双模预引比例器的制作方法

文档序号:7533500阅读:237来源:国知局
专利名称:双模预引比例器的制作方法
技术领域
本发明通常涉及分频或计数电路。更具体地,本发明涉及低功率、高速、能用于如锁相环频率合成器的这类应用中的预引比例器。
用于高速分频器、频率合成器和类似装置的预引比例器电路,在本领域中是周知的。双模预引比例器是其分频比或模能由外部控制信号从一值切换到另一值的计数器。通常所知的预引比例器的实现方法用计数器电路,包括用于从时钟信号获得分数输出信号的串联耦合的触发器电路。因此,当外部控制信号有第一状态时,预引比例器可由第一因数分频,当外部控制信号有第二状态时,预引比例器可由第二因数分频。
目前和将来的远程通信装置需要非常高速的预引比例器电路。例如,运行于800-900MHZ波段的蜂窝无线电话在市场中与运行于1800~2000MHZ的个人通信系统(PCS)和卫星无线电话结合。用于这类无线电话的预引比例器必需在最坏条件下在这些高频率运行。
另外,现代远程通信装置已对这些装置中的预引比例器的性能设置了额外的运行要求。便携无线电话需要非常低的功耗,以增加可携性和电池再充电的间隔。因此,用于便携装置的预引比例器必需有非常低的功耗。另外,为进一步减少功耗,用于便携装置中的电子电路的供电电压正在被降低。将来的运行电压的典型值是2.0伏,最差情况的值为1.7伏。合适的预引比例器必须运行在非常低的电压和在非常高的频率,而消耗很少功率。
本发明的目的是提供在低功率水平和低运行电压能高速运行的预引比例器电路。
本发明提供预引比例器,用于由预定的模分频时钟信号并产生输出信号,所述预引比例器包括触发器电路组,每个触发器电路有时钟输入端,用于接收所述时钟信号,所述触发器电路组被串联地耦合,以便响应所述时钟信号计时数据通过所述触发器电路组;多路器,响应选择信号,以选择地耦合来自所述触发器电路组的最后一个触发器电路的输出端的第一输出信号和来自倒数第二个触发器电路的输出端的第二输出信号之一到多路器输出端,所述多路器输出端被耦合到第一触发器电路的输入端;和逻辑电路,耦合到所述触发器电路组的一个触发器电路,用于接收定时信号,并响应所述定时信号提供所述选择信号,以从所述预引比例器的临界通道移去所述选择信号。
本发明的优点是在低功率水平和低运行电压能高速运行附图简短描述

图1是根据本发明的预引比例器的框图;图2是图1的预引比例器的时序图;图3是图1的预引比例器的状态转换图;和图4是图1的多路器的电路图。
现参照图1,预引比例器100包括串行耦合的触发器电路组102,其中包括第一触发器电路104、第二触发器电路106、第三触发器电路108和第四触发器电路110。预引比例器100还包括开关电路如多路器112和逻辑电路114。预引比例器100有配置为接收时钟信号的时钟输入端122和输出端124。优选地,利用高速低功耗技术如射极耦合逻辑技术,制造预引比例器100于单片集成电路中。对于高速运行,人们将认识到,描绘于图中的许多内连线实际代表不同的信号连接。
优选地,触发器电路组102的每个触发器电路在结构和运行中实际是一样的。每个触发器电路包括主锁存器116和从锁存器118,耦合成主从配置。从锁存器118由来自主锁存器116的输出信号驱动。主锁存器116由前面的触发器电路驱动。触发器电路组102有由来自多路器112的反馈信号驱动的输入端126。每个触发器电路有时钟输入端120,用于接收时钟信号。触发器电路组102被串行地耦合,用于时钟数据响应时钟信号通过触发器电路组。根据本发明,每个触发器电路有输出端128,用于提供触发器电路的内部信号。
多路器112有第一输入端130和第二输入端132,输出端134和选择输入端136。在所描绘的实施方案中,第一输入端130被耦合到最后一个触发器电路--第四触发器电路110的输出端138,且第二输入端132被耦合到倒数第二个触发器电路--第三触发器电路108的输出端140。输出端134被耦合到触发器电路组102的输入端126。选择输入端136被耦合到逻辑电路114的输出端142。
多路器112运行,以响应施加到选择输入端136的选择信号,耦合第一输入端130或第二输入端132到输出端。因此,多路器112响应选择信号,以选择地耦合触发器电路组102的最后一个触发器电路--第四触发器电路110的输出端和触发器电路组102的倒数第二个触发器电路--第三触发器电路108的输出端之一到多路器112的输出端134。多路器112从最后一个触发器电路的输出端138接收输出信号,并响应选择信号提供反馈信号到输入端126。多路器112的结构将联系图4讨论。
逻辑电路114有第一输入端144和第二输入端146。配置第一输入端144以接收模控制信号。第二输入端146被耦合到第二触发器电路106的输出端128,以检测和接收定时信号。在所描绘的实施方案中,定时信号是在第二触发器电路106的输出端128提供的第二触发器电路106的内部信号。更具体地,在所描绘的实施方案中,定时信号由第二触发器电路106的主锁存器116产生。定时信号可由逻辑电路114在电路中的任何合适的位置检测。因此,逻辑电路114被耦合到开关电路或多路器112,以响应来自触发器电路如第二触发器电路106的定时信号提供选择信号。
在所描绘的实施方案中,逻辑电路114是与非门。然而,根据信号电平、信号定时和其它因素,可用其它逻辑电路配置。
描绘的实施方案是7分频8分频预引比例器。分频比或模由在模控制输入端144接收的模控制信号控制。预引比例器响应模控制信号的状态,用预定的模如7或8分频在时钟输入端122接收的预定的时钟信号的时钟频率,并产生在分频的频率的反馈信号。通过改变触发器电路的数量和逻辑电路114的第二输入端146被耦合到逻辑电路组102的点及电路中的其它连接,预引比例器的模能被变成任何合适值。
根据本发明,在最后一个触发器电路如第四触发器电路110向多路器112提供输出信号之前,逻辑电路114向多路器112提供选择信号。在典型的实施方案中,一旦模被选择,在模控制输入端144的模控制信号保持在不变的或直流电平。在这个配置中,逻辑电路114运行为定时信号的缓存。结果,从在定时信号(图1中标为Q2m)上的转换到在选择信号(图1中标为Sel)上的转换的延迟仅是单个门延迟。相反,从定时信号到多路器112的第一输入端130的延迟是通过第二触发器电路106的从锁存器118和通过第三触发器电路108及第四触发器电路110的计时的延迟。根据本发明,在开关电路112接收来自第四触发器电路110的输出信号或来自第三触发器电路108的输出信号之前,逻辑电路114从触发器电路接收足够多时钟周期的定时信号,因此,逻辑电路114提供选择信号,以配置开关电路或多路器112响应开关电路接收的输出信号立即提供反馈信号。
因此,逻辑电路114响应定时信号向选择输入端136提供选择信号,以从预引比例器100的临界通道移去选择信号。临界通道是通过预引比例器100的通道,它限制预引比例器的运行,包括预引比例器100的最大运行频率、包括在最差的温度和供电电压条件下。在所描绘的实施方案中,临界通道从最后一个或第四触发器电路110的输出端138、通过多路器112到输入端126。由预引比例器100形成的环路中的其它延迟被计时,且因此不是临界通道的部分。
图2示出图1的预引比例器100运行于7分频模式的定时图。信号识别器对应于图1中的识别器。有预定的时钟频率的时钟信号Clk被加于时钟输入端122。输出信号Q4在输出端124以预定的时钟频率的1/7的频率被产生。
图2描绘图1的预引比例器的一些运行特征。时钟信号Clk的第一负翻转202计时通过第二触发器电路106的主锁存器116的数据,图2中标为Q2m,产生在Q2m上的正翻转204。然后在定时信号Q2m上的这个正翻转产生在选择信号Sel上的翻转206。因此,选择信号从预引比例器100的临界通道被移开,两个半时钟周期后,时钟信号Clk上的负翻转208计时最后一个触发器电路--第四触发器电路110的数据输出,成为在标为Q4的输出信号上的正翻转210。由于选择信号已在多路器112建立,沿临界通道从输出信号Q4到反馈信号A上的正翻转212的延迟仅是通过多路器112的延迟。
类似地,当数据被计时通过第二触发器电路106的主锁存器116时,时钟信号Clk上的负翻转214产生在Q2m上的正翻转216。然后,负翻转218被产生在选择信号Sel上以配置多路器112。一个半时钟周期后,时钟信号Clk上的正翻转220触发在第三触发器电路108的输出信号上的负翻转222。图2中标为Q3。这个负翻转222被反馈到输入端126,作为在反馈信号A上的负翻转224。同时,输出信号Q4的相位被完成为Q4上的负翻转226。
图3示出图1的预引比例器100运行于7分频模式时的状态图。每个状态示出四个触发器电路的输出信号Q1、Q2、Q3和Q4和反馈信号A的逻辑状态。状态图包括在图的底部的8个“不关注”状态302。由于定时信号Q2m取自第二触发器电路的主锁存器116,这些状态是不可能的。基于时钟信号Clk的相位,定时信号必需是第一或第二级的值之一。状态图包括7个有效或重复状态304。状态图也包括17个无效状态306。所有这些无效状态直接或间接馈入7分频模式的有效状态。因为在开机或复位后,触发器电路的状态是未知的,所以这是重要的。在仅几个时钟周期内,预引比例器100将退出无效状态,进入有效、重复状态。
图4是用于图1的预引比例器100的多路器400的电路图。多路器400用射极耦合逻辑(ECL)形成,以便高速运行,且适于低供电电压应用。例如多路器400在低至1.8V的供电电压是可运行的。
多路器400包括第一电流开关402、第二电流开关404、第三电流开关406、电流源408、第一负载电阻410和第二负载电阻412。第一电流开关402包括有耦合的射极的第一晶体管414和第二晶体管416。第一晶体管414的基极被配置以接收选择信号Sel。第二晶体管416的基极被配置以接收选择信号的逻辑补Sel。第二电流开关404包括第一晶体管418和第二晶体管420。第一晶体管418和第二晶体管420的射极被耦合在一起,且被耦合到第一晶体管414的集电极。第一晶体管418的基极被配置以接收第一输入信号,如第四触发器电路110(图1)的输出信号Q4,且第二晶体管420的基极被配置以接收第一输入信号的补。第三电流开关406包括第一晶体管422和第二晶体管424。第一晶体管422和第二晶体管424的射极被耦合在一起,且被耦合到第二晶体管416的集电极。第一晶体管422的基极被配置以接收第二输入信号,如第三触发器电路108(图1)的输出信号Q3,且第二晶体管424的基极被配置以接收第二输入信号的补。第一晶体管418和第一晶体管422的集电极被耦合在一起,且通过负载电阻410耦合到正供电电压426。第二晶体管420和第二晶体管424的集电极被耦合在一起,且通过负载电阻412耦合到正供电电压426。多路器400的输出信号,如图1中的反馈信号A,被提供在输出端434,且输出信号的补被提供在输出端436。
电流源408包括晶体管428和电阻430。晶体管428的基极被配置以接收参考电势。晶体管428的集电极被耦合到第一晶体管414和第二晶体管416的射极。电阻430被耦合在晶体管420的射极和负供电电压432之间。响应参考电压,电流源在晶体管428的集电极提供调整好的参考电流,补偿温度和供电电压的变化。
当与预引比例器100(图1)相联运行时,多路器400提供预引比例器100的临界通道中的最小延迟。选择信号Sel和其补Sel被加于第一电流开关402。因此,多路器400被配置,以基于Q3或Q4的接收立即提供反馈信号A为输出信号。由多路器400插入预引比例器100的临界通道的仅有的延迟是射极耦合电流开关、第二电流开关404和第三电流开关406的开关时间。
如从前文所能知道,本发明提供对高速运行有改善的性能的双模预引比例器。在预引比例器的最后一级被计时之前,定时信号从触发器电路被发展了两个半时钟周期。定时信号被用于产生选择信号,以开关多路器。由于定时信号的早期产生,选择过程被从临界通道除去。通过多路器的剩余延迟是最小的,以最小化预引比例器的临界通道。
虽然示出与描绘了本发明的具体实施例,可作出许多改进。例如,虽然预引比例器的级被示为由主从触发器形成,可用任何合适的逻辑部件。类似地,形成预引比例器的级的数量可被改变,以改变预引比例器的模。因此,希望所附的权利要求覆盖所有这种在本发明的真实精神和范围内的变化和改进。
权利要求
1.预引比例器,用于由预定的模分频时钟信号并产生输出信号,所述预引比例器包括触发器电路组,每个触发器电路有时钟输入端,用于接收所述时钟信号,所述触发器电路组被串联地耦合,以便响应所述时钟信号计时数据通过所述触发器电路组;多路器,响应选择信号,以选择地耦合来自所述触发器电路组的最后一个触发器电路的输出端的第一输出信号和来自倒数第二个触发器电路的输出端的第二输出信号之一到多路器输出端,所述多路器输出端被耦合到第一触发器电路的输入端;和逻辑电路,耦合到所述触发器电路组的一个触发器电路,用于接收定时信号,并响应所述定时信号提供所述选择信号,以从所述预引比例器的临界通道移去所述选择信号。
2.如权利要求1所述的预引比例器,其中所述一个触发器电路包括主锁存器和从锁存器,所述从锁存器由所述主锁存器的输出信号驱动,所述定时信号包括所述主锁存器的输出信号。
3.如权利要求1所述的预引比例器,其中所述一个触发器电路在所述第一触发器电路和所述倒数第二个触发器电路之间被串联耦合。
4.如权利要求1所述的预引比例器,其中所述逻辑电路还包括模控制输入端,用于接收模控制信号,所述逻辑电路响应所述模控制信号提供所述选择信号,所述模控制信号建立所述预定的模。
5.如权利要求1所述的预引比例器,其中所述逻辑电路在所述多路器接收所述第一输出信号和所述第二输出信号之一之前,接收充足数量时钟周期的定时信号,因此,所述逻辑电路提供所述选择信号,以配置所述多路器响应所述开关电路接收所述第一输出信号和所述第二输出信号之一立即提供所述反馈信号。
全文摘要
双模预引比例器对高速运行有改进的性能。在预引比例器的最后一级被计时之前,定时信号从触发器电路被发展两个半时钟周期。定时信号被用于产生选择信号以开关多路器。由于定时信号的提早产生,多路器选择过程从临界通道被移去。通过多路器的剩余延迟被最小化以最小化预引比例器的临界通道。
文档编号H03L7/08GK1196610SQ98105239
公开日1998年10月21日 申请日期1998年2月24日 优先权日1997年2月26日
发明者卡尔·L·淑伯夫, 玛特索·米切尔·马丁 申请人:摩托罗拉公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1