。而且用集成电路来构成可以调整调谐频率和最大衰减量的调谐放大器也是相当困难。
本发明就是要解决这些问题,其目的是要提供一种可以适当集成化的、以不相互干扰的方式调整调谐频率、调谐频率的增益和最大衰减量的、特别是还可以抑制调谐频率变化时所产生的输出振幅变化的调谐放大器。
发明的解决方案为了能解决这些问题,本发明提供了一种可以相互不干扰的调整调谐频率、调谐频率的增益和最大衰减量的、特别是还可以在调谐频率变化时抑制输出振幅的变化的调谐放大器。
本发明的调谐放大器的一种构成形式具有包含有将输出反馈至输入侧的差动放大器的全通型的两个移相回路;在由分别串联连接前述两个移相回路而形成的反馈回路的一部分处插入的分压回路;而且在对前述串联连接的两个移相回路中的前级移相回路输入由前述相加回路相加出的信号的同时,将由后级移相回路输出的信号作为前述反馈信号输入至前述相加回路,并将输入至前述分压回路的交流信号作为前述的反馈信号而输出。
而且,本发明的调谐放大器的另一种构成形式具有包含有由一端部输入输入信号的输入阻抗元件和由一端部输入反馈信号的反馈阻抗元件的、对前述的输入信号和反馈信号实施相加运算用的相加回路;两个移相回路,它包括有其反相输入端子与第一电阻的一端部相连接的、通过前述第一电阻输入交流信号的差动放大器,与前述的差动放大器的输出端子相连接的第一分压回路,连接在前述第一分压回路的输出端和前述差动放大器的反相输入端子之间的第二电阻,由电容器或电感器构成的阻抗元件和第三电阻构成的、与前述的第一电阻的另一端部相连接的串联回路,而且前述第三电阻和前述阻抗元件的连接部与前述的差动放大器的非反相输入端子相连接;而且将前述两个移相回路分别串联连接,在对这两个串联连接的移相回路中的前级移相回路输入由前述相加回路相加出的信号的同时,将由后级移相回路输出的信号作为前述反馈信号输入至前述反馈阻抗元件的一端部,并将这两个移相回路中的任一个的输出作为调谐信号而输出。
而且,本发明的调谐放大器的又一种构成形式具有包含有由一端部输入输入信号的输入阻抗元件和由一端部输入反馈信号的反馈阻抗元件的、对前述的输入信号和反馈信号实施相加运算用的相加回路;两个移相回路,它包括有其反相输入端子与第一电阻的一端部相连接的、通过前述的第一电阻输入交流信号的差动放大器,连接在前述差动放大器的反相输入端子和输出端子之间的第二电阻,一端部与前述差动放大器的反相输入端子相连接而另一端部接地的第三电阻,由电容器或电感器构成的阻抗元件和第四电阻构成的、与前述的第一电阻的另一端部相连接的串联回路,而且前述第四电阻和前述阻抗元件的连接部与前述的差动放大器的非反相输入端子相连接;而且将前述两个移相回路分别串联连接,在向这两个串联连接的移相回路中的前级移相回路输入由前述相加回路相加出的信号的同时,将由后级移相回路输出的信号作为前述反馈信号输入至前述反馈阻抗元件的一端部,并将这两个移相回路中任一个的输出作为上述调谐信号而输出。
而且,本发明的调谐放大器的再一种构成形式为具有包含有由一端部输入输入信号的输入阻抗元件和由一端部输入反馈信号的反馈阻抗元件的、对前述的输入信号和反馈信号实施相加运算用的相加回路;第一移相回路,它包括有其反相输入端子与第一电阻的一端部相连接的、通过前述第一电阻输入交流信号的差动放大器,与前述差动放大器的输出端子相连接的第一分压回路,连接在前述第一分压回路的输出端和前述差动放大器的反相输入端子之间的第二电阻,由电容器或电感器构成的阻抗元件和第三电阻构成的、与前述第一电阻的另一端部相连接的串联回路,而且前述第三电阻和前述阻抗元件的连接部与前述的差动放大器的非反相输入端子相连接;第二移相回路,它包括有其反相输入端子与第四电阻的一端部相连接的、通过前述第四电阻输入交流信号的差动放大器,连接在前述差动放大器的反相输入端子和输出端子之间的第五电阻,一端部与前述差动放大器的反相输入端子相连接而另一端部接地的第六电阻,由电容器或电感器构成的阻抗元件和第七电阻构成的、与前述第四电阻的另一端部相连接的串联回路,而且前述第七电阻和前述阻抗元件的连接部与前述差动放大器的非反相输入端子相连接;而且将前述第一和第二移相回路串联连接,在向这两个串联连接的移相回路中的前级移相回路输入由前述相加回路相加出的信号的同时,将由后级移相回路输出的信号作为前述反馈信号输入至前述反馈阻抗元件的一端部,并将前述第一和第二移相回路中任一个的输出作为调谐信号而输出。
附图的简要说明

图1为表示适用于本发明的第一实施形式的调谐放大器的构成的示意性回路图。
图2为表示如图1所示的前级移相回路的构成的部分示意图。
图3为表示前级移相回路的输入输出电压和出现在电容器等处的电压之间关系的矢量图。
图4为表示如图1所示的后级移相回路的构成的部分示意图。
图5为表示后级移相回路的输入输出电压和电容器等处出现的电压之间关系的矢量图。
图6为表示用具有传递函数为K1的回路替换具有上述构成的两个移相回路和分压回路全体时的系统的示意图。
图7为表示依据米勒定律变换图6所示的系统的系统图。
图8为表示如图1所示的调谐放大器的调谐特性的图。
图9为表示包含有LR回路的移相回路的构成的回路图。
图10为表示如图9所示的移相回路的输入输出电压和电感器等处出现的电压之间关系的矢量图。
图11为表示包含有LR回路的另一移相回路的构成的回路图。
图12为表示如图11所示的移相回路的输入输出电压和电感器等处出现的电压之间关系的矢量图。
图13为表示调谐放大器的第三实施形式的回路图。
图14为表示将图13所示的移相回路一般化时的图。
图15为表示可与如图13所示的调谐放大器的前级移相回路置换的移相回路的结构的回路图。
图16为表示可与如图13所示的调谐放大器的后级移相回路的移相回路的结构的回路图。
图17为表示调谐放大器的第五实施形式的结构的回路图。
图18为表示在运算放大器的构成中抽出本发明的移相回路的动作的必要部分的回路图。
实施发明用的最佳形式(调谐放大器的第一实施形式)图1为表示适用于本发明第一实施形式的调谐放大器的构成的回路图。
如图所示的调谐放大器1包括有通过使分别输入的交流信号的相位产生预定量的相位偏移,预定频率中进行总共为360°的相位偏移的两个移相回路10C、30C;由设置在后级移相回路30C的输出侧的电阻62和电阻64构成的分压回路60;以及分别通过反馈电阻70和输入电阻74(输入电阻74的电阻值为反馈电阻70的电阻值的n倍)将分压回路60的分压输出(反馈信号)和由输入端子90输入的信号(输入信号)按预定的比例相加的相加回路。
图2为表示如图1所示的前级移相回路10C的部分构成的示意图。如图所示的移相回路10C包括有使由输入端24输入的交流信号的相位产生预定量的偏移并输入至运算放大器12的非反相输入端子的可变电阻16和电容器14;插入在输入端24和运算放大器12的反相输入端子之间的电阻18;构成为与运算放大器12的输出端子相连接的分压回路的电阻21和23;以及连接在该分压回路与运算放大器12的反相输入端子之间的电阻20。
对于具有这种构成的移相回路10C,其中的电阻18和电阻20的电阻值设定为相同的值。
当在如图2所示的输入端24输入预定的交流信号时,电容器14两端处呈现的电压VC1施加在运算放大器12的非反相输入端子处。而且施加在电阻18的两端处是与可变电阻16两端处的电压VR1相同的电压VR1。在两个电阻18、20中有相同的电流I流过,而且,如上所述,电阻18和电阻20的电阻值相等,所以电阻20两端处的电压亦为电压VR1。如果以运算放大器12的反相输入端子(电压VC1)为基准,对电阻18两端处的电压VR1进行向量相加可获得输入电压Ei,对电阻20两端处的电压VR1进行向量相减可获得电阻21与电阻23连接点处的电压(分压电压)Eo’。
图3为表示前部移相回路10C的输入输出电压和电容器等处呈现的电压之间关系的矢量图。
如上所述,如果以施加至运算放大器12的非反相输入端子的电压VC1为基准,则由输入电压Ei和分压电压Eo’只与合成电压VR1的方向不同,但其绝对值是相等的。因此,当用由输入电压Ei和分压输出电压Eo’作为斜边,由两倍的电压VR1作为底边所构成的等边三角形,来表示输入电压Ei和分压输出电压Eo’的大小和相位关系时,可知分压输出电压Eo’的振幅和与频率无关的输入信号的振幅相等,且相位偏移量由图3所示的φ1表示。该相位偏移量φ1与频率对应地,在由0°至180°间变化。而且通过改变可变电阻16的电阻值R,可以使相位偏移量φ1发生变化。
移相回路10C的输出端26与运算放大器12的输出端子相连接,当电阻21的电阻值为R21,电阻23的电阻值为R23时,如果R21、R23相对于电阻20的电阻值相当小,则输出电压Eo和上述的分压输出电压Eo’之间满足关系式Eo=(1+R21/R23)Eo’。因此,通过调节R21和R23的值,便可以获得大于1的增益,所以即使如图3所示,频率发生了变化,输出电压Eo的振幅也能保持为一定,而仅仅相位会发生预定量的偏移。
同样,图4为表示如图1所示的后级移相回路30C的部分构成的示意图。如图所示的后级移相回路30C包括作为一种差动放大器的运算放大器32;使输入至输入端44的信号相位产生预定量的偏移并输入至运算放大器32的非反相输入端子的电容器34和可变电阻36;插入在输入端44和运算放大器32的反相输入端子之间的电阻38;构成与运算放大器32的输出端子相连接的分压回路的电阻41和43;以及连接在该分压回路与运算放大器32的反相输入端子之间的电阻40。
对于具有这种构成的移相回路30C,其电阻38和电阻40的电阻值被设定为相同的值。
当在如图4所示的输入端44输入预定的交流信号时,施加在运算放大器32的非反相输入端子处的电压为在可变电阻36两端呈现的电压VR2。而且施加在电阻38的两端处的电压为与在电容器34两端处呈现的电压VC2相同的电压VC2。在两个电阻38、40中有相同的电流I流过,而且,如上所述,电阻38和电阻40的电阻值相等,所以电阻40两端处的电压亦为电压VC2。如果以运算放大器32的反相输入端子(电压VR2)为基准,对电阻38的两端电压VC2进行向量相加可获得输入电压Ei,对电阻40两端电压VC2进行向量相减可获得电阻41与电阻43连接点处的电压(分压电压)Eo’。
图5为表示后级移相回路30C的输入输出电压和电容器等处的电压之间关系的矢量图。
如上所述,如果以施加至运算放大器32的非反相输入端子的电压VR2为基准,则由输入电压Ei和分压输出电压Eo’仅合成电压VC2的方向不同,但其绝对值是相等的。因此,当用由输入电压Ei和分压输出电压Eo’作为斜边,由两倍的电压VC2作为底边所构成的等边三角形,来表示输入电压Ei和分压输出电压Eo’的大小和相位关系时,可知分压输出电压Eo’的振幅与频率无关,并且与输入信号的振幅相同,而相位偏移量可由图5所示的φ2表示。该相位偏移量φ2与频率对应地,以输入电压Ei为基准,沿顺时针方向(相位延迟方向)在180°至360°间变化。而且通过改变可变电阻36的电阻值R,可以使相位偏移量φ2也发生变化。
移相回路30C的输出端46与运算放大器32的输出端子相连接,当电阻41的电阻值为R41,电阻43的电阻值为R43时,如果R41、R43相对于电阻40的电阻值相当小时,则输出电压Eo和上述的分压电压Eo’之间,满足关系式Eo=(1+R41/R43)Eo’。因此,通过调节R41和R43的值,便可以获得大于1的增益,所以即使如图5所示,频率发生了变化,输出电压Eo的振幅也保持为一定,而仅仅相位会发生预定量的偏移。
这样,两个移相回路10C、30C将分别产生预定量的相位偏移,而且如图3和图5所示,对于预定的频率,由两个移相回路10C、30C的总体产生的总的相位偏移量为360°。
后级移相回路30C的输出可由输出端子92作为调谐放大器1的输出而取出,同时使该移相回路30C输出的由分压回路60分压后的信号,通过反馈电阻70反馈至前级移相回路10C的输入侧。对这一反馈后的信号和通过输入电阻74输入的信号进行相加,并将该相加后的信号输入至前级移相回路10C。
这样,由两个移相回路10C、30C使预定频率的相位偏移总量共为360°,所以通过将此时的包含有两个移相回路10C、30C、分压回路60和反馈电阻70的反馈回路的回路增益设定在1以下,即可以实施仅使具有上述预定频率成分的信号通过的调谐动作。
而且由调谐放大器1的输出端子92处,可以获得输入至分压回路60的前一移相回路30C的输出,故可以获得调谐放大器1自身的增益,从而可以在实施调谐动作的同时,对信号振幅实施放大。
图6为表示用具有传递函数K1的回路替换具有上述构成的两个移相回路10C、30C和分压回路60全体的系统图,其中与具有传递函数K1的回路相并联的、具有电阻R0的反馈电阻70,与串联连接的、具有为反馈电阻70的电阻值的n倍的电阻值(nR0)的输入电阻74相连接。
图7为表示依据米勒定律变换如图6所示的系统时所获得的系统图,变换后的整个系统的传递函数A可用下式表示A=Vo/Vi=K1/{n(1-K1)+1}…(1)前级移相回路10C的传递函数K2在由可变电阻16和电容器14构成的CR回路的时间常数为T1(当可变电阻16的电阻值为R,电容器14的静电容量为C时,T1=CR)时,为K2=a1(1-T1s)/(1+T1s) …(2)其中,s=jω,a1为移相回路10C的增益,而且a1=(1+R21/R23)>1。
后级移相回路30C的传递函数K3在由电容器34和可变电阻36构成的CR回路的时间常数为T2(当电容器34的静电容量为C,可变电阻36的电阻值为R时,T2=CR)时,为K3=-a2(1-T2s)/(1+T2s) …(3)其中, a2为移相回路30C的增益,而且a2=(1+R41/R43)>1。
当采用分压回路60而使信号振幅衰减至1/a1a2时,如果两个移相回路10C、30C与分压回路60串联连接,则作为整体的传递系数K1为K1=-{1+(Ts)2-2Ts}/{1+(Ts)2+2Ts}…(4)而且在上述的公式(4)中,为使计算简单,已将各移相回路的时间常数T1、T2全部取为T。当将公式(4)带入上述的公式(1)时,有A=-{1+(Ts)2-2Ts}/[(2n+1){1+(Ts)2}+2Ts]={1/(2n+1)}/{1+(Ts)2-2Ts}/{1+(Ts)2+2Ts/(2n+1)}] …(5)如果采用公式(5),则当ω=0(直流范围)时,有A=-1/(2n+1),即具有最大衰减量。而且当ω=∞时,亦有A=-1/(2n+1),即具有最大衰减量。而且在ω=1/T的调谐点(对于各移相回路的时间常数不相等时,为

的调谐点)处,A=1,即与反馈电阻70和输入电阻74的电阻比n无关。换句话说就是,正如图8所示,即使值n发生变化,调谐点也不发生偏移,而且调谐点处的衰减量也不会发生变化。
然而如图6所示,对于由传递函数K1表示的全通回路具有输入阻抗的场合,由于形成由反馈电阻70和该全通回路的输入阻抗构成的分压回路,所以包含有全通回路的反馈回路的开路增益将小于传递函数K1的绝对值。全通回路的输入阻抗为前级移相回路10C的输入阻抗,亦为由可变电阻16和电容器14构成的CR回路的串联阻抗并联连接到运算放大器12的输入电阻18处所形成的输入阻抗。因此,为补偿因全通回路的输入阻抗造成的反馈回路的开路增益的损失,故需要将全通回路自身的增益设定在1以上。
如举例来说就是,如果不考虑包含在移相回路10C中的、由电阻21、23构成的分压回路(即分压比为1时,将上述的公式(2)中的a1取为1)时,根据公式(2),由于移相回路10C必须与输入频率对应地在由增益为1倍的跟随回路,作为增益为-1倍的反相放大器的范围内动作,所以电阻18和电阻20的电阻比最好为1。这是因为,当电阻18和电阻20的电阻值为R18、R20时,移相回路10C在作为反相放大器动作时的增益为-R20/R18,但在作为跟随回路动作时的增益与电阻18和电阻20的电阻比无关,通常为1,所以对于电阻18和电阻20的电阻比不为1的场合,在移相回路10C动作的全部范围内,不能满足在其输入输出之间仅有相位变化,而输出振幅不变的理想条件。
在移相回路10C的输出侧附加有由电阻21和电阻23构成的分压回路时,通过利用该分压回路向运算放大器12的反相输入端子实施反馈,可以使电阻18和电阻20的电阻比仍然保持为1,并可以将移相回路10C的增益设定在1以上。同样,在移相回路30C的输出侧附加有由电阻41和电阻43构成的分压回路,通过利用该分压回路向运算放大器32的反相输入端子实施反馈,可以使电阻38和电阻40的电阻比仍然保持为1,并可以将移相回路30C的增益设定在1以上。
如上所述,通过采用改变移相回路10C内的可变电阻16和移相回路30C内的可变电阻36的电阻值,可以改变由电容器14和可变电阻16构成的CR回路的时间常数T1,以及由电容器34和可变电阻36构成的CR回路的时间常数T2,从而使由

计算出的调谐频率ω也可以在一定范围内改变。
当使用公式(2)或(3)求解如图3、图5所示的φ1、φ2时,可有φ1=tan{2ωT1/(1-ω2T12)} …(6)φ2=tan{2ωT2/(1-ω2T22)} …(7)公式(6)、(7)中的φ1和φ2在以如图3和图5所示的输入电压Ei为基准时,取顺时针方向(相位延迟方向)为正方向。
比如说对于T1=T2(=T)的场合,当ω=1/T时,如果按使两个移相回路10C、30C的相位偏移量的总和为360°实施调谐动作,则此时的φ1=90°,φ2=270°。
这样,第一实施形式中的调谐放大器1即使在反馈电阻70和输入电阻74的电阻比n发生变化时,也可以使调谐频率和调谐时的增益保持一定,而且可以改变最大衰减量和调谐频带宽度。利用这种调谐放大器1实施调谐动作,对于产生干扰的场合,可将上述的电阻比n设定的比较大,以减小调谐频带宽度,防止干扰。与此相反,对于很少干扰的场合,可将上述的电阻比n设定的比较小,以扩大调谐频带宽度,忠实的再现所接收到的信号。
而且在上述的第一实施形式中,虽然固定反馈电阻70和输入电阻74的电阻值,但也可以使其中的至少一个电阻的电阻值是可变的,进而使上述的电阻比n可以任意变更。
而且在第一实施形式的调谐放大器1中,移相回路10C内的电阻18和电阻20设定为相同的电阻值,同时移相回路30C内的电阻38和电阻40亦设定为相同的电阻值,从而使即使调谐频率发生改变,振幅也不会发生变化,可以得到大致具有一定振幅的调谐输出。
特别是通过抑制调谐输出中的振幅变动,可使上述的电阻比n比较大,并可使调谐放大器1的Q值也较大。就是说,当开路增益具有频率依赖性时,对于增益比较低的频率,即使电阻比n较大,Q也不会上升,而对于增益比较高的频率,开路增益将超过1而产生振荡。因此,对于振幅变化比较大的场合,为了能防止这种振荡的发生,电阻比n不设定得过大,并使调谐放大器1的Q值变小。与此相反,对于上述的第一实施形式,由于通过在移相回路10C、30C内分别设置分压回路,并且将电阻18和电阻20、电阻38和电阻40的电阻值设定为相同的值,可以抑制调谐放大器1的调谐输出的振幅变化,所以可以将电阻比n设定的比较大,从而可以增大调谐放大器1的Q值。
由于通过分压回路60衰减后的信号作为反馈信号,同时将输入至分压回路60的前述信号作为调谐放大器1的输出取出,在进行由输入信号中只抽取具有预定频率成分的调谐动作的同时,对该抽取出的信号实施预定的放大动作。而且此时的增益还可以通过改变分压回路60的分压比,任意设定。
最大衰减量是由反馈电阻70和输入电阻74的电阻比n确定的,调谐频率是由可变电阻16或可变电阻36的电阻值确定的,所以可以以不相互影响的方式进行调谐频率与最大衰减量的调整。还可以将可变电阻16、36中的任一个更换为电阻值固定的电阻。
而且上述的调谐放大器1由运算放大器、电容器和电阻器组合而构成,所有这些构成元件均可以形成在半导体基板上。
通过连续的改变可变电阻16、36中的至少一个的电阻值,可以连续的改变调谐频率,为了改变调谐频率、从而可以省略在现有技术中为必不可少的可变电容器。因此可以大幅度的简化制造工序,降低成本。
而且当使上述的如图2所示的移相回路10C与如图4所示的移相回路30C串联连接时,还可以省略连接着各移相回路内的运算放大器12或运算放大器32的输出端的分压回路中的任一个,或是将分压比设定为1。举例来说,可以省略移相回路10C内的分压回路,而将运算放大器12的输出端子直接连接至电阻20的一端。这使构成分压回路的电阻62的电阻值为非常小的值,并且分压比同样设定为1。
对于省略了串联连接着的两个移相回路中的一个内的分压回路,并且将增益设定为1的场合,通过采用将另一移相回路10C的增益设定为大于1的值,也可以实施与如图1所示的调谐放大器1相同调谐动作。
对于不需要进行放大动作的场合,还可以省略移相回路30C后级的分压回路60,而将移相回路30C的输出直接反馈至前级侧。或者还可以使分压回路60内的电阻62的电阻值取的非常小,并且将分压比设定为1。(第二实施形式)在上述的调谐放大器1中,虽然是在一部分中包含有CR回路那样构成各移相回路10C、30C,但它也可以在一部分中包含有取代CR回路用的LR回路那样来构成移相回路。
图9为表示包含有LR回路的移相回路的构成的回路图,它示出了一种可以与图1所示的调谐放大器1的前级移相回路10C置换的结构。该图所示的移相回路10L,具有将由如图1所示的前级移相回路10C内的由电容器14和可变电阻16构成的CR回路置换为由可变电阻16和电感器17构成的LR回路的结构,电阻18和电阻20的电阻值设定为相同的值。
因此正如图10中的矢量图所示,上述的移相回路10L的输入输出电压等的关系,可以将如图3所示的电压VC1替换为施加在可变电阻16两端处的电压VR3,将如图3所示的电压VR1替换为施加在电感器17两端处的电压VL1。
而且如图9所示的移相回路10L的传递函数,在由电感器17和可变电阻16构成的LR回路的时间常数为T1(当电感器17的电感量为L,可变电阻16的电阻值为R时,T1=L/R)时,可以原封不动的采用由公式(2)给出的K2,而且如图10所示的相位偏移量φ3亦与上述的由公式(6)给出的φ1相同。
因此,如图9所示的移相回路10L是与如图2所示的移相回路10C基本上等价的,故可以将如图1所示的移相回路10C置换为如图9所示的移相回路10L。而且由于如图9所示的电阻18和电阻20的电阻值亦设定为相同的值,所以在调谐频率发生变化时,其振幅亦不会发生变化,进而可以获得大体保持为一定的调谐输出。
图11为表示包含有LR回路的移相回路的另一种构成的电路图,它示出了一种可以与如图1所示的调谐放大器1的后级移相回路30C置换的结构。如图所示的移相回路30L,具有可将由如图4所示的后级移相回路30C内的由电容器34和可变电阻36构成的CR回路置换为由可变电阻36和电感器37构成的LR回路的结构,电阻38和电阻40的电阻值仍设定为相同的值。
因此正如图12中的矢量图所示,上述移相回路30L的输入输出电压等的关系,可以将如图5所示的电压VR2替换为施加在电感器37两端处的电压VL2,将如图5所示的电压VC2替换为施加在可变电阻36两端处的电压VR4。
而且如图11所示的移相回路30L的传递函数,在由可变电阻36和电感器37构成的LR回路的时间常数为T2(当可变电阻36的电阻值为R,电感器37的电感量为L时,T2=L/R)时,可以原封不动的采用由公式(3)给出的K3,而且如图12所示的相位偏移量φ4亦与上述的、由公式(7)所给出的φ2相同。
这样,便可以将如图1所示的移相回路10C和30C中的任一个或两个,用如图9、图11所示的移相回路10L、30L实施置换。当将两个移相回路10C、30C均置换为移相回路10L、30L时,通过对调谐放大器实施整体集成化,可以方便的使调谐频率高频率化。
对于仅将两个移相回路10C、30C中的任一个用移相回路10L或移相回路30L置换的场合,在将包含有构成LR回路的电感器的、或除了该电感器之外的整个调谐回路集成化的情况下,也可以防止由于温度变化所产生的调谐频率的变动,即可以实施温度补偿。
而且对于将如图1所示的移相回路10C、30C中的至少一个用如图9或图11所示的移相回路10L、30L置换的场合,还可以省略与各移相回路内的运算放大器12或运算放大器32的输出端相连接分压回路中的任一个,或将分压比设定为1。当构成分压回路60的电阻62的电阻值非常小时,也可以将分压比取为1。(第三实施形式)图13为表示调谐放大器的第三实施形式的回路图,如图所示的调谐放大器1A包括通过使分别输入的交流信号的相位产生预定量的偏移,在预定频率中进行总共为360°的相位偏移的两个移相回路110C、130C;以及分别通过反馈电阻70和输入电阻74(输入电阻74的电阻值为反馈电阻70的电阻值的n倍),将后级移相回路130C的输出(反馈信号)和由输入端子90输入的信号(输入信号)按预定的比例实施相加的相加回路。
在如图1所示的调谐放大器1中,是通过将前级移相回路10C内的电阻18和电阻20的电阻值设定为相同的值,抑制输入的交流信号频率变化时所产生的振幅变化,而且在运算放大器12的输出侧还连接有由电阻21和电阻23构成的分压回路,并将移相回路10C的增益设定为大于1的值。与此相反,包含在图13所示的调谐放大器1A中的前级移相回路110C,并未采用由上述电阻21和23构成的分压回路,而是通过将电阻20’的电阻值设定的比电阻18’的电阻值大,将移相回路110C的增益设定为大于1的值。
对于后级移相回路130C也同样,也可以通过将电阻40’的电阻值设定的比电阻38’的电阻值大,将移相回路130C的增益设定为大于1的值。而且在移相回路130C的输出端子处还连接有反馈电阻70、输出端子92和电阻78。
而且在图13所示的调谐放大器1A中,还可以将分压电路连接到后级移相回路130C的后级,并可以通过反馈电阻70对该分压输出实施反馈。
然而在将各移相回路的增益设定为大于1的值的场合,增益会随着输入信号的频率而产生变动。举例来说,当以前级的移相回路110C为对象进行分析时可知,对于输入信号的频率比较低的场合,移相回路110C作为电压跟随回路,其增益为1倍率,对于频率比较高的场合,移相回路110C作为反相放大器,此时的增益为-m倍率(m为电阻20’与电阻18’的电阻比),所以当输入信号的频率发生变化时,移相回路110C的增益也会发生变化,进而使输出信号的振幅发生变动。
可以通过在运算放大器12的反相输入端子处连接电阻22,而使输入信号频率比较低的场合和比较高的场合的增益一致,抑制这种振幅变动。对于移相回路130C也同样,亦可以通过在运算放大器32的反相输入端子连接具有预定电阻值的电阻42,抑制输出信号中的振幅变动。
下面对这一电阻22(或电阻42)的电阻值的设定为什么样的值进行说明。图14为使上述的移相回路110C、130C归一化的图,示出将包含在各移相回路中的CR回路置换为具有阻抗z1、z2的元件的结构。如图所示,运算放大器的输入电阻的电阻值为r,反馈电阻的电阻值为mr,连接在运算放大器的反相输入端的电阻(电阻22或电阻42)的电阻值为R,运算放大器的反相输入端的电位为V。
输入电压Ei与电压V之间满足关系式
r(Ia+Ib)+V=Ei…(8)而且如果用如图14所示的各种常数表示电压V时,有V=IbR…(9)V=Eo+mr·Ia …(10)V={z2/(z1+z2)}Ei=kEi…(11)在公式(11)中,由具有阻抗z1、z2的两个元件给出的分压比为k。
分别由公式(10)求出Ia,由公式(9)求出Ib,并将其带入公式(8),再在带入后的结果中带入公式(11)以消去V时,有Eo=(Rk+Rmk+mrk-Rm)Ei/R …(12)然而如图14所示的所谓移相回路作为反相放大器工作的情况,是阻抗z2为0Ω,且k=0,故此时的公式(12)变为Eo=mEi …(13)而且,如图14所示的所谓移相回路作为跟随回路工作的情况,是阻抗z1为0Ω,且k=1,故此时的公式(12)变化为Eo=(R+mr)Ei/R…(14)所谓在移相回路110C或移相回路130C作为反相放大器和跟随回路工作时的增益不变动的情况,是由公式(13)求出的Eo的绝对值与由公式(14)求出的Eo的绝对值相等的场合,即为m=(R+mr)/R …(15)为求出R,可变换为R=mr/(m-1) …(16)因此,通过根据公式(16)设定移相回路110C内的电阻22的电阻值R,或移相回路130C内的电阻42的电阻值R,便可以在使调谐频率由低频至高频变化时,抑制所产生的增益变动。(第四实施形式)图13所示的调谐放大器1A是以在移相回路110C、130C内包含有CR回路为例进行说明的,但对于包含有取代CR回路用的LR回路的场合,也可以构成同样的移相回路。
图15为表示包含有LR回路的移相回路的构成的回路图,它示出一种可与图13所示的调谐放大器1A的前级移相回路110C置换的结构。如图所示的移相回路110L具有,可将图13所示的前级移相回路110C内的由电容器14和可变电阻16构成的CR回路置换为由可变电阻16和电感器17构成的LR回路的结构。
图16为表示包含有LR回路的移相回路的另一种构成的回路图,它示出一种可与图13所示的调谐放大器1A的后级移相回路130C置换结构。如图所示的移相回路130L具有可将图13所示的后级移相回路130C内的由可变电阻36和电容器34构成的CR回路置换为由电感器37和可变电阻36构成的LR回路的结构。
如图15所示的移相回路110L和如图16所示的移相回路130L,分别与如图13所示的移相回路110C和130C相等价,所以可以分别用如图15所示的移相回路110L,置换如图13所示的调谐放大器1A中的前级移相回路110C,用如图16所示的移相回路130L置换其后级的移相回路130C。对于分别用移相回路110L、130L置换如图13所示的两个移相回路110C、130C的场合,可通过使整个调谐放大器集成化,方便地使调谐频率高频化。而且也可以将两个移相回路110C中的任一个用移相回路110L或移相回路130L置换。对于这种场合,可以获得抑制调谐频率相对于温度变化所产生的变动的效果。
然而如图13所示的调谐放大器1A,通过电阻22或电阻42分别与两个移相回路110C、130C相连接,来防止调谐频率变化时产生的振幅变化的,但对于频率变化范围比较小的场合,振幅变化也比较小,所以可以在调谐放大器的构成中去掉电阻22、42。也可以只将一个电阻22或44去掉而构成调谐放大器。(第五实施形式)在上述的调谐放大器的第一~第四实施形式中,包含有两个移相回路10C、30C的全通回路和由反馈电阻70构成的反馈回路的开路增益损失,是由前级移相回路10C等的输入阻抗造成的,为了能抑制由该输入阻抗造成的损失,可以在前级移相回路10C等的前级中,插入由晶体管构成的跟随回路,并可以通过该跟随回路将反馈后的信号输入至前级移相回路10C等中。
图17为表示调谐放大器的第五实施形式的构成的回路图,它是在如图1所示的调谐放大器1内部的前级移相回路10C之更前级中,插入有由晶体管构成的跟随回路50。
该跟随回路50包含有一个FET52,后者的漏极与正电源Vdd相连接,源极通过电阻54与负电源Vss相连接。该FET52和电阻54构成为源极跟随回路,并且将这一源极跟随回路的输出输入至前级的移相回路10C。也可以不采用源极跟随回路,而是采用发射极跟随回路。
这样便可以在前级的移相回路10C等的更前级,串联连接上由晶体管构成的跟随回路,这和如图1等所示的调谐放大器1等相比较,可以将反馈电阻70和输入电阻74的电阻值设定的更高。特别是在将调谐放大器1等集成化在半导体基板上的场合,由于反馈电阻70等的电阻值比较小时,元件所占据的面积必然比较大,所以电阻值大一些更好些,这也是连接跟随回路的意义所在。(其它的实施形式)本发明并不仅限于上述的各种实施形式,还可以在本发明的主题范围内以各种变形形式实施本发明。
举例来说,在上述的调谐放大器1等中,虽然分别在前级设置有移相回路10C和110C,在后级设置有移相回路30C和130C,但在全部两个移相回路中由于输入输出信号之间的相位偏移量为360°,所以也可以将其前后对调,即在前级设置移相回路30C和130C,在后级设置移相回路10C和110C,来构成调谐放大器。
也就是说,本发明的调谐放大器可以将图2所示的移相回路10C、图9所示的移相回路10L、图13所示的移相回路110C和图15所示的移相回路110L中的任一个,和图4所示的移相回路30C、图11所示的移相回路30L、图13所示的移相回路130C和图16所示的移相回路130L中的任一个,按任意顺序串联连接而构成。
而且在这种串联连接的两个移相回路中,还可以在一个移相回路中省略该移相回路内的分压回路,或将分压比设定为1。同样,对于串联连接着的两个移相回路中的一个移相回路,还可以省略连接在运算放大器的反相输入端子和接地端子之间的电阻,(比如说,如图13所示的电阻22),也可以使该电阻的电阻值非常大。而且在串联连接的两个移相回路中的前级移相回路之更前级,还可以连接有跟随回路50。
在上述的调谐放大器1等中包含的的移相回路10C等中,还包含有可变电阻16和36。这种可变电阻16和36可以利用结合型或MOS型的场效应晶体管(FET)的沟道电阻来具体的实现。当利用形成在FET的源极漏极之间形成的沟道作为电阻体来替代可变电阻16使用时,控制栅极电压的变化,便可以在一定范围内任意改变该沟道电阻,从而改变各移相回路中的相位偏移量。
可以用一个FET、即用p沟道或n沟道的FET替代可变电阻16和36,也可以用并联连接着的p沟道的FET和n沟道的FET构成为一个可变电阻。如果由两个FET组合构成可变电阻,还可以改善FET的非线性区域,进而降低调谐信号的畸变。
上述的移相回路10C等,是通过改变与电容器14等串联连接的可变电阻16等的电阻值,进而改变相位偏移量,来改变整体的调谐频率,但也可以通过改变电容器14等的静电容量,来改变整体的调谐频率。
举例来说,可以将包含在两个移相回路中的至少一个中的电容器14等,用可变容量元件置换,通过改变其静电容量,也可以改变由于各移相回路产生的相位偏移量从而改变调谐频率。具体地说就是,上述的可变容量元件可以由施加在阳极·阴极之间的反偏置电压可变的可变容量二极管构成,也可以由可用栅极电压改变栅极容量的FET构成。
而且为了改变施加在上述的可变容量元件上的反向偏置电压,还可以连接有与该可变容量元件串联连接的、阻止直流电流用的电容器。
除了上述的采用可变电阻和可变容量元件的场合之外,还可以采用元件常数不同的若干个电阻器、电容器或电感器,并通过开关切换,由这些个元件中选定出一个或多个。对于这种场合,可通过开关切换,按照连接着的元件个数和连接方法(串联连接、并联连接或它们的组合),不连续地切换元件常数。
例如,通过准备电阻值为R、2R、4R…这样的2的n次方的一系列的多个电阻以取代可变电阻,选择其中的一个或任意几个串联连接,能容易地实现能用较小的元件实现等间隔的电阻值的切换。同样,通过准备静电电容为C、2C、4C…这样的2的n次方的一系列的多个电容以取代电容器,选择其中的一个或任意几个并联连接,便可以容易地用比较少的元件来实现等间隔的静电电容量的切换。因此,调谐频率适用于这样的用途,即从多个电路(例如将该实施例的调谐放大器用于AM式收音机),多个广播台中选择接收一个台。
而且在上述的调谐放大器1等中,作为反馈阻抗元件的电阻值使用固定的反馈电阻70,作为输入阻抗元件的电阻值使用固定的输入电阻74,但如果使用可变电阻构成至少一个电阻,也可以改变调谐放大器1等的调谐宽度和最大衰减量。
在上述的各种实施形式中,是通过用运算放大器构成移相回路10C、30C等,构成高稳定性的回路,然而在使用上述各实施形式的场合,由于对偏置电压和电压增益等性能要求不很高时,所以也可以用具有预定放大倍数的差动输入放大器,来取代各移相回路内的运算放大器。
图18为在运算放大器的构成中抽取出各实施形式中的移相回路工作的所必要的部分的回路图,其总体作为具有预定放大倍数的差动输入放大器而工作。如图所示的差动输入放大器包括由FET构成的差动输入级100、向该差动输入级100施加恒定电流的恒流回路102、向恒流回路102施加预定的偏置电压的偏置回路104、以及与差动输入级100相连接的输出放大器106。如图所示,它省略了包含在实际运算放大器中的、为获得电压增益而使用的多级放大回路,所以简化了差动输入放大器的结构,使其宽频带化。这样,由于通过进行回路简化,便可以提高调谐频率的上限,所以采用这种差动输入放大器构成的调谐放大器的调谐频率的上限也不可以提高。
上述的各种实施形式的调谐放大器,将后级移相回路30C等的输出端46连接到调谐放大器的输出端子92并取出调谐信号,但也可以从前级移相回路10C等和图17所示的跟随回路50取出调谐信号。而且还可以由后级移相回路30C等的前后、或前级移相回路10C等的前后,取出彼此具有预定相位差的两相输出信号。
而且在如图1和图13所示的调谐放大器1、1A中,是将分压电路60连接到后级移相回路30C之更后级,但也可以在移相回路10C和移相回路30C之间、或在跟随回路50前后的某一处,插入分压回路60。在这种情况下,将分压回路60的输出输入至下级回路的同时,由分压回路60给出的分压前的信号还可以作为调谐放大器的输出而取出。产业上的可应用性由根据上述各种实施形式给出的说明可知,在调谐频率变化时,可在从其下限附近直至上限附近的扩大范围内,获得基本上不产生振幅变动的、保持为一定的稳定的调谐输出。特别是通过抑制调谐频率变化时所产生的输出振幅变动,还可以使反馈电阻与输入电阻的电阻比n相当大,从而增大调谐放大器的Q值。
本发明的调谐放大器可以利用输入阻抗元件与反馈阻抗元件的电阻比n来确定最大衰减量,并可以用各移相回路中的CR回路和LR回路的时间常数确定其调谐频率,所以可以用彼此互不干扰的方式,设定最大衰减量、调谐频率和调谐频率的增益。
而且本发明的调谐放大器通过在反馈回路内插入分压回路,能用一个回路同时进行调谐工作和放大工作。因此能使包含有该调谐放大器的整个装置简单化。
对于调谐放大器内的两个移相回路均包含有CR回路的场合,可以容易地将整个调谐放大器集成化。同样,对于两个移相回路中均包含有LR回路的场合,由于通过集成化而形成比较小的电感器,从而能容易地实现调谐频率的高频化。对于一个移相回路包含有CR回路、另一个移相回路包含有LR回路的场合,还可以防止由于温度变化等产生的特性变动,从而实现特性的稳定化。
权利要求
1.一种调谐放大器,其特征在于具有对输入信号和反馈信号实施相加运算用的相加回路;包含有将输出反馈至输入侧的差动放大器的全通型的两个移相回路;插入在由分别串联连接前述两个移相回路而形成的反馈回路的一部分中的分压回路;而且对前述串联连接的两个移相回路中的前级移相回路输入由前述相加回路相加出的信号,同时将由后级移相回路输出的信号作为前述反馈信号输入至前述相加回路,并将输入至前述分压回路的交流信号作为前述反馈信号而输出。
2.一种如权利要求1所述的调谐放大器,其特征在于在前述串联连接的两个移相回路的前级插入有由晶体管构成的跟随回路。
3.一种如权利要求1所述的调谐放大器,其特征在于前述的差动放大器为运算放大器。
4.一种如权利要求1所述的调谐放大器,其特征在于在半导体基板上整体形成各构成部件。
5.一种调谐放大器,其特征在于具有包含在一端输入输入信号的输入阻抗元件和在一端输入反馈信号的反馈阻抗元件的、对前述输入信号和上述反馈信号实施相加运算用的相加回路;两个移相回路,它包括其反相输入端与第一电阻的一端相连接、通过前述第一电阻输入交流信号的差动放大器,与前述的差动放大器的输出端相连接的第一分压回路,连接在前述第一分压回路的输出端和前述差动放大器的反相输入端之间的第二电阻,由用电容器或电感器构成的阻抗元件和第三电阻构成的、与前述的第一电阻的另一端相连接的串联回路,而且前述第三电阻和前述阻抗元件的连接部与前述的差动放大器的非反相输入端子相连接;而且将前述两个移相回路分别串联连接,在对这两个串联连接的移相回路中的前级移相回路输入由前述相加回路相加出的信号,同时将由后级移相回路输出的信号作为前述反馈信号输入至前述反馈阻抗元件的一端部,并将这两个移相回路中的任一个的输出作为调谐信号而输出。
6.一种如权利要求5所述的调谐放大器,其特征在于在前述串联连接的两个移相回路内的两个前述串联回路中均包含前述的作为阻抗元件的电容器的情况下,或者在前述两个串联回路中均包含有作为前述的阻抗元件的上述电感器的情况下,在前述两个移相回路中构成前述串联回路的电阻和前述的阻抗元件的连接方式,彼此相反。
7.一种如权利要求5所述的调谐放大器,其特征在于在前述串联连接的两个移相回路内的一个前述的串联回路中包含前述的作为阻抗元件的上述电容器,在另一个串联回路中包含作为前述的阻抗元件的上述电感器的情况下,在前述两个移相回路中构成前述串联回路的电阻和前述的阻抗元件的连接方式,彼此相同。
8.一种如权利要求5所述的调谐放大器,其特征在于在前述串联连接的两个移相回路的前级插入由晶体管构成的跟随回路。
9.一种如权利要求5所述的调谐放大器,其特征在于在由前述串联连接的两个移相回路构成的反馈回路的一部分中插入第二分压回路,并且将输入至前述第二分压回路的交流信号作为前述调谐信号输出。
10.一种如权利要求5所述的调谐放大器,其特征在于通过改变前述串联连接的两个移相回路中的至少一个前述的串联回路的时间常数,改变其调谐频率。
11.一种如权利要求10所述的调谐放大器,其特征在于包含在前述串联连接着的两个移相回路中的至少一个前述串联回路内的上述第三电阻由可变电阻构成,并且通过改变该可变电阻的电阻值改变前述的时间常数。
12.一种如权利要求10所述的调谐放大器,其特征在于通过将p沟道型FET和n沟道型FET并联连接构成上述可变电阻,而且通过改变栅极电压的大小改变沟道电阻。
13.一种如权利要求10所述的调谐放大器,其特征在于包含在前述串联连接着的两个移相回路中的至少一个上述串联回路内的前述电容器由可变容量元件构成,通过改变该可变容量元件的静电容量,改变前述的时间常数。
14.一种如权利要求5所述的调谐放大器,其特征在于前述输入阻抗元件和前述反馈阻抗元件分别由电阻构成,通过改变它们的电阻比,改变调谐频率的带宽和最大衰减量。
15.一种如权利要求5所述的调谐放大器,其特征在于在半导体基板上整体形成各构成部件。
16.一种调谐放大器,其特征在于具有包含由一端输入输入信号的输入阻抗元件和由一端输入反馈信号的反馈阻抗元件的、对前述的输入信号和反馈信号实施相加运算用的相加回路;两个移相回路,它包括其反相输入端子与第一电阻的一端相连接的、通过前述第一电阻输入交流信号的差动放大器,连接在前述差动放大器的反相输入端和输出端之间的第二电阻,一端与前述的差动放大器的反相输入端子相连接而另一端接地的第三电阻,由用电容器或电感器构成的阻抗元件和第四电阻构成的、与前述的第一电阻的另一端相连接的串联回路,前述第四电阻和前述阻抗元件的连接部与前述的差动放大器的非反相输入端相连接;而且将前述两个移相回路分别串联连接,在向这两个串联连接着的移相回路中的前级移相回路输入由前述相加回路相加出的信号,同时将从后级移相回路输出的信号作为前述反馈信号输入至前述反馈阻抗元件的一端,并将这两个移相回路中的任一个的输出作为调谐信号输出。
17.一种如权利要求16所述的调谐放大器,其特征在于在前述串联连接的两个移相回路内的两个上述串联回路中均包含前述的作为阻抗元件的电容器的情况下,或者在前述两个串联回路中均包含作为前述的阻抗元件的上述电感器的情况下,在前述两个移相回路中构成前述串联回路的电阻和前述的阻抗元件的连接方式彼此相反。
18.一种如权利要求16所述的调谐放大器,其特征在于在前述串联连接的两个移相回路内的一个前述串联回路中包含作为上述阻抗元件的上述电容器,在另一个串联回路中包含作为前述的阻抗元件的上述电感器的情况下,在前述两个移相回路中构成前述串联回路的电阻和前述的阻抗元件的连接方式彼此相同。
19.一种如权利要求16所述的调谐放大器,其特征在于在前述串联连接着的两个移相回路的前级插入由晶体管构成的跟随回路。
20.一种如权利要求16所述的调谐放大器,其特征在于在由前述串联连接着的两个移相回路构成的反馈回路的一部分中插入第二分压回路,将输入至前述分压回路的交流信号作为前述的调谐信号输出。
21.一种如权利要求16所述的调谐放大器,其特征在于通过改变前述串联连接的两个移相回路中的至少一个串联回路的时间常数,改变调谐频率。
22.一种如权利要求21所述的调谐放大器,其特征在于包含在前述串联连接着的两个移相回路中的至少一个串联回路内的第四电阻由可变电阻构成,通过改变该可变电阻的电阻值,改变前述的时间常数。
23.一种如权利要求21所述的调谐放大器,其特征在于前述可变电阻由p沟道型FET和n沟道型FET并联连接而构成,通过改变栅极电压的大小改变沟道电阻。
24.一种如权利要求21所述的调谐放大器,其特征在于包含在前述串联连接着的两个移相回路中的至少一个前述串联回路内的前述电容器由可变容量元件构成,通过改变该可变容量元件的静电容量,改变前述的时间常数。
25.一种如权利要求16所述的调谐放大器,其特征在于前述输入阻抗元件和前述反馈阻抗元件分别由电阻构成,通过改变它们的电阻比,改变调谐频率的带宽和最大衰减量。
26.一种如权利要求16所述的调谐放大器,其特征在于在半导体基板上整体形成各构成部件。
27.一种调谐放大器,其特征在于具有包含由一端输入输入信号的输入阻抗元件和由一端输入反馈信号的反馈阻抗元件的、对前述的输入信号和反馈信号实施相加运算用的相加回路;第一移相回路,它包括其反相输入端子与第一电阻的一端相连接的、通过前述第一电阻输入交流信号的差动放大器,与前述差动放大器的输出端相连接的第一分压回路,连接在前述第一分压回路的输出端和前述差动放大器的反相输入端之间的第二电阻,由用电容器或电感器构成的阻抗元件和第三电阻构成的、与前述第一电阻的另一端相连接的串联回路,前述第三电阻和前述电感性元件的连接部与前述的差动放大器的非反相输入端相连接;第二移相回路,它包括其反相输入端子与第四电阻的一端相连接的、通过前述第四电阻输入交流信号的差动放大器,连接在前述差动放大器的反相输入端和输出端之间的第五电阻,一端与前述差动放大器的反相输入端相连接而另一端接地的第六电阻,由用电容器或电感器构成的阻抗元件和第七电阻构成的、与前述第四电阻的另一端相连接的串联回路,前述第七电阻和前述阻抗元件的连接部与前述差动放大器的非反相输入端相连接;将前述第一和第二移相回路串联连接,在向这两个串联连接的移相回路中的前级移相回路输入由前述相加回路相加出的信号的同时,将由后级移相回路输出的信号作为前述反馈信号输入至前述反馈阻抗元件的一端,并将前述第一和第二移相回路中的任一个的输出作为调谐信号输出。
28.一种如权利要求27所述的调谐放大器,其特征在于在前述串联连接的两个移相回路内的两个串联回路中均包含作为上述阻抗元件的上述电容器的情况下,或者在前述两个串联回路中均包含作为前述阻抗元件的电感器的情况下,在前述两个移相回路中构成前述串联回路的电阻和前述的阻抗元件的连接方式彼此相反。
29.一种如权利要求27所述的调谐放大器,其特征在于在前述串联连接的两个移相回路内的一个串联回路中包含有作为上述阻抗元件的上述电容器,在另一个串联回路中包含作为前述的阻抗元件的上述电感器的情况下,在前述两个移相回路中构成前述串联回路的电阻和前述阻抗元件的连接方式彼此相同。
30.一种如权利要求27所述的调谐放大器,其特征在于在前述串联连接的两个移相回路的前级插入由晶体管构成的跟随回路。
31.一种如权利要求27所述的调谐放大器,其特征在于在由前述串联连接着的两个移相回路构成的反馈回路的一部分中插入第二分压回路,将输入至前述第二分压回路的交流信号作为前述的调谐信号输出。
32.一种如权利要求27所述的调谐放大器,其特征在于通过改变前述串联连接的两个移相回路中的至少一个串联回路的时间常数,改变调谐频率。
33.一种如权利要求32所述的调谐放大器,其特征在于包含在前述串联连接的两个移相回路中的至少一个串联回路内的电阻由可变电阻构成,通过改变该可变电阻的电阻值改变前述的时间常数。
34.一种如权利要求32所述的调谐放大器,其特征在于包含在前述串联连接的两个移相回路中的至少一个前述串联回路内的电阻由FET沟道电阻构成,通过改变栅极电压的大小改变该沟道电阻。
35.一种如权利要求32所述的调谐放大器,其特征在于包含在前述串联连接的两个移相回路中的至少一个串联回路内的前述电容器由可变容量元件构成,通过改变该可变容量元件的静电容量改变前述的时间常数。
36.一种如权利要求27所述的调谐放大器,其特征在于前述输入阻抗元件和前述反馈阻抗元件分别由电阻构成,通过改变它们的电阻比改变调谐频率的带宽和最大衰减量。
37.一种如权利要求27所述的调谐放大器,其特征在于在半导体基板上整体形成各构成部件。
全文摘要
在调谐放大器1的构成中包括由串联连接的两个移相回路10C、30C、反馈电阻70和输入电阻74构成的相加回路。移相回路10C包含运算放大器12、一端与运算放大器12的反相输入端连接的电阻18、连接在运算放大器12的反相输入端和输出端之间的电阻20、由电容器14和可变电阻16构成的与电阻18的另一端相连接的串联回路。通过使电阻18、20的电阻值相等,可以抑制调谐频率变化时所产生的输出振幅的变动。通过将输入至由电阻21和23构成的分压回路的信号作为输出信号取出,可以保持调谐放大器1自身的增益,并可以在调谐动作的同时放大信号的振幅。而且移相回路30C与移相回路10C同样构成,两个移相回路10C、30C的总的相位偏移量在预定的频率中为360°。因此,调谐放大器1可以仅将一预定频率的信号作为调谐信号输出。
文档编号H03H11/20GK1192829SQ96196164
公开日1998年9月9日 申请日期1996年3月6日 优先权日1995年11月7日
发明者大江忠孝 申请人:池田毅
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1