无线电通信装置和用于操作无线电通信装置的方法与流程

文档序号:14718240发布日期:2018-06-16 02:07阅读:453来源:国知局
无线电通信装置和用于操作无线电通信装置的方法与流程

本申请要求2012年4月2日提交的美国临时申请号为61/618,926的优先权,它的内容由此通过引用被整体并入用于所有目的。

技术领域

本公开涉及无线电通信装置和用于操作无线电通信装置的方法。



背景技术:

移动通信终端可以支持多个无线电接入技术,例如蜂窝无线电通信技术,例如LTE(长期演进)和短程无线电通信技术(例如蓝牙或WLAN)或城域系统无线电通信技术(比如WiMax)。虽然典型地,不同的频带被分配给这样的不同的无线电接入技术,但是例如当移动通信终端想要并行操作两个不同的无线电接入技术时,在它们之间可能仍然存在干扰。避免这样的干扰并改进不同的无线电接入技术之间的共存是希望的。



技术实现要素:

根据本公开的一个方面,提供一种无线电通信装置,所述无线电通信装置包括:第一收发器,被配置为依照蜂窝广域无线电通信技术传输和接收信号;第二收发器,被配置为依照短程无线电通信技术或城域系统无线电通信技术传输和接收信号;第一处理器,被配置为控制第一收发器在传输时段期间传输信号,所述传输时段包括传输信号所在期间的第一时间段和没有传输信号所在期间的第二时间段;以及第二处理器,被配置为控制第二收发器考虑到第一收发器的传输时段来传输信号,使得第二收发器至少部分在第二时间段期间传输信号。

根据本公开的另一个方面,提供一种无线电通信装置,所述无线电通信装置包括:第一收发器,被配置为依照蜂窝广域无线电通信技术传输和接收信号;第二收发器,被配置为依照短程无线电通信技术或城域系统无线电通信技术传输和接收信号;第一处理器,被配置为控制第一收发器在传输时段期间传输信号,所述传输时段包括为第一收发器执行在至少一个频率上接收的信号的测量而提供的至少一个测量间隙;以及第二处理器,被配置为控制第二收发器考虑到第一收发器的传输时段来传输信号,使得第二收发器至少部分在至少一个测量间隙期间传输信号。

根据本公开的另外的方面,提供对应于上述的无线电通信装置的用于操作无线电通信装置的方法。

附图说明

在附图中,贯穿不同的视图,类似的参考字符一般指的是相同的部分。这些附图不一定按比例绘制,而是重点一般被放在图解说明本发明的原理上。在下面的描述中,参照下面的附图来描述各个方面,其中:

图1示出了根据本公开的一个方面的通信系统。

图2示出了频带图。

图3示出了测试系统。

图4示出了第一测试情况的测量结果。

图5示出了针对不同的宽带噪声的第一测试情况的修改后的测量结果。

图6示出了第二测试情况的测量结果。

图7示出了针对不同的宽带噪声的第二测试情况的修改后的测量结果。

图8示出了第二测试情况的测量结果。

图9示出了针对不同的宽带噪声的第二测试情况的修改后的测量结果。

图10示出了根据本公开的各个方面的通信终端。

图11示出了帧结构。

图12示出了数据传输图。

图13示出了传输图。

图14示出了传输图。

图15示出了传输图。

图16和图17描绘了用于全连接业务支持的LTE-FDD上的WLAN和蓝牙使用情况仅仅依赖于LTE拒绝和LTE否决的影响。

图18示出了根据本公开的一个方面的通信电路。

图19示出了根据本公开的一个方面的状态及仲裁单元。

图20示出了传输图。

图21示出了通信终端。

图22示出了流程图。

图23示出了传输图。

图24示出了消息流程图。

图25示出了频率分配图。

图26示出了消息流程图。

图27示出了传输图。

图28示出了传输图。

图29示出了传输图。

图30示出了传输图。

图31示出了传输图。

图32示出了传输图。

图33示出了传输图。

图34示出了无线电通信装置。

图35示出了流程图。

图36示出一种无线电通信装置。

图37示出了流程图。

图38示出了图解说明用于BT/LTE共存的过程的消息流程图。

图39示出了图解说明用于BT/LTE共存的过程的消息流程图。

图40示出了图解说明用于WiFi/LTE共存的过程的消息流程图。

图41示出了图解说明用于WiFi/LTE共存的过程的消息流程图。

具体实施方式

下面的详细描述参照附图,所述附图通过图解说明方式来示出其中可以实施本发明的本公开的具体细节和方面。足够详细地描述本公开的这些方面,以使本领域技术人员能够实施本发明。可利用本公开的其他方面并且可以作出结构的、逻辑的和电学的改变而不脱离本发明的范围。本公开的各个方面不一定是相互排斥的,因为本公开的某些方面可以与本公开的一个或多个其他方面组合以形成新的方面。

3GPP(第三代合作伙伴计划)已把LTE(长期演进)引入到UMTS(通用移动电信系统)标准的第8发行版本中。

LTE通信系统的空中接口被称为E-UTRA(演进的通用陆地无线电接入)并通常被称为‘3.9 G’。在2010年12月,ITU承认,倘若不满足“IMT-Advanced”要求的当前版本的LTE和其他演进的3G技术代表IMT-Advanced的先驱和相对于已经部署的最初第三代系统的性能和能力方面的显著改进水平的话,则该不满足“IMT-Advanced”要求的当前版本的LTE和其他演进的3G技术仍可以被认为是‘4 G’。因此,LTE有时也被称为‘4 G’(主要出于市场营销的原因)。

与其前身UMTS比较,LTE提供一种空中接口,其通过改进系统容量和频谱效率而被进一步优化用于分组数据传输。除了其他增强之外,最大净传输速率已被显著增加,即在下行链路传输方向上增加至300 Mbps并在上行链路传输方向上增加至75 Mbps。LTE支持从1.4 MHz到20 MHz的可扩展带宽,并且基于新的多址方法,比如在下行链路方向上(塔,即基站,到手机(handset),即移动终端)的OFDMA(正交频分多址)/TDMA(时分多址)和在上行链路方向上(手机到塔)的SC-FDMA(单载波-频分多址)/TDMA。OFDMA/TDMA是一种多载波多址方法,在该方法中订户(即移动终端)提供有在频谱上定义数量的副载波和定义的传输时间用于数据传输的目的。根据LTE的移动终端(也称为用户设备(UE),例如蜂窝电话)用于传输和接收的RF(射频)能力已被设定为20 MHz。物理资源块(PRB)是在LTE中定义的物理信道的基线分配单位。它包括12个副载波×6或7个OFDMA/SC-FDMA符号的矩阵。在物理层,一个OFDMA/SC-FDMA符号和一个子载波的一对被表示为‘资源元素’。在下文中参照图1来描述根据本公开的一个方面使用的并且例如是根据LTE的通信系统的通信系统。

图1示出了根据本公开的一个方面的通信系统100。

所述通信系统100是蜂窝移动通信系统(在下文中也称为蜂窝无线电通信网络),包括无线电接入网络(根据LTE(长期演进),例如E-UTRAN,演进UMTS(通用移动通信系统)陆地无线电接入网络)101和核心网络(根据LTE,例如EPC,演进分组核心)102。无线电接入网络101可包括基(收发器)站(根据LTE,例如eNodeB,eNB)103。每个基站103为无线电接入网络101的一个或多个移动无线电小区104提供无线电覆盖。

位于移动无线电小区104中的移动终端(也称为UE,用户设备)105可经由提供移动无线电小区中的覆盖(换句话说,操作移动无线电小区)的基站而与核心网络102以及与其他移动终端105通信。换句话说,操作移动终端105所在的移动无线电小区104的基站103提供:E-UTRA用户平面终止,包括PDCP(分组数据汇聚协议)层,RLC(无线电链路控制)层和MAC(介质访问控制)层;和控制平面终止,包括朝向移动终端105的RRC(无线电资源控制)层。

控制和用户数据在多址方法的基础上通过空中接口106在基站103和位于由基站103操作的移动无线电小区104中的移动终端105之间传输。

基站103借助于第一接口107例如X2接口而彼此互连。基站103也借助于第二接口108例如S1接口而被连接到核心网络,例如经由S1-MME接口连接到MME(移动性管理实体)109并且借助于S1-U接口连接到服务网关(S-GW)110。S1接口支持MME/S-GW 109,110和基站103之间的多到多的关系,即,基站103可以连接到多于一个的MME/S-GW 109,110并且MME/S-GW 109,110可以连接到多于一个的基站103。这使得能够在LTE中实现网络共享。

例如,所述MME 109可以负责控制位于E-UTRAN的覆盖区域中的移动终端的移动性,而S-GW 110负责处理移动终端105和核心网络102之间的用户数据的传输。

在LTE的情况中,无线电接入网络101,即在LTE的情况中的E-UTRAN 101,可以看到包括基站103,即在LTE的情况中的eNB 103,其提供朝向UE 105的E-UTRA用户平面(PDCP/RLC/MAC)和控制平面(RRC)协议终止。

eNB103可以例如托管以下功能:

■ 无线电资源管理功能:无线承载控制,无线电许可控制,连接移动性控制,在上行链路和下行链路二者中动态分配资源给UE 105(调度);

■ IP报头压缩和用户数据流加密;

■ 当可以从由UE 105提供的信息确定没有到MME 109的路由时选择在UE 105附连时的MME 109;

■ 朝向服务网关(S-GW)110路由用户平面数据;

■ (源自MME的)寻呼消息的调度和传输;

■ (源自MME 109或O&M(操作和维护)的)广播信息的调度和传输;

■ 用于移动性和调度的测量和测量报告配置;

■ (源自MME 109的)PWS(公共警告系统,该系统包括ETWS(地震和海啸警告系统)和CMAS(商业移动警告系统))消息的调度和传输;

■ CSG(封闭订户组)处理。

通信系统100的每个基站控制在它的地理覆盖区域即它的移动无线电小区104(理想地由六边形形状代表)内的通信。当移动终端105位于移动无线电小区104内并且正在预占(camp on)所述移动无线电小区104(换句话说,向该移动无线电小区104注册)时,它与控制该移动无线电小区104的基站103通信。当呼叫由移动终端105的用户发起(移动发起的呼叫)或呼叫被寻址到移动终端105(移动终止的呼叫)时,在移动终端105和控制移动站所位于的(及它正在预占的)移动无线电小区104的基站103之间建立无线电信道。如果移动终端105移离在其中建立呼叫的原始的移动无线电小区104并且在原始的移动无线电小区104中设立的无线电信道的信号强度削弱,则该通信系统可发起呼叫到该移动终端105移动至的另一移动无线电小区104的无线电信道的转移。

当移动终端105继续在通信系统100的整个覆盖区域中移动时,呼叫的控制可能在邻近的移动无线电小区104之间转移。呼叫从移动无线电小区104向移动无线电小区104的转移被称为切换(或移交)。

除了经由E-UTRAN 102的通信之外,移动终端105可支持经由蓝牙(BT)通信连接111例如与另一移动终端112的通信和经由WLAN通信连接113与WLAN接入点(AP)114的通信。经由接入点114,移动终端可以访问可被连接到核心网络102的通信网络115(例如互联网)。

LTE在新分配的频带组中操作。与用于2G/3G通信系统的那些相比由这组新的频带引入的主要区别是它们中的两个紧邻WLAN和蓝牙所操作的ISM频带。

这在图2中图解说明。

图2示出了频带图200。

在频带图200中,频率包括从左到右。

从左到右,示出了LTE频带40 201,ISM频带202,LTE频带7 UL(上行链路),保护频带204,LTE频带38 205和LTE频带7 DL(下行链路)206。因此,频带图200图解说明了在ISM频带202周围分配给LTE的频谱。

LTE-TDD(时分双工)所使用的LTE频带40 201是紧邻ISM频带202的较低频带而其间没有任何保护频带,而用于LTE-FDD(频分双工)UL的LTE频带7 204以17 MHz的保护频带203邻近ISM频带202的较高频带。

在下文中,为了图解说明共存问题(在这个例子中在LTE之间),给出用当前的硬件进行的实际测量的结果。针对其给出结果的三个测试情况是:

1:WLAN影响频带40;

2:LTE频带40干扰ISM频带中的WLAN;

3:LTE频带7干扰ISM频带中的WLAN。

使用的测试系统在图3中图解说明。

图3示出了测试系统300。

该测试系统300包括:第一通信电路301,支持WLAN和蓝牙(等等);和第二通信电路302,支持LTE通信(等等)。各种滤波器303、304、305、306被提供用于测试。

箭头307指示在这个例子中感兴趣的共存情况(WLAN/LTE共存)。应当指出:在测量中,RF(射频)分析集中于经由天线的干扰而不是经由引脚到引脚的在IC级上的干扰。

在第一测试情况中,LTE频带40 201是接收器(或干扰受害者)而ISM频带202是干扰器。

图4示出了第一测试情况的测量结果。

图5示出了针对不同的宽带噪声的第一测试情况的修改后的测量结果。

从第一测试情况,可以看出,使用ISM频带的较低部分使整个频带40减敏(desensitize)。

在第二测试情况中,LTE频带40 201是干扰器而ISM频带202是接收器(或干扰受害者)。

图6示出了第二测试情况的测量结果。

图7示出了针对不同的宽带噪声的第二测试情况的修改后的测量结果。

从第二测试情况,可以看出,使用频带40的较高部分使整个ISM频带减敏。大约75%的频率组合具有大于10 dB的减敏。

在第三测试情况中,LTE频带7 UL 204是干扰器而ISM频带202是接收器(或干扰受害者)。

图8示出了第二测试情况的测量结果。

图9示出了针对不同的宽带噪声的第二测试情况的修改后的测量结果。

从第三测试情况,可以看出,即使用窄WLAN滤波器,在频率2510 MHz处也存在严重的减敏。

从测试结果可以看出,用现有的硬件,在所有三个测试情况中都出现严重的共存问题。

根据本公开的各个方面,使用应用在PHY层和协议层的机制并且例如依赖于软件(SW)和硬件(HW)实现的混合来解决或缓解这些问题。

在下文中参考如在图10中图解说明的示例性通信终端来描述例子。

图10示出了根据本公开的各个方面的通信终端1000。

例如,通信终端1000是依照LTE和/或其他的3GPP移动无线电通信技术配置的移动无线电通信装置。通信终端1000也称为无线电通信装置。

在本公开的各个方面中,通信终端1000可以包括处理器1002,比如例如微处理器(例如,中央处理单元(CPU))或任何其他类型的可编程逻辑器件(其可以例如充当控制器)。此外,通信终端1000可以包括第一存储器1004例如只读存储器(ROM)1004和/或第二存储器1006例如随机存取存储器(RAM)1006。此外,通信终端1000可以包括:显示器1008,比如例如触敏显示器,例如液晶显示(LCD)显示器或发光二极管(LED)显示器,或有机发光二极管(OLED)显示器。然而,任何其他类型的显示器可以被提供作为显示器1008。通信终端1000可以另外包括任何其他合适的输出装置(未示出),比如例如扬声器或振动致动器。通信终端1000可以包括一个或多个输入装置,比如包括多个键的键区1010。通信终端1000可以另外包括任何其他合适的输入装置(未示出),比如例如麦克风,例如用于语音控制所述通信终端1000。在显示器1008被实现为触敏显示器1008的情况下,键区1010可以由触敏显示器1008实现。此外,任选地,所述通信终端1000可以包括协处理器1012以从处理器1002取得处理负载。此外,通信终端1000可以包括第一收发器1014和第二收发器1018。第一收发器1014例如是支持根据LTE的无线电通信的LTE收发器而第二收发器1018例如是支持根据WLAN通信标准的通信的WLAN收发器或支持根据蓝牙的通信的蓝牙收发器。

经由一个或多个线路(例如实现为总线1016),上述的组件可以彼此耦合。第一存储器1004和/或第二存储器1006可以是易失性存储器例如DRAM(动态随机存取存储器)或非易失性存储器例如PROM(可编程只读存储器),EPROM(可擦除PROM),EEPROM(电可擦除PROM)或闪速存储器,例如浮栅存储器,电荷俘获存储器,MRAM(磁阻随机存取存储器)或PCRAM(相变随机存取存储器)或CBRAM(导电桥接随机存取存储器)。用来被执行并从而控制处理器1002(和任选的协处理器1012)的程序代码可以被存储在第一存储器1004中。要由处理器1002(和任选的协处理器1012)处理的数据(例如,接收到的或要经由第一收发器1014传输的消息)可以被存储在第二存储器1006中。第一收发器1014可以被配置为使得它实现依照LTE的Uu接口。通信终端1000和第一收发器1014也可以被配置为提供MIMO无线电传输。

此外,通信终端1000可以包括:静止图像和/或视频相机1020,被配置为经由所述通信终端1000提供视频会议。

此外,通信终端1000可以包括订户身份模块(SIM),例如识别通信终端1000的用户和订户的UMTS订户身份模块(USIM)。处理器1002可以包括:音频处理电路,比如例如音频解码电路和/或音频编码电路,被配置为依照一个或多个以下的音频编码/解码技术来解码和/或编码音频信号:ITU G.711,自适应多速率窄带(AMR-NB),自适应多速率宽带(AMR-WB),高级多带激励(AMBE)等。

应当指出,虽然下面所描述的大多数例子是针对LTE和WLAN或蓝牙的共存而描述的,但是第一收发器1014和第二收发器1018也可以支持其他通信技术。

例如,每个收发器1014,1018可以支持以下通信技术之一:

- 短程无线电通信技术(其可能包括如蓝牙无线电通信技术,超宽带(UWB)无线电通信技术,和/或无线局域网无线电通信技术(例如根据IEEE 802.11(例如IEEE 802.11n)的无线电通信标准)),IrDA(红外数据协会),Z-Wave和ZigBee,HiperLAN/2((高性能无线电LAN;备选的类似ATM的5 GHz标准化技术),IEEE 802.11a(5 GHz),IEEE 802.11g(2.4 GHz),IEEE 802.11n,IEEE 802.11VHT(VHT=非常高的吞吐量),

- 城域系统无线电通信技术(其可能包括如全球互通微波存取(WiMAX)(例如根据IEEE 802.16的无线电通信标准,例如WiMAX固定WiMax移动),WiPro,HiperMAN(高性能无线电城域网)和/或IEEE 802.16m的高级空中接口,

- 蜂窝广域无线电通信技术(其可能包括例如全球移动通信系统(GSM)无线电通信技术,通用分组无线电业务(GPRS)无线电通信技术,增强型数据速率GSM演进(EDGE)无线电通信技术,和/或第三代合作伙伴计划(3GPP)无线电通信技术(例如UMTS(通用移动电信系统),FOMA(自由多介质访问),3GPP LTE(长期演进),3GPP高级LTE(高级长期演进)),CDMA2000(码分多址2000),CDPD(蜂窝数字分组数据),Mobitex,3G(第三代),CSD(电路交换数据),HSCSD(高速电路交换数据),UMTS(3G)(通用移动电信系统(第三代)),W-CDMA(UMTS)(宽带码分多址(通用移动电信系统)),HSPA(高速分组接入),HSDPA(高速下行链路分组接入),HSUPA(高速上行链路分组接入),HSPA+(高速分组接入+),UMTS-TDD(通用移动电信系统-时分双工),TD-CDMA(时分-码分多址),TD-CDMA(时分-同步码分多址),3GPP Rel 8(准4G)(第三代合作伙伴计划第8版(准第四代)),UTRA(UMTS陆地无线电接入),E-UTRA(演进的UMTS陆地无线电接入),高级LTE(4G)(高级长期演进(第四代)),cdmaOne(2G),CDMA2000(3G)(码分多址2000(第三代)),EV-DO(演进数据优化或者演进-只是数据),AMPS(1G)(高级移动电话系统(第一代)),TACS/ETACS(总访问通信系统/扩展的全接入通信系统),D-AMPS(2G)(数字AMPS(第二代)),PTT(一键通话),MTS(移动电话系统),IMTS(改进的移动电话系统),AMTS(高级移动电话系统),OLT(挪威语Offentlig Landmobil Telefoni,公共陆地移动电话),MTD(为Mobiltelefonisystem D的瑞典语缩写,或移动电话系统D),Autotel/PALM(自动公共陆地移动),ARP(芬兰语Autoradiopuhelin,“汽车无线电电话”),NMT(北欧移动电话),Hicap(高容量版本的NTT(日本电报电话公司)),CDPD(蜂窝数字分组数据),Mobitex,数据TAC,iDEN(综合数字增强网络),PDC(个人数字蜂窝),CSD(电路交换数据),PHS(个人手持电话系统),WiDEN(宽带综合数字增强网络),iBurst,非授权移动接入(UMA,也被称为也被称为3GPP通用接入网络,或GAN标准))。

短程无线电通信技术可能包括以下的短程无线电通信技术子族:

- 个域网(无线PAN)无线电通信子族,其可能包括如IrDA(红外数据协会),蓝牙,UWB,Z-Wave和ZigBee;以及

- 无线局域网(W-LAN)无线电通信子族,其可能包括例如HiperLAN/2(高性能无线电LAN;备选的类似ATM的5 GHz标准化技术),IEEE 802.11a(5 GHz),IEEE 802.11G(2.4 GHz),IEEE 802.11n,IEEE 802.11VHT(VHT=非常高的吞吐量)。

城域系统无线电通信技术族可能包括以下城域系统无线电通信技术子族:

- 无线校园区域网络(W-CAN)无线电通信子族,其可以被视为特定于学院设置的城域网的一种形式并且可能包括例如WiMAX,WiPro,HiperMAN(高性能无线电城域网)或IEEE 802.16m的高级空中接口;以及

- 无线城域网(W-MAN)无线电通信子族,其可能分别被限制于房间,建筑物,校园或特定的大都市区域(例如,城市)并且可能包括如WiMAX,Wipro,HiperMAN(高性能无线电城域网)或IEEE 802.16m的高级空中接口。

蜂窝广域无线电通信技术也可以被视为无线广域网(无线WAN)无线电通信技术。

在下面的例子中,假定第一收发器1014支持LTE通信并因此在LTE频带201,204,205,206中操作。因此,第一收发器1014也被称为LTE RF。

针对下面的例子进一步假定,所述第二收发器1018操作在ISM频带202中并且支持WLAN通信或蓝牙通信。

第一收发器1014包括第一通信电路1022,该第一通信电路1022可以执行与第一收发器1014所进行的通信相关的各种任务,比如控制传输/接收定时等。第一通信电路1022可以被看作通信终端1000的(第一)处理器并且例如被配置为控制第一收发器1014。

第二收发器1018类似地包括第二通信电路1024,该第二通信电路1024可以执行与第二收发器1018所进行的通信相关的各种任务,比如控制传输/接收定时等。第二收发器1018也被称为连接性(系统)或CWS。第二通信电路1024也被称为CWS芯片或连接性芯片。第二通信电路1024可以被看作通信终端1000的(第二)处理器并且例如被配置为控制所述第二收发器1018。

第一收发器1014和第二收发器1018中的每一个可进一步包括前端组件(滤波器,放大器等)和一个或多个天线。

第一通信电路1022可以包括第一实时(RT)接口1026和第一非实时接口(NRT)1028。类似地,第二通信电路1024可以包括第二RT接口1030和第二NRT接口1032。这些接口1026到1032在下文中更详细地描述并可以被用来与通信终端1000的相应的其他组件交换控制信息。RT接口1026,1030可例如形成第一通信电路1022和第二通信电路1024之间的RT接口。类似地,NRT接口1028,1032可以形成第一通信电路1022和第二通信电路1024之间的NRT接口。

应当指出,“电路”可以被理解为任何种类的逻辑实现实体,其可以是执行存储在存储器中的软件、固件或它们的任何组合的专用电路或处理器。因此,“电路”可以是硬接线逻辑电路或可编程逻辑电路,比如可编程处理器,例如微处理器(例如复杂指令集计算机(CISC)处理器或精简指令集计算机(RISC)处理器)。电路也可以是执行软件的处理器,例如任何种类的计算机程序,例如使用虚拟机代码的计算机程序,比如例如Java。依照本公开的各方面,将在下面更详细地描述的相应功能的实现的任何其他种类也可以被理解为电路。

RT共存机制

根据本公开的一个方面,提供实时共存架构,该实时共存架构依赖于两种方法(或这些方法中的至少一个),即协议同步和业务仲裁。

例如,协议同步可能包括两种机制:利用可用的其中LTE RF 1014是空闲的时段以及组织连接性系统1018的RF活动,使得RX(即接收)时段与LTE RX时段同时发生并且TX (即传输)时段与LTE TX时段同时发生。协议同步可以经由LTE帧指示和LTE间隙指示信号的使用而实现,所述信号允许第二收发器1018(WLAN或BT)在以下适当的时间调度其活动:即当LTE RF 1014是空闲的时,或当相应的活动是兼容的(即,使得第一收发器1014和第二收发器1018二者正在接收或使得第一收发器1014和第二收发器1018二者正在传输)时。

业务仲裁可以包括接收最先的CWS 1018活动和最先的LTE RF 1014活动的指示以及选择在识别了冲突时允许进行的业务。可以经由RT(实时)仲裁器用来得出CWS-kill和LTE-kill信号(“否决(kill)”用于通信技术的帧或子帧,即禁止在子帧或帧中经由通信技术传输)的CWS活动指示,实现业务仲裁。

在下文中,描述了在LTE-TDD情况中(即在LTE RF 1014正在TDD模式下操作的情况下)的根据本公开的一个方面用于协议同步的LTE帧指示。

作为时分双工系统,LTE-TDD具有独特的包含DL和UL子帧二者的帧结构。这在图11中图解说明。

图11示出了帧结构1100。

帧结构1100图解说明了LTE-TDD帧1101,所述LTE-TDD帧1101包括:DL子帧,即分配用于下行链路传输的子帧(其中LTE RF 1024接收数据);UL子帧,即分配用于上行链路传输的子帧(其中LTE RF 1028传输数据);和特殊的(S)子帧,其例如可以用作保护时间和导频传输。

存在为TDD在3GPP中定义的一组七种可能的配置。无论哪个所选择的配置,TDD帧结构包含周期性的DL/UL图案,其可以被传送到CWS芯片1024并且可以被连接性系统1018利用以调度通信业务。

LTE TDD帧结构典型地是静态的或变化很少。它可以经由NRT接口1032经由NRT消息传递而向CWS芯片1028指示。CWS芯片1028和LTE-TDD帧定时之间所需的同步可以使用如在图11中图解说明的LTE-frame_sync信号1102经由RT接口1026、1030来执行。

LTE帧开始(即每个帧1001的开头)经由通过第一通信电路1022和第二通信电路1024之间的RT接口(即经由RT接口1026,1030)提前1 ms发送的脉冲提前1 ms向CWS芯片1024指示。

使用经由NRT消息发信号的与LTE帧结构耦合的LTE frame sync信号,CWS芯片1024具有LTE-TDD帧的全面知识并且因此它可以调度它的通信活动。

通过所述第一通信电路1022和第二通信电路1024(由NRT接口1028,1032形成)之间的NRT(共存)接口的该LTE-TDD帧结构信令消息具有例如如表1中图解说明的格式。

该消息可能被降低到3位(仅7种配置)并且可以添加S子帧结构的编码:

•如在3GPP中定义的七种UL/DL TDD帧配置:3位

•九种特殊的子帧配置:4位。

考虑到这个消息是NRT消息并且使用隐含的LTE配置编码将要求一些关于连接性芯片1024的LTE知识,可能希望的是坚持明确的20位编码。

对于LTE-FDD(频分双工)情况下的LTE帧指示,LTE频带7 UL 204是最相关的频带。这是上行链路频带,因此所有的子帧是UL子帧。然而,LTE帧指示也可以在这种情况下使用以便允许CWS芯片1024在LTE UL子帧边界上适当地调度其活动。它也可以被CWS芯片1024用来通过LTE系统时钟使它的系统时钟同步。

当(业务)仲裁给出对CWS 1018的介质访问,这可以按照定义直到被否决的LTE子帧的结束为止都适用时,知道CWS 1018的子帧边界能够应用调度以便最大化直到被否决的(LTE)子帧的结束为止转移的业务量。

在下文中,描述了在LTE-FDD不连续接收(DRX)和不连续传输(DTX)的情况下的根据本公开的一个方面用于协议同步的LTE间隙指示。

LTE已被设计为应对移动互联网接入的需要。互联网业务可以由具有高峰值数据速率和长静默时段的高突发性表征。为了允许用于电池节省,LTE系统允许DRX(不连续接收)。支持分别由短DRX和长DRX应对的两种DRX简档。对于反向链路,即上行链路,为了增加系统容量,LTE系统允许不连续传输(DTX)。

例如,对于VoLTE(LTE上语音),可以假定等时的业务。由于语音编码器每20 ms产生一个分组,因而在LTE静默时段期间可以利用LTE业务的基本周期性来进行WLAN和BT传输。

作为例子,对于2(在3GPP第9版本中DRX不活动时间的最小允许值是1)的不活动时段,UL/DL调度表(schedule)在图12中示出。

图12示出了数据传输图1200。

在数据传输图1200中,时间从左到右增加。数据传输图1200图解说明了上行链路LTE数据传输1201、下行链路LTE数据传输1202并且在底部的时间线1203上图解说明了由于DRX时段1207而可用于CWS 1024的时间(在子帧方面)。

第一影线1204指示可用于CWS 1024(例如BT或WLAN)的时段,第二影线1205指示可能可用于CWS 1024的时段而第三影线1206指示可由CWS 1024利用的时段。

在底部的时间线1203中,这些时段(通过第一影线1204和第二影线1205)被标记,在所述时段内预期没有LTE-UL活动并且因此可给予CWS 1024。应当指出,在即将到来的接收之前需要把无干扰的时间给予LTE收发器1022(特别在其作为接收器的角色时)以使AGC(自动增益控制)稳定并潜在地重新获取信号。对于短LTE DRX时段,这一时段是约300μs;对于长DRX周期,它小于1.3 ms。

LTE标准也提供了一种称为半持续调度(SPS)的机制以在等时传输的情况下降低信令开销。在这种情况下,UL授权由SPS调度表隐含地给出并且DRX时段可以刚好在接收调度的TTI(传输时间间隔)之后开始。

在下文中,描述了根据本公开的一个方面可以用于协议同步的LTE-FDD间隙指示的RT算法。

LTE传输间隙可以由通信终端1000遵照网络部署的决策规则在任何时间创建。这些传输的开始和结束根据本公开的一个方面向CWS 1024指示,使得CWS 1024可以在传输间隙内调度其数据业务(例如,在CWS 1024使用基于ACL(异步无连接链路)的简档来执行WLAN通信或蓝牙通信的情况下)。

在3GPP第9版本中,存在三种可能的创建传输间隙的根本原因:测量间隙,DRX/DTX和自主测量间隙。

测量(传输)间隙在LTE L1级提前34 ms或74 ms知道并且为6 ms长。子帧中的DRX/DTX(传输)间隙在解码先前子帧中的PDCCH(分组数据控制信道)之后即提前远小于1 ms(例如大约为200μs)是已知的。然而,传输间隙决策可以在ad-hoc(点对点)模式下被否决直至在开始传输间隙之前1.5 ms为止。

根据本公开的一个方面的LTE间隙信令在图13中图解说明。

图13示出了传输图1300。

传输图1300图解说明了上行链路LTE数据传输1301,下行链路LTE数据传输1302,上行链路传输间隙信令1303和下行链路传输间隙信令1304。时间从左到右增加。

在本例子中,存在上行链路传输间隙1305和下行链路传输间隙1306。上行链路传输间隙1305由上行链路传输间隙信号1307(UL gap envelope信号)用信号通知,而下行链路传输间隙1306由下行链路传输间隙信号1308(DL gap envelope信号)用信号通知,其中传输间隙1305、1306的开始和终止(结束)例如通过上行链路传输间隙信号1307和下行链路传输间隙信号1308,例如经由第一通信电路1022和第二通信电路1024之间的RT接口而提前1ms向CWS芯片1204指示。

应当指出,按照3GPP Rel11 – Work item “In Device Coexistence”(3GPP第11版本-工作项目“装置内共存”),可以引入尤其针对共存目的而触发的新定义的传输间隙。根据本公开的一个方面的传输间隙信令是符合这些新的传输间隙。

实际上,把DL gap envelope信号1308的定时提前保持较短,因为主张传输间隙的决策可以在DL传输间隙之前在最后的DL子帧期间采取并且可以只有在解码了PDCCH时才进行。对于UL传输间隙,决策也是基于DL子帧解码,但是在DL和UL子帧之间存在大约4 ms的延迟。此外,UL传输间隙决策可以在它被应用之前被否决,直到在传输间隙启动之前1.5 ms。晚于这个时间的否决请求(如果有的话)不被应用。因此,UL传输间隙启动可提前1 ms(<1.5 ms)用信号通知。类似地,传输间隙终止可以最大提前1 ms用信号通知,因为较高的值不能被应用于1 ms UL传输间隙(1子帧)。根据本公开的一个方面,1 ms提前信令被保留用于LTE传输间隙终止信令,因为提前的最大化促进在CWS 1018侧的业务调度。

如在图13中指示,提前值例如为tadv3:150μs,tadv4:1ms,tadv1和tadv2:1ms。

应当指出,可以通过指示该传输间隙开始和传输间隙持续时间而实现用于传输间隙的最优信令。

应当进一步指出,协议同步也可以用于LTE-TDD不连续接收(DRX)和不连续传输(DTX)。

在下文中,描述LTE-TDD情况的仲裁。

由于LTE资源使用并且由于WLAN/BT协议要求,使在每侧的协议完全同步以及仅仅应用并发RX和并发TX可能不足以支持使用情况,并且一些冲突的RX/TX事件可能发生。

图14和图15图解说明了LTE-TDD操作和WLAN/BT操作之间的可能发生的冲突。

图14示出了传输图1400。

传输图1400图解说明了在同步的LTE-TDD和WLAN业务的情况下传输-接收冲突的发生。

对于三个时间线1401、1402、1403中的每个,WLAN下行链路传输被图解说明在时间线1401、1402、1403之上而WLAN上行链路传输被图解说明在时间线1401、1402、1403之下,其中时间从左到右并且例如从顶部到底部沿时间线1401、1402、1403增加。另外,针对时间线1401、1402、1403图解说明了LTE传输(或LTE子帧分配)1404、1405、1406。

影线1407指示WLAN传输和LTE传输之间可能发生的RX/TX冲突。

图15示出了传输图1500。

传输图1500图解说明了在同步的LTE-TDD和蓝牙业务的情况下UL-DL冲突的发生。

对于三个时间线1501、1502、1503中的每个,蓝牙数据传输被图解说明在时间线1501、1502、1503之上而蓝牙数据接收被图解说明在时间线1501、1502、1503之下,其中对于时间线1501、1502、1503中的每个,时间从左到右增加。另外,针对时间线1501、1502、1503图解说明了LTE传输(或LTE子帧分配)1504、1505、1506。

影线1507指示蓝牙传输和LTE传输之间可能发生的UL/DL冲突。

RX/TX冲突可能经由仲裁来处理,这潜在地导致LTE子帧丢失。可以在WLAN/BT和LTE之间执行仲裁以确定WLAN/BT业务是否被允许。

例如,当WLAN/BT传输事件(由第二收发器1018)与LTE-DL子帧(即由所述第一收发器1014的调度接收)冲突时,执行实时仲裁。仲裁过程决定或者否决WLAN/BT传输以保护LTE-DL子帧或者让它发生。在后者的情况下,取决于RF干扰电平,LTE-DL子帧可能不会被LTE PHY即LTE物理层(由第一收发器1014的组件实现)解码。

在LTE-UL情况下,仲裁决策可能在于允许WLAN/BT接收或允许LTE-UL子帧(即LTE传输)。可以看出图14和图15图解说明了用于全连接性业务支持(即第二收发器1018对通信的支持)的LTE-TDD上的WLAN和蓝牙使用情况仅仅依赖于LTE拒绝和LTE灵敏度降低(desense)的影响。这设置LTE-TDD侧的最坏情况并且可以用作用于量化LTE-TDD的共存机制所提供的增强的参考。

例如在由NRT仲裁器决策给出的背景下,RT仲裁可以是位于LTE子系统(例如,第一收发器1014中)的HW和SW的混合实现的实体,其经由第一收发器1014和第二收发器1018之间的实时(共存)接口(由RT接口1026,1030形成)处理第一收发器1014和第二收发器1018的同步。它得出RT仲裁并且(经由RT共存接口)把它应用到第一收发器1014和第二收发器1018上。

对于LTE-FDD,干扰频带是UL频带。LTE UL不能受CWS损害,因此仲裁的作用被降低以保护或不保护WLAN/BT RX以免受LTE TX影响。当发生冲突,即作为对连接性业务的错误调度或不足介质访问的结果时,可以应用仲裁。这导致否决LTE UL子帧或让它正常发生。

图16和17描述了用于全连接性业务支持的LTE-FDD上的WLAN和蓝牙使用情况仅仅依赖于LTE拒绝和LTE否决的影响。这设置LTE-FDD侧的最坏情况并且可以用作用于量化LTE-FDD的共存机制所提供的增强的参考。

图16示出了传输图1600。

传输图1600图解说明了在同步的LTE-TDD和WLAN业务的情况下传输-接收冲突的发生。

对于四个时间线1601、1602、1603、1604中的每个,WLAN下行链路传输被图解说明在时间线1601、1602、1603、1604之上而WLAN上行链路传输被图解说明在时间线1601、1602、1603、1604之下,其中时间从左到右增加。另外,针对时间线1601、1602、1603、1604图解说明了LTE传输(或LTE子帧分配)1605、1606、1607、1608。

影线1609指示WLAN传输和LTE传输之间可能发生的RX/TX冲突。

图17示出了传输图1700。

传输图1700图解说明了在同步的LTE-FDD和蓝牙业务的情况下UL-DL冲突的发生。

对于三个时间线1701、1702、1703中的每个,蓝牙数据传输被图解说明在时间线1701、1702、1703之上而蓝牙数据接收被图解说明在时间线1701、1702、1703之下,其中对于时间线1701、1702、1703中的每个,时间从左到右增加。另外,针对时间线1701、1702、1703图解说明了LTE传输(或LTE子帧分配)1704、1705、1706。

影线1707指示蓝牙传输和LTE传输之间可能发生的UL/DL冲突。

实时(共存)接口1026可以仅由硬件实现或由位于LTE子系统(即第一收发器1014)中的硬件和软件的混合实现。根据本公开的一个方面,它包括一组八个专有实时信号以支持协议同步和业务仲裁。例如,这些信号可以经由位于LTE子系统中的软件驱动程序控制。它被连接到CWS芯片RT接口1030。

RT接口例如可以包括如表2中示出的业务仲裁信号。

RT接口例如可以包括如在表3中示出的协议同步信号。

在下文中,给出第一收发器1014和第二收发器1018之间的RT接口的硬件实现的例子。

该例子描述了第一通信芯片1022和连接性芯片1024之间的RT接口。RT接口的目的是允许在两个方向上在两个芯片1022、1024之间的快速通信。非实时通信可以例如经由第一收发器1014和第二收发器1018之间的标准化接口处理。

实时接口可以被看作基本上由如在图18中示出的一组离散信号组成。

图18示出了根据本公开的一个方面的通信电路1800。

通信电路1800例如对应于所述第一通信电路1022。

通信电路1800包括LTE子系统1801(L1CC),它可以控制所有的硬件交互。通信电路1800包括RT接口1803,经由该RT接口1803,LTE子系统1801可使用各种IDC(装置内共存)信号被连接到另一通信电路例如第二通信电路1024,该信号在RT接口1803的左手侧指示并更详细地描述在下面的文本中。

根据本公开的一个方面,存在对RT接口1803的电气特性的特定要求。IDC信号例如在系统启动期间配置。没有在操作期间重新配置IDC端口(实现RT接口1803)的需要。

从硬件的角度来看,可以使关于接口信号的通信协议保持简单。然而,可能在第1层子系统背景下要求额外的硬件支持以支持接口信号(即IDC信号)的实时处理。

LTE子系统1801包括负责在输出信号IDC_LteDrxEnv、IDC_LteDtxEnv和IDC_LteFrameSync(如果被配置为输出信号)上产生时间精确事件的RT共处(共存)定时器单元1804。如果IDC_LteFrameSync被配置为输入信号,则采取LTE定时的快照。在下文中更详细地描述信号特性。

IDC_LteFrameSync-LTE2CWS_SYNC配置(输出信号):

这个信号可以被用于为CWS 1018产生帧周期性脉冲。应当指出,该脉冲信号可能在LTE休眠阶段期间不可用。

IDC_LteDrxEnv,IDC_LteDtxEnv:

这些输出信号是用于朝向CWS子系统1018指示不连续传输/接收阶段的包络信号。无论哪个根本原因:DRX,DTX,测量或任何其他,它们被用来指示不连续传输/接收阶段。这两个信号可以经由定时器被单独编程。

IDC_LteFrameSync-CWS2LTE_SYNC配置(输入信号):

可以使用这个信号,LTE2CWS_SYNC可能作为解是期望的,同时这一个被保持作为备用。经由这个信号,CWS子系统1018可以请求LTE定时的快照。此外,在此情况下可以产生中断。

LTE子系统1801还包括仲裁单元1805,中断控制单元(IRQ)1806和LTE传输(Tx)路径1807。在图19中更详细地示出仲裁单元1805。

图19示出了根据本公开的一个方面的仲裁单元1900。

仲裁单元1900包括IDC状态寄存器1901,仲裁查找表(LUT)1902和寄存器1903。

仲裁单元1900可以用于状态指示(例如,借助于IDC状态寄存器1901)并且用于中断产生。例如,信号(例如在下文中提及的IDC相关信号)的当前电平可以经由仲裁单元1900被监测。另外,一些信号可以被提供给中断控制单元1806。

仲裁单位1900在它作为仲裁单位的角色中提供用于IDC实时仲裁的硬件支持。仲裁单元1900的任务是控制信号IDC_LteActive和IDC_LteKill,这取决于输入信号IDC_CwsActive、IDC_CwsTxRx和IDC_CwsPriority(因为它的宽度可以被看作由两个信号IDC_CwsPriority1和IDC_CwdPriority2组成)。出于此目的,输入信号的组合是根据可编程查找表、仲裁LUT 1902完成的。查找表1902可以经由LTE子系统1801即时(on-the-fly)编程。

IDC_LteActive:这个信号可用在IDC RT接口1803。连接性芯片1024是该信号的接收器。这个信号可以由硬件构成以在变化的输入参数的情况下提供快速的响应。例如,该信号的复位和隔离电平是零。

IDC_LteKill:这个信号可以被用于LTE传输的“ad-hoc(点对点)”终止。在LTE子系统1014内,该信号可以被用于产生LTE子系统1804和/或LTE Tx路径1807的中断。原则上该信号可以被用于直接操纵Tx IQ数据流。出于备用目的,LteKill信号在外部IDC实时接口1803处可见。如果需要,LteKill信号可以从RT接口1803连接到GPIO(通用输入/输出)以便实现当前LTE传输的快速否决。

仲裁LUT 1902可以包括为IDC_LteActive和IDC_LteKill实现的专用查找表。

仲裁单元1900可以包括用于输出信号滤波的滤波器1904。原则上,如果例如输入信号变化和/或查找表1902被更新的话,输出信号(例如IDC_LteActive和IDC_LteKill)上的瞬态是可能的。在瞬态在接收侧引起问题的情况下,可能要求在输出处的滤波。在这种情况下,在输出处的变化只适用于输入在最小时间(例如1μs)内是稳定的情况。1μs滤波并不意味着信令过程中的任何粒度损失,因为不需要指示短于1μs的事件。这种滤波产生1μs等待时间,在要求CWS 1018早1μs指示其在RT接口1030上的活动中可以隐藏所述1μs等待时间。

LTE否决是一种如下机制:用于停止(或终止)当前的LTE传输(即UL通信),使得LTE收发器1014不传输,例如以便释放通信介质以供WLAN/BT使用。它可以例如作为支持WLAN/BT的实时仲裁的结果而发生。

根据本公开的一个方面,避免了LTE传输的突然关断,因为这将具有若干副作用,比如杂散发射和对eNodeB AGC、功率控制的可能影响。

为了避免这些杂散,LTE否决可经由功率下降命令(例如通过digRF接口发送)或经由IQ样本的调零而执行。功率下降命令的使用可以通过断电命令来选择,因为它提供了降低LTE传输功率下至-40 dBm(比对-50 dBm)同时避免不希望的副作用(比如PLL(锁相环)关闭...)的可能性。

使用通过digRF接口发送的命令确保传输功率的变化被以平稳的方式应用,因此避免毛刺产生。

根据本公开的一个方面,为了最优地适应于WLAN/BT业务,LTE否决具有很短的等待时间,例如对于WLAN业务约10μs而对于BT业务约150μs。

图20示出了传输图2000。

沿着时间线2001,示出了介质上的WLAN业务,其中数据接收(即下行链路通信)被示出在是时间线2001之上而数据传输(即上行链路通信)被示出在时间线2002之下。此外,示出了第一情况2002和第二情况2003的LTE传输。此外,示出了RT接口2004上的CWS Rx/Tx。

应当指出,WLAN活动由于CSMA(载波侦听多路访问)中的争用而具有定时不确定性:

- 如果WLAN装置赢得了访问,定时不确定性大约为几μs。它不能被提前精确地知道,但它由WLAN MAC(介质访问控制)协议约束;

- 如果WLAN装置失去了介质访问,其活动相差几百μs并且可以从共存的角度被视为新的业务事件。这不能被提前知道并且可以重复几次。

相反,BT没有定时不确定性。

应当指出,可能至关重要的是,确保LTE否决不适用于相同子帧的连续重传以保护HARQ。对于FDD,这意味着子帧n和n+8的LTE否决被禁止。为此,可以使用用于保护HARQ信道的模式。

应当进一步指出,WLAN/BT对否决的LTE子帧中的剩余时间的充分使用可能是期望的。

在下文中,给出了通信终端1000的组件的另一个例子。

图21示出了通信终端2100。

通信终端2100例如对应于通信终端1000,其中仅示出一些组件而其他为简单起见被省略。

通信终端2100包括:LTE子系统2101,例如对应于第一收发器1014和/或LTE子系统1801;和WLAN/蓝牙通信电路2102,例如对应于所述第二通信电路1024。LTE子系统2101包括LTE无线电模块2103和例如对应于所述第一通信电路1022的通信电路2104。LTE子系统2101可以实现L1(第1层)LTE通信栈2114和LTE协议栈2115(在第1层之上)。

通信终端2100还包括例如对应于处理器(CPU)1002的应用处理器2105。连接性应用2112(包括WLAN应用和/或蓝牙应用)和LTE应用2113可以运行在应用处理器2105上。

通信电路2104可以包括:NRT应用程序(应用)共存接口2106,用于借助于应用处理器2105的应用接口2109而与应用处理器2105通信;和NRT共存接口2107,例如对应于NRT接口1028,用于借助于例如对应于NRT接口1032的WLAN/BT通信电路2102的NRT共存接口2110而与WLAN/BT通信电路2102通信。

LTE子系统2101包括RT仲裁实体2111(例如对应于仲裁单元1805)。

通信电路2104还包括(LTE-连接性)NRT仲裁实体2108。应当指出,NRT仲裁实体2108不一定位于通信电路2104中,而是也可以位于通信终端1000、2108的其他组件中。例如,它可以由CPU 1002实现。

LTE子系统2101包括例如对应于第一RT接口1026的第一RT接口2106,并且WLAN/蓝牙通信电路2102包括例如对应于所述第二RT接口1030的第二RT接口2107,其可以被看作一起形成LTE子系统2101和WLAN/蓝牙通信电路2102之间的RT接口2116。

表4示出了例如可以在RT接口2116上交换的信号。

应当指出,CWS priority信号因为其宽度而可以被看作两个信号CWS priority 1和2。

还应当指出,第一收发器1014和第二收发器1018也可以经由应用处理器2105(即,例如,CPU 1002)连接,而不是直接连接(作为直接RT接口)。此外,应当指出,一般而言,通信也可以经由串行或并行总线而不是使用专用信号(例如如在表4中示出)实现。

根据本公开的一个方面,可以使用降级的RT模式。具体而言,如表4中给出的RT共存I/F信号的仅子集可以被有效地连接到WLAN/蓝牙通信电路2102。

对于仅FDD的平台(即在第一收发器1014和第二收发器1018只使用FDD的情况下),用于降级RT接口的第一选项(在下面的表5中称为选项1a)是移除DL gap envelop信号和CWS Tx/Rx信号,使得保留六个信号。由于这些移除的信号对于FDD是无用的,所以对共存性能没有影响。作为第二选项(在下面的表5中称为选项1b),除了移除DL gap envelop信号和CWS Tx/Rx信号之外,可以移除CWS priority信号(CWS priority 1和2),使得保留四个信号。在这种情况下,不再有优先级指示。备选地,可以使用轻仲裁(light arbitration),其中第二收发器1018可以仅指示高优先级业务的活动,但是来自BT和WLAN的高优先级业务不能相互区分。

对于FDD-TDD平台(即在第一收发器1014和第二收发器1018使用TDD和FDD二者的情况下),第一选项(在下面的表5中称为选项2)是摆脱仲裁并且单独依赖于业务同步,使得只有保留三个信号。在这种情况下,第二收发器1018变成纯粹的从设备(slave)并且只能使用剩下的由LTE通信(即第一收发器1014)可用的通信资源,所述通信资源经由DL gap envelop信号和UL gap envelop信号或者基于LTE frame sync信号在TDD帧结构上的同步而用信号通知。在这种情况下,没有办法保护LTE业务以免错误或过晚的CWS调度。

作为第二选择(在下面的表5中称为选项3),业务同步和轻仲裁可能被保持,使得保留六个信号。在这种情况下,不存在优先级设置。第二收发器1018可以仅在一定优先级之上用信号通知,但是不能区分BT和WLAN。相同的仲裁规则用于LTE-BT冲突和LTE-WLAN冲突。

表5总结了用于降级RT接口的选项。

作为总结,以下可以例如被提供用于根据本公开的各个方面的RT共存机制:

- LTE帧指示(信号+帧结构消息)

- UL间隙指示

- DL间隙指示

- 包括短冲突可能性的仲裁

- HARQ保护(用于仲裁和LTE拒绝)

- 降级的RT模式

- LTE否决的子帧的充分使用

- 例如如上述的RT接口的实现。

一般共存架构

根据本公开的一个方面,五个实体处理LTE-CWS共存管理:NRT仲裁实体2108,NRT应用共存接口2106,NRT共存接口(由NRT共存接口2107,2110形成),RT仲裁实体2111和RT共存接口(由RT接口2106,2107形成)。

(LTE-连接性)NRT仲裁实体2108可以例如由位于所述通信电路2104中的软件实现。例如,它使用(来自连接性和LTE应用的)应用要求与来自两个内核(例如来自第一收发器1014和第二收发器1018二者)的上下文信息的混合,例如频带、带宽、EARFCN(E-UTRA绝对射频信道号码),以向第一收发器1014和第二收发器1018仲裁和指示静态信息比如选择的频带或选择的功率电平。它也向位于LTE子系统2101中的RT仲裁器2111提供指示。应当指出,根据本公开的一个方面,NRT仲裁实体2108不在WLAN和BT之间仲裁。这一仲裁可以例如在WLAN/BT通信电路中执行。

NRT应用程序(应用)共存接口2106也可以是借助于在通信电路2104上运行的软件而实现的实体。它从应用处理器2105上运行的连接性应用2112和LTE应用2113转移携带应用信息的NRT消息。表6给出了借助于NRT应用程序共存接口2106(以及对应的应用接口2109)可以在应用处理器2105和通信电路2104之间交换的消息的列表。

NRT共存接口2107也可以是位于通信电路2104中的SW实现的实体。它从WLAN/BT通信电路转移携带上下文信息的NRT消息并且把通知从NRT仲裁器2108发送到WLAN/BT通信电路(借助于WLAN/BT通信电路的对应的NRT共存接口2110)。表7给出了可以例如通过由通信电路2104的NRT共存接口2107和WLAN/BT通信电路2102的NRT共存接口2110接口形成的接口交换的消息列表。

应当指出,LTE位映射可以被改变(限于七个帧结构但是对于S内容本身还有更多配置)。应当进一步指出,如果eNodeB 103采取一些关于共存的决策的话,上述的NRT消息也可以被部分或全部发送到eNodeB 103。

此外,应当指出,根据平台架构和应用栈,位于所述通信电路2104中的信息和位于WLAN/BT通信电路2102中的信息之间的分裂(split)可能变化。

根据本公开的一个方面,对NRT共存算法和RT共存算法进行协调。这在图22中图解说明。

图22示出了流程图2200。

当在2201中共存状态在通信终端1000内变化时,在2202中NRT共存机制被激活。消息传递然后通过NRT共存接口发送以应用NRT仲裁决策。

连续地,在2203中,使用预先计算的RF干扰表来估计通过新应用的NRT仲裁达到的连接性RAT的灵敏度降低水平。如果它高于灵敏度降低目标,则RT共存机制被启用2204并且它们以自治的方式连续运行。如果灵敏度降低水平低于灵敏度降低目标,则在2205中,RT共存机制被禁用。

当(经由SW消息)或者从LTE子系统2101或者从WLAN/BT通信电路2102接收更新时,NRT仲裁器2108可以在如下意义上检测共存状态的变化:例如,如果用于LTE和CWS通信的频率到目前为止没有处于临界频带中,则它现在可能已变成情况并且共存算法需要被激活。

NRT仲裁器2108是负责激活或停用任何特定的共存算法的实体,并总是准备从LTE或CWS接收指示任何相关参数的变化的输入消息。

共存状态变化的情况可以例如包括(除别的之外):

- 第二RAT变为活动;

- 在LTE通信中执行到另一个LTE频带的切换;

- 修改LTE带宽;

- 活动RAT的数量降到1。

如上所述,根据本公开的各个方面,可能存在RT和NRT之间的分裂(例如,就接口而言)。RT和NRT处理可以被同步。NRT消息传递可以通过通信终端105和eNodeB 103之间的消息传递而延伸。

NRT共存机制

NRT共存机制可以包括在下文中描述的蓝牙的FDM/PC(频分复用/功率控制)算法。

蓝牙介质访问是基于时隙(slot)的业务调度。时隙被调度在定格的时间和频率。时间时隙为625μs长,并映射到1MHz宽BT信道上。用于一个给定的时隙中的频率信道由跳频图案施加,其伪随机地从时隙到时隙变化。

BT实体(例如,以使用蓝牙的通信终端1000的形式)可以或者是(蓝牙)主设备或者是(蓝牙)从设备。蓝牙主设备提供参考时间并且控制作为它周围的蓝牙装置的小型网络的微微网(这是控件)的同步和活动。从设备实体必须定期监测介质以俘获来自微微网主设备的任何控制信息。蓝牙从设备在时隙或时隙部分期间监听所有潜在的主设备传输(1,25 ms时段)并且在下一个时隙中应答它是否已接收到在当前时隙中向它寄送的分组。BT从设备可以使用“节电(Sniff)模式”以降低功耗并且避免:主从交易只在保留的时隙上(在进入节电模式之前协商)。

根据蓝牙,在两个周期性和/或异步的分组上携带有用的数据和/或控制数据。用于给定数据业务的分组种类取决于对应的业务简档(这是标准化的)。控制业务由异步业务携带。

BT从设备可以使用“节电模式”以降低功耗并且避免:主从交易只在保留的时隙上(在进入节电模式之前协商)。

目标蓝牙简档可能是用于音频(例如音乐)流传送的A2DP和作为语音耳机构型(profile)的HFP。A2DP是使用可变长度分组(单-多时隙)的异步的业务简档,HFP是在调度(保留)的时隙中转移的周期性单时隙业务。装置也可以在无业务的情况下进行蓝牙配对。

时隙可以在链路建立期间(由链路管理器)保留。最常见的分组是HV3分组(用于同步连接导向(SCO)通信),它占用双时隙的三分之一。

在图23中图解说明了多时隙蓝牙业务的例子。

图23示出了传输图2300。

在传输图2300中,时间从左到右增加并且被分成625μs的时间时隙2301。第一传输2302由主装置执行而第二传输2303由从装置执行。

蓝牙通信适用于频率跳变。在通信中,操作频率信道从时间时隙到时间时隙伪随机地变化并执行伪随机走查ISM频带202中的79个可用的1Mhz信道。

自适应频率跳变(AFH)是一种允许将此限制为79个信道的子集的机制。然而,使用的信道的数量N必须不低于20。信道映射的选择是完全灵活的,但由在静态的基础上执行的主设备和从设备之间的协商产生。AFH对于休眠的从设备可以被禁用。

自适应频率跳变机制可以被用来从LTE频带排除BT业务。这对于保护LTE Rx免受BT Tx影响(LTE-TDD情况)而言是特别高效的,在相反的方向上不大高效,因为BT前端(滤波器/低噪声放大器(LNA))是宽带。

根据本公开的一个方面,通过以下来利用自适应频率跳变机构:

- 第一通信电路1022执行向第二通信电路1024(充当(本地)BT核心)的静态请求以修改它的信道映射;

- 第二通信电路1024更新信道映射并将它与对等实体(例如另一通信终端)对准;

蓝牙频谱占有率可以被降低下至ISM频带202的三分之一。这给LTE频带40 201提供了高达60 Mhz的保护频带并且给LTE-7 UL频带204提供了高达79 Mhz的保护频带。应当指出,用于BT/LTE共存的AFH的效率可能由于这样的事实而受限:该BT RX前端接收全频带,即使在AFH背景(不管怎样都有非线性)下。

可以看到这一机制的使用对BT/WLAN共存的影响是有限的。

在下文中,参照图24描述用于保护蓝牙以免受LTE频带7 UL 204中的LTE-FDD传输影响的过程。

图24示出了消息流程图2400。

对应于消息流程图2400的NRT算法可以例如由NRT仲裁单元2108进行。

该消息流发生在对应于LTE子系统2101的LTE子系统2401(例如,对应的软件),对应于NRT仲裁器2108的NRT仲裁器2402和对应于WLAN/BT通信电路2102的BT通信电路2403之间。

在2404中,NRT仲裁器2402加载BT灵敏度降低目标。

在2405中,NRT仲裁器2402把LTE信息请求消息2406发送到LTE子系统2401以请求关于LTE配置的信息。

在2407中,LTE子系统2401产生关于LTE配置的信息,例如包括所使用的频带、使用的带宽、EARFCN、路径损耗裕度(估计的传输功率下降而不触发调制/带宽变化)等的LTE信息表。

在2408中,LTE子系统2401以LTE信息确认消息2409把所产生的信息发送到NRT仲裁器2402。

在2410中,NRT仲裁器2042存储以LTE信息确认消息2409接收的信息。

在2411中,NRT仲裁器2402把AFH映射请求消息2412发送到BT通信电路2403以请求AFH映射。

在2413中,BT通信电路2403构建包括被排除用于共存的信道的排列的AFH映射。

在2414中,BT通信电路2403将所产生的AFH映射以AFH映射确认消息2415发送到NRT仲裁器2402。

在2416中,NRT仲裁器2402产生新的AFH映射。在此目标是BT灵敏度降低水平。该产生例如可以包括以下内容:

1)计算BT信道的ΔF(全频带,要定义的粒度)

2)使用隔离表(在全功率下针对LTE预先计算的,静态的),评估BT灵敏度降低与操作的BT信道(全频带)的关系

3)选择满足BT灵敏度降低目标的BT信道的最高数量N

4)如果目标不能实现或N <Nmin,则使用Nmin

5)如果目标不能实现,保持被应用于WLAN/BT共存的排除->忽略

6)构建新的AFH映射。

在2417中,NRT仲裁器2402以请求BT通信电路2403使用新的AFH映射的AFH设置请求消息2418把新的AFH映射发送到BT通信电路2403。

在2419中,BT通信电路2403因此更新频率跳变序列。

在2420中,BT通信电路2403借助于AFH设置确认消息2421确认新的AFH映射的使用。

在2422中,NRT仲裁器2402选择满足BT灵敏度降低目标和LTE Tx路径损耗裕度的最高LTE TX(传输)功率。

应当指出,这种做法对于互操作性测试(IOT)可能是危险。根据本公开的一个方面,确保它仅被应用于由AP定义的共存情况。

在2423中,NRT仲裁器2402以请求LTE子系统2401使用所确定的Tx功率的功率请求消息2424把所确定的LTE Tx功率发送给LTE子系统2401。

在2425中,LTE子系统2401因此应用Tx功率。

在2426中,LTE子系统2401借助于功率确认消息2427确认Tx功率的使用。

假定,在2428中,NRT仲裁器2402意识到从现在起没有更多的共存要关心。

在2429中,NRT仲裁器2402把取消功率请求消息2430发送给LTE子系统2401,这在2431中借助于来自LTE子系统2401的取消功率确认消息2432而被确认。

根据本公开的一个方面,NRT共存机制包括在下文中描述的用于WLAN的FDM/PC算法。

WLAN介质访问是基于载波侦听介质访问(CSMA),其中站监听该介质并且在它空闲时竞争获得对它的访问。没有资源调度,没有业务周期性。全局同步是经由每大约102 ms由接入点传输的信标实现的,但是有效的信标传输可能由于介质占用而被延迟。

WLAN MAC基于在传输器侧基于接收的ACK(对重发的肯定ACK)计算的分组错误率经由链路速率适配适应于无线电信道条件。

在2.4GHz频带(ISM频带),WLAN系统操作在被称为CH#1到CH#14(CH#14仅在日本使用)的14个重叠信道上。这在图25中图解说明。

图25示出了频率分配图2500。

在频率分配图2500中,频率从左到右增加。分配给WLAN的14个重叠信道由半圆2501图解说明。

WLAN典型地操作在BSS(基本服务集)模式中。对等模式也存在,但仍很少使用。然而,它可能在智能手机使用情况下变得有用。

在BSS模式,接入点(AP)具有对操作的WLAN信道选择和移动站(STA)的完全控制。在静态的接入点中选择WLAN信道。

根据本公开的一个方面,WLAN功率控制用于降低对LTE通信的干扰。

WLAN具有约20 dBm的峰值功率,并且出于功耗原因,通常在全功率下传输以实现最高可能的PHY速率并尽可能缩短分组持续时间。然而,WLAN协议栈不防止使用较低的Tx功率,也不定义用于选择所使用功率的规则。

如果需要的话,嵌入在通信终端1000中的第二收发器1018(在这个例子中作为WLAN收发器操作)可以自主地降低其Tx功率:

- 如果通信终端1000借助于第二收发器1018充当连接到家庭接入点或热点的站,则这有可能触发链路速率适配事件以降级PHY速率,这会导致更高的分组持续时间并因此导致从WLAN到LTE的更长干扰。根据本公开的一个方面,功率控制的使用在这种情况下受限。

- 如果通信终端1000借助于第二收发器1018充当AP(即网络共享(tethering)情况),则用作接入点(路由器)的通信终端1000(例如智能手机)和连接的WLAN(例如Wifi)客户端(例如笔记本电脑)之间的距离处于用户的控制下并且可以使之靠近。通信终端1000然后可以显著降低其WLAN Tx功率以平衡较低的BSS覆盖和关联的路径损耗。

在表8中给出用于网络共享对热点的估计的路径损耗的比较。

如表8中的给出粗略估计给出了热点和网络共享之间的19 dB裕度,示出了WLAN Tx功率可以被降低高达19 dB,这对应于1 dBm。

根据本公开的一个方面,AP Tx功率被逐渐降低并且在AP处的PER演进被监控(PER统计值总是在WLAN中被建立)。

总之,WLAN功率控制可以在网络共享的情况下引起WLAN到LTE干扰的15-20 dB降低。LTE到WLAN干扰抑制要求可以放宽(WLAN灵敏度降低要求)。这种方法可能在与TDM(时分复用)解决方案耦合的情况下不适合,因为Tx功率降低可能导致较低的PHY速率以及因此增加的Tx持续时间。可能存在功率控制和高的PHY速率使用之间的权衡。

根据本公开的一个方面,WLAN信道选择被用于降低WLAN/LTE干扰。

在通信终端1000(作为WLAN实体)充当AP(例如用于网络共享)的使用情况下,它可以为其操作自由地选择WLAN信道。因此,WLAN业务可以从LTE操作频带排除,因此保护WLAN免受LTE影响以及保护LTE免受WLAN影响。根据本公开的一个方面,由WLAN AP感知的WLAN信道质量,例如反映由附近热点或家庭AP的信道占用,在这个过程中加以考虑。

当选择信道CH#3到#14时,WLAN信道选择可以引起WLAN到LTE(LTE频带40)干扰的18至42 dB抑制。这种机制与可以在顶部使用的功率控制解决方案兼容。

当选择信道CH#3到#10时,WLAN信道选择可以引起LTE(LTE频带40)到WLAN干扰的27至77 dB抑制。

总之,AP信道选择可以

- 使WLAN到LTE频带40 OOB(带外)抑制降低18至42 dB

- 使LTE频带40到WLAN OOB抑制降低27至77 dB

- 使LTE频道7 UL -> WLAN OOB抑制降低19至49 dB。

这种机制不损害WLAN的吞吐量或健壮性。

应当指出,上述分析仅考虑到OOB噪声效应,因此假设通过RF系统设计而避免了非线性效应,比如倒易混频的信号压缩。

在下文中,参照图26描述用于保护WLAN以免受LTE频带7 UL 204中的LTE-FDD传输影响的过程。

图26示出了信息流程图2600。

对应于消息流程图2600的NRT算法可以例如由NRT仲裁单元2108进行。

该消息流发生在对应于LTE子系统2101的LTE子系统2601(例如,对应的软件),对应于NRT仲裁器2108的NRT仲裁器2602和对应于WLAN/BT通信电路2102的WLAN通信电路2603之间。

在2604中,NRT仲裁器2602加载WLAN灵敏度降低目标。

在2605中,NRT仲裁器2602把LTE信息请求消息2606发送到LTE子系统2601以请求关于LTE配置的信息。

在2607中,LTE子系统2601产生关于LTE配置的信息,例如包括所使用的频带、使用的带宽、EARFCN、路径损耗裕度(估计的传输功率下降而不触发调制/带宽变化)等的LTE信息表。

在2608中,LTE子系统2601以LTE信息确认消息2609把所产生的信息发送到NRT仲裁器2602。

在2610中,NRT仲裁器2602存储以LTE信息确认消息2608接收的信息。

在2611中,NRT仲裁器2602把信道映射请求消息2612发送到WLAN通信电路2603以请求信道映射。

在2613中,WLAN通信电路2603构建排列的信道映射。该排列可以基于SINR(信噪比)和WLAN/BT约束。

在2614中,WLAN通信电路2603将所产生的信道映射以信道映射确认消息2615发送到NRT仲裁器2602。

在2615中,NRT仲裁器2602确定要使用的WLAN信道。在此目标是WLAN灵敏度降低水平。该确定可以例如包括以下内容:

1)计算每个WLAN信道的ΔF

2)使用隔离表(在全功率下针对LTE预先计算,静态的),评估每个WLAN信道的WLAN灵敏度降低

3)选择满足WLAN灵敏度降低目标的最高排列的WLAN信道。

在2617中,NRT仲裁器2602以请求WLAN通信电路2603使用确定的WLAN信道的设置信道请求消息2618把确定的WLAN信道的指示发送到WLAN通信电路2603。

在2619中,WLAN通信电路2603因此移动到所确定的WLAN信道。

在2620中,WLAN通信电路2603借助于设置信道确认消息2621确认所确定的WLAN信道的使用。

在2622中,NRT仲裁器2602存储WLAN信道的指示。

在2623中,NRT仲裁器2602把WLAN信息请求消息2624发送到WLAN通信电路2603以请求关于WLAN配置的信息。

在2625中,WLAN通信电路2603产生关于WLAN配置的信息,例如包括信道数、MCS(调制和编码方案)、Tx功率等的WLAN信息表。

在2626中,WLAN通信电路2603将所产生的信息以WLAN信息确认消息2627发送到NRT仲裁器2602。

在2628中,NRT仲裁器2602选择满足WLAN灵敏度降低目标和LTE Tx路径损耗裕度的最高LTE TX(传输)功率。

这可能包括如下:

1)计算操作的WLAN信道的ΔF

2)使用隔离表(在全功率下针对LTE预先计算的,静态的),评估操作的WLAN信道的WLAN灵敏度降低

3)选择满足WLAN灵敏度降低目标和LTE TX路径损耗裕度的最高LTE TX功率。

应当指出,这种做法对于互操作性测试(IOT)可能是危险。根据本公开的一个方面,确保它仅被应用于由AP定义的共存情况。

在2629中,NRT仲裁器2602以请求LTE子系统2601使用所确定的Tx功率的功率请求消息2630把所确定的LTE Tx功率发送给LTE子系统。

在2631中,LTE子系统2601因此应用Tx功率。

在2632中,LTE子系统2601借助于功率确认消息2633确认Tx功率的使用。

假定,在2634中,NRT仲裁器2602意识到从现在起没有更多的共存要关心。

在2635中,NRT仲裁器2602把取消功率请求消息2636发送给LTE子系统2601,这在2637中借助于来自LTE子系统2601的取消功率确认消息2638而被确认。

上面在表7中已经示出了在NRT共存的背景下可以例如在由通信电路2104的NRT共存接口2107和WLAN/BT通信电路2102(例如作为WLAN/BT基带电路操作)的NRT共存接口2110形成的NRT接口上交换的消息。另外的例子在下面的文本中给出。

根据本公开的一个方面,在LTE连接模式下的测量间隙配置被用于LTE-WLAN共存。

虽然在LTE连接模式下,测量间隙被定义在3GPP规范中以使得单一无线电移动终端(即只有一个LTE收发器的移动终端,不能够在LTE连接模式下时透明地测量其他频率(除了由服务小区使用的频率))能够执行如下测量:

1. 在与服务小区不同的频率上操作LTE相邻小区(频率间测量)

2. 其他RAT(例如2G或3G)相邻小区(RAT间测量)。

典型地,当LTE是服务RAT时,这些测量间隙具有6 ms的持续时间并且以40 ms或80 ms周期性被调度。

如果使用干扰WLAN通信的频率执行LTE通信并且反之亦然,则测量间隙可以用于安全的WLAN接收和传输:

•如果该间隙被用于LTE频率间测量,并且如果LTE的频率不与WLAN频率重叠

•如果间隙被用于2G或3G测量,则因为不存在2G/3G和ISM频带之间的可能干扰,该间隙可以与LTE测量并行不受限地用于WLAN/BT。

此外,在LTE连接模式中,为了更好的封闭订户组(CSG)小区支持,3GPP第9版本引入了所谓的自主测量间隙的概念。这里原因在于,对于CSG小区,SIB(系统信息块)需要被读取,这可能要求与以规则间隔调度的测量间隙异步的额外测量间隙。如果网络支持自主的测量间隙,则允许移动终端忽略一些TTI,只要该移动终端能够每150 ms间隔发送至少60个ACK/NAK。 HARQ和更高的层信令确保数据不会丢失。

为了向第二收发器1018提前通知任何即将到来的规则间隙发生(在此期间将不发生对WLAN接收或传输的干扰),第一收发器1014(例如,LTE基带电路)可以向第二收发器1018(例如CWS基带电路)发送指示间隙图案连同如下信息的消息:

•测量间隙图案周期性(例如,40/80 ms),

•测量间隙持续时间(例如6ms)

•用于识别所考虑的测量间隙图案的第一测量间隙发生的明确方法。

这可以用于:

•频率间测量间隙,

•RAT间测量间隙,

•自主测量间隙。

例如,该消息可以是从第一收发器1014(例如,LTE基带电路)发送到所述第二收发器1018(例如CWS基带电路)的指示周期性间隙图案的Periodic_Gap_Pattern_Config(周期性,持续时间,第一发生日期)消息,并且在每个这些间隙期间第二收发器1018可以自由地执行传输和接收。

第一收发器1014(例如LTE基带电路)中的用于实现间隙消息指示从第一处理器控制的第一收发器1014(例如实现LTE协议栈或LTE物理层)到所述第二收发器1018(例如CWS基带电路)的发送的准则和决策可能基于以下情况而属于可以在第一收发器1014(例如LTE基带电路)上运行的非实时(例如软件)仲裁器2108实体:

•频率干扰是否发生;

•是有足够的还是没有足够的无干扰的、第二收发器1018(例如CWS基带电路)可以操作所在期间的时间段。

每当非实时(例如软件)仲裁器2108认为满足启动或停止使用间隙的准则确保正确的第二收发器1018功能时,间隙消息指示可以被非实时(例如软件)仲裁器2108动态地启用或禁用。

总之,可以保护WLAN通信以免受LTE频带7 UL 204影响,可以保护蓝牙通信以免受LTE频带7 UL 204影响,并且也可以保护WLAN通信以免受LTE频带40 201影响以及可以保护蓝牙通信以免受LTE频带40 201影响。

PHY缓解

干扰的OFDM符号中的导频符号典型地是无意义的。作为最坏的情况,可以看到每个LTE时隙丢失两个连续的OFDM符号的情况。这意味着,每个天线每个时隙缺少一个导频(例如对于天线0和1为两个之间,对于天线2和3为一个之间)。应当指出,天线0和1仅对于智能手机是相关的。它保留(对于1/2天线)一个最坏情况:对于给定的载波缺少一个导频。

这可能具有以下影响:

1)外接收器可以在AGC、噪声估计、信道估计上受影响。

-这些任务以足够利用WLAN干扰突发的实时指示的延迟被处理,

-一些滤波器已经存在于均衡器中以补偿RS(参考信号)的缺失,

-WLAN干扰突发的指示可以由外接收器用来将相应的RS(如果有的话)宣告为缺少,然后可以应用现有的滤波器,

-这一实时指示可以包括在RT共存接口中

总之,外接收器保护以免受WLAN短干扰可以通过框架修改来完成(作为先决条件,可以完成RT共存和RT仲裁的实现)。

2)内接收器:

- 传输块/码字/码块漏洞可能难以评估;影响至少取决于码块长度和信道条件:

o在最好的情况下,由Turbo码恢复码块,使得对LTE吞吐量没有影响

o在最坏的情况下,类似地在连续的HARQ重传中(定期地)影响码块。这将意味着,对应的传输块决不会经历传输。

典型地,期望的是,避免最坏的情况。此外,可能期望的是,防止在相同的LTE子帧中的两个连续的干扰突发。例如,这可以通过禁止由HARQ时段(例如8 ms)隔开的两个连续的干扰WLAN突发而完成。

根据本公开的一个方面,毛刺归零(spur nulling)可以用于解决上面的问题,这可以被看作频域解决方案。例如假定,毛刺不使FFT饱和(因此蔓延在频域中的全带宽上):因此可以标定(dimension)对传输杂散发射的WLAN/BT要求。例如,频域毛刺检测和频域毛刺归零或信号毛刺归零可能被应用。

总之,基于RT共存指示(AGC,噪声估计和信道估计保护)和/或毛刺检测和归零的RS滤波被应用于共存。

协议缓解

在LTE侧,若干协议机制可以用于防止通信介质上的LTE和WLAN/BT活动之间的冲突:

- 在不存在空闲间隙时或者当它们的数量/持续时间与WLAN/BT需要相比不足时,一些技术可以在协议级用来拒绝一些LTE子帧,使得它们可以被WLAN/BT使用。这被称为LTE拒绝。这种技术可能不依赖于当前的3GPP规格并且可以在移动终端级自主地完成。然而,它们可以被部分地包括在3GPP第11版本标准(IDC工作项目)中。

- 此外,当移动终端处在切换范围内时,它可以试图影响该eUTRAN以优先朝向具有共存友好的载波频率的小区切换。它也可以试图延迟朝向共存不大友好的小区切换。这也被称为共存友好的切换。

LTE拒绝可以使用UL授予忽略或SR(调度请求)推迟来实现。共存友好的切换可以经由相邻小区测量结果(值和/或时间线)的智能报告而实现。

上面在图16和图17中图解说明了用于全连接业务支持的LTE-FDD上的WLAN和蓝牙使用情况仅仅依赖于LTE拒绝的影响。这可以被看作LTE-FDD侧的最坏情况并且可以用作用于量化LTE-FDD的共存机制所提供的增强的参考。作出以下假设:

- 系统性LTE拒绝

- WLAN以中等信道质量操作(29Mbps PHY速率最坏情况)

- WLAN STA(即对网络共享无效)。

表9和10分别进一步图解说明了LTE-FDD上的蓝牙使用情况的最坏情况影响和LTE-FDD上WLAN使用情况的最坏情况影响(假设全支持,没有LTE间隙)。使用情况与图16和图17中图解说明的相同。

根据本公开的一个方面,LTE拒绝在于:

- 在移动终端级自主拒绝其中LTE已分配了通信资源的UL子帧的使用。这可以适用于LTE-FDD(例如LTE频带7 UL 204)和LTE-TDD(例如LTE频带40 201),

- 在移动终端级自主拒绝其中LTE已分配了通信资源的DL子帧的使用。这可以适用于LTE-TDD(例如LTE频带40 201)。

应当指出:对于UL拒绝,可以进行调度LTE活动的取消/推迟;而对于DL拒绝,允许在CWS侧的同时TX活动可能是足够的。

在SR推迟的背景下,应当指出,LTE已被设计为解决移动互联网接入的需要。互联网业务可以由具有高峰值数据速率和长静默时段的高突发性表征。为了允许电池节省,LTE通信系统(如图1所示)允许DRX。引入分别由短DRX和长DRX应对的两种DRX简档。对于反向链路即上行链路,为了增加系统容量,LTE通信系统允许不连续传输(DTX)。对于上行链路业务,移动终端105向eNB 103报告它的上行链路缓冲器状态,eNB 103然后调度和分派上行链路资源块(RB)给移动终端105。在空缓冲器的情况中,eNB 103可以不调度任何上行链路容量,在这种情况下UE 105不能够报告它的上行链路缓冲器状态。在上行链路缓冲器在它的上行链路队列之一中变化的情况下,UE 105发送所谓的调度请求(SR)以能够在随后的调度上行链路共享信道(PUSCH)中报告它的缓冲器状态。

为了防止这种情况发生,如果DTX时段先前已授予给WLAN活动,移动终端105 MAC层可能延迟SR。根据本公开的一个方面,这种机制可以用于LTE/WLAN共存。它在图27中图解说明。

图27示出了传输图2700。

LTE上行链路传输沿第一时间线2701图解说明,而LTE下行链路传输沿第二时间线2702图解说明。传输例如发生在移动终端105和服务于移动终端105的基站103之间。时间沿时间线2701、2702从左至右增加。

在这个例子中,移动终端105在第一TTI 2703中接收UL授权。所述移动终端105通过在第二TTI 2704中发送UL信号而响应于这个UL授权。在同一时间,移动终端105设置其DRX不活动状态定时器。假设没有进一步的UL授权或DL传输块(TB)已被调度(这将导致DRX不活动定时器被复位到DRX不活动时间),在该移动终端105接收其发送的最后UL传输块的待定ACK(如由箭头2705图解说明)之后,DRX和DTX条件得到满足。在DRX和DTX时段2706期间,移动终端105不需要监听PDCCH中的任何下行链路控制信道并且在DRX和DTX时段2706结束之前eNB 103不调度移动终端105。DRX和DTX时段2706可以用于WLAN传输。

移动终端105可以在它要求发送一些将结束DRX和DTX时段2706的上行数据的情况下发送SR。为了防止这种情况发生,移动终端MAC可能抑制SR,如果该时段被用于干扰WLAN活动的话。

在图27的例子中,移动终端105在第一TTI 2703中接收UL授权。移动终端105通过在第二TTI 2704(4个TTI以后)中发送UL信号而符合该UL授权。然而,移动终端105可以忽略该UL授权,因此拒绝四个TTI以后到来的UL子帧,该子帧因此释放用于WLAN/BT操作。使用RT共存接口1026(UL间隙指示)向CWS芯片1024指示这个释放的子帧。

根据本公开的一个方面,使用具有HARQ保护的LTE拒绝。这在下文中描述。

在LTE-WLAN/BT共存中,可能要求LTE拒绝的使用以释放LTE子帧以用于连接性业务(否决LTE子帧分配)。当被应用在UL中时,LTE拒绝可以被看成对应于防止LTE收发器1014在它具有一些分配的通信资源的子帧中传输。在这种情况下,可以考虑LTE HARQ机制的特性:HARQ是MAC层重传机制,其是同步的且以8 ms时段为周期(UL情况,在DL中它是异步的)。

在LTE-FDD UL中,HARQ是同步的并支持最多八个过程。在子帧N中初始传输的分组的潜在重传因此发生在子帧N +8 * K中,其中K> = 1。因此,传输信道上的LTE拒绝的影响可能差别很大,这取决于与LTE HARQ的交互。例如,具有8ms时段的周期性LTE拒绝可能影响单一HARQ过程的每一个重复企图并可能导致链路损失。拒绝时段为12ms的例子在图28中图解说明。

图28示出了传输图2800。

沿第一时间线2801,指示了UL子帧拒绝和TTI向HARQ过程(编号0到7)的分配。在这个例子中,存在规则的LTE拒绝,使得过程0和过程4被定期(每二个时间)拒绝。

时段9ms的周期性LTE拒绝每八个LTE拒绝仅影响相同HARQ过程一次。

在不考虑HARQ行为情况下的周期性拒绝可能即使对于低量的拒绝也具有高度负面的影响:这可能导致较弱的链路(最好的情况)或HARQ失败(最坏的情况)。较弱的链路可能导致eNodeB链路自适应、降低的资源分配,而HARQ失败可能或者导致数据丢失(在非确认模式下RLC)或者导致具有对应的延时的RLC重传。

期望的是避免应用对HARQ具有这样的负面影响的LTE拒绝时段。然而,LTE拒绝要求可能来自在连接性(CWS)侧的应用/编解码器,并且许多编解码器具有周期性要求。在下文中,用于智能LTE拒绝的机制,使得周期性LTE拒绝能够支持应用/解码器要求,同时最小化其对HARQ过程的影响,或在应用时避免周期性LTE拒绝。

例如,可以在应用LTE拒绝以最小化对HARQ的影响中采取以下规定

- 突发拒绝:当应用/编解码器对周期性介质访问没有严格的要求时(例如在通过WLAN进行的HTTP业务的情况下),被拒绝的子帧被成组在一起(按照时间连续子帧的突发)以最小化给定HARQ过程的连续拒绝(即分配给同一HARQ过程的TTI拒绝)数。例如,持续时间低于8ms的罕见突发影响每个HARQ过程最多一次。因此,它有可能通过HARQ完全缓解。

- 智能拒绝:当突发拒绝不能被应用时,产生拒绝图案,其最小化HARQ上的影响同时确保周期性要求。此图案被设计成最大化在携带给定HARQ过程的子帧的连续拒绝(取消)之间的时间间隔:

o此方法就LTE链路健壮性防护(HARQ过程保护)而言是最优的

o对周期性的要求在平均上得以满足(在整个LTE拒绝图案上以平均所需的时段执行LTE拒绝)。该图案包括改变两个LTE拒绝之间的时段。

o避免具有周期性行为的编解码器的下溢/上溢。

用于智能LTE拒绝的一般模式产生算法可以例如为如下:

要求:

o P:时段要求(以ms为单位)

o N:持续时间要求(以ms为单位)

o W:HARQ窗口长度(对于UL为8 ms)

算法:

o 查找P1 <= P,使得

[(MOD(P1,W)> = N)或者(MOD(P1,W)>= W-N)]

(MOD(P1,W)+ N)为偶数

o 如果(P1 = P)

连续地应用P

否则

应用K1乘以P1,其中K1 = W-abs(P-P1)

应用K2乘以P1 + W,其中K2 = P-P1。

这里,下面描述该算法的简单实现例子:

o P1 = P-abs(MOD(P,W)-N)

o P2 = P1 + W

o K1 = W-(P-P1)

o K2 = P-P1。

在图28中图解说明了一个例子。沿着第二时间线2802,指示了UL子帧拒绝和TTI向HARQ过程的分配,其中LTE拒绝之间的时段已根据上面的算法来确定。在这种情况下,LTE拒绝图案时段P1被施加K1倍而P2被施加K2倍。正如可以看到的,避免了周期性地拒绝分配给同一HARQ过程的TTI。

应当指出,这种图案产生算法自主适用于移动终端105中。它也可能适用于3GPP第11版本IDC,其中正在讨论在eNodeB级决定LTE间隙创建的可能性。在这种情况下,可能要求LTE拒绝图案的定义并且上面所描述的那些从健壮性的角度来看可能是最优的。

在下文中,描述一种用于智能VoLTE(LTE上语音)-BT HFP共存的机制。

在这种使用情况下,移动终端105被假设为经由BT被连接到耳机并且语音呼叫通过LTE(VoLTE)接收或拨打。进一步假设该移动终端105充当主BT装置(换句话说,移动终端105中的BT实体被假定为具有主设备角色)。如果情况不是如此,则可以发出BT角色开关命令。

蓝牙通信被组织在微微网中,其中单个主设备控制在625μs长的时间时隙上的业务分配。这在图29中图解说明。

图29示出了传输图。

传输图示出了由主装置、第一从装置(从设备1)和第二从装置(从设备2)的传输(TX)和接收(RX)。主设备在偶数时隙上具有传输机会,而从设备可以仅在奇数时隙上传输(基于来自主设备的分配)。从设备每1.25ms监听所有潜在的主设备传输,除非它们处于这种约束被放宽的休眠模式(监听,暂停,保持模式)中。

对于耳机连接,BT实体典型地是成对的并且处于低功耗模式(例如,每50至500 ms交换一个业务)。当呼叫开始时,BT实体切换到具有非常频繁的周期性eSCO(延伸同步连接导向)或SCO(同步连接导向)业务的HFP简档(免提简档)。这在图30中图解说明。

图30示出了传输图3001、3002。

第一传输图3001图解说明了主设备(M)和从设备(S)之间的eSCO通信而第二传输图3002图解说明了主设备和从设备之间的SCO通信。

典型地,如在图30中图解说明的,对于HFP,eSCO设置具有八个时隙时段,其中两个连续的时间时隙专用于主设备和从设备传输随后是重传机会;而SCO设置具有六个时隙时段,其中两个连续的时间时隙专用于主设备和从设备传输随后四个空闲时隙,并且没有重传机会。

应当指出,一旦BT设备被配对,就创建了微微网并且因此BT系统时钟和时隙计数器打开。例如,然后确定奇数和偶数时隙。因此,在微微网建立之后相对于LTE系统时钟使蓝牙系统时钟同步的尝试可能是不可能的,也不定义奇数和偶数时隙。还应当指出,术语TTI在本文中指的是LTE TTI(1ms)而Ts指的是BT时间时隙持续时间(0.625 ms)。

在下文中,描述BT eSCO的保护。这适用于其中蓝牙实体(例如由第二收发器1018实现)正在使用HFP简档以用eSCO业务携带来自/去往耳机的语音的情况。

图31示出了传输图3100。

顶部时间线3101代表空中LTE-FDD UL中的VoLTE业务(1ms网格)。HARQ过程与8ms时段同步并且声音编解码器具有20 ms时段。

具有T和RTn标签的子帧对应于VoLTE子帧的初始传输以及对应于它的第n重传(在HARQ重传的意义上)。VoLTE原始子帧由第一影线3103图解说明并且潜在的重传由第二影线3104图解说明。

底部时间线3102示出了从主设备的角度来看并且基于eSCO分组的蓝牙HFP业务。具有第二影线3104的BT时隙对应于按照eSCO业务定义的潜在BT重传。

由于业务特性(时段和持续时间),应用MAC协议同步可以允许VoLTE和BT HFP操作之间的高效共存。两个不同的权衡是可能的:其中只保护BT-HFP-eSCO初始接收以免受LTE UL干扰的第一权衡,以及其中保护BT-HFP-eSCO初始接收和重传的时隙接收二者的第二权衡。

在以下条件下可以保护由BT从设备传输的原始分组的接收以免受LTE重传影响:

-保护以免受T

mod(D0,5TTI) >= TTI– Ts 或者 mod(D0,5TTI) <= 5TTI–2 Ts

-保护以免受RT1

mod(D0 ,5TTI) <= 3TTI–2 Ts 或者 mod(D0,5TTI) >= 4TTI – Ts

-保护以免受RT2

mod(D0,5TTI) <= TTI–2 Ts 或者 mod(D0,5TTI) >= 2TTI – Ts

-保护以免受RT3

mod(D0,5TTI) <= 4TTI– 2Ts 或者 mod(D0,5TTI) >= 5 TTI – Ts。

在以下条件下可以保护由BT从设备重传的分组的接收以免受LTE重传影响:

-保护以免受T

mod(D0,5TTI) >= 4TTI 或者 mod(D0,5TTI) <= 3TTI– Ts

-保护以免受RT1

mod(D0 ,5TTI) <= TTI– Ts 或者 mod(D0,5TTI) >= 2TTI

-保护以免受RT2

mod(D0,5TTI) <= 4TTI– Ts 或者 mod(D0,5TTI) >= 0

-保护以免受RT3

mod(D0,5TTI) <= 2TTI– Ts 或者 mod(D0,5TTI) >= 3 TTI。

作为用于VoLTE和BT eSCO共存的第一种方法,可以保护BT以免受LTE TX,ReTx1,ReTx2,ReTX3(即保护分组的第一传输和前三个重传)影响,而无BT重试保护。

在这种情况下,保护BT初始分组交换(1TX时隙+ 1 RX时隙)以免受LTE UL传输的影响,只要LTE不针对同一HARQ过程连续重传四次。BT重传(如果的有话)可能被LTE UL传输干扰。这可能通过要求BT主设备初始分组传输相对于LTE初始子帧传输被延迟D0而实现,其中2TTI-Ts <=mod(D0, 5TTI) <= 3 TTI – 2 Ts,例如1375µs <= mod(D0,5ms)<= 1750 µs。在图32中示出一个例子。

图32示出了传输图3200。

顶部时间线3201代表LTE-FDD UL中的VoLTE业务。具有T和RTn标签的子帧对应于VoLTE子帧的初始传输以及对应于它的第n重传(在HARQ重传的意义上)。VoLTE原始子帧由第一影线3103图解说明并且潜在的重传由第二影线3104图解说明。

底部时间线3102示出了从主设备的角度来看并且基于eSCO分组的蓝牙HFP业务。具有第二影线3104的BT时隙对应于按照eSCO业务定义的潜在BT重传。

作为用于VoLTE和BT eSCO共存的第二种方法,可以保护BT和BT重复(即BT分组重传)以免受LTE TX和ReTx1(即免受分组传输和分组第一分组重传)的影响。在这种情况下,保护BT初始分组交换(1TX时隙+ 1 RX时隙)及其潜在的第一重传以免受LTE UL传输的影响,只要LTE系统不针对同一HARQ过程连续重传两次。如果LTE系统重传多于两次,则一些BT传输/重传可能被干扰。这可能通过要求BT主设备初始分组传输相对于LTE初始子帧传输被延迟D1而实现,其中D1= TTI – Ts。例如,mod(D1 ,5ms)= 375 us用于eSCO和eSCO重复保护以免受LTE T和RT1的影响。这个传输方案对应于图31中示出的传输方案。

作为用于VoLTE和BT eSCO共存的第三种方法,可以保护BT以免受LTE TX,ReTx1。不保护BT重试。

在这种情况下,保护BT初始分组交换(1TX时隙+ 1 RX时隙)以免受LTE UL传输的影响,只要LTE不针对同一HARQ过程连续重传两次。如果LTE重传多于两次,则一些BT传输/重传可能被干扰。

这可能通过要求BT主设备初始分组传输相对于LTE初始子帧传输被延迟D0而实现,其中TTI-Ts<=mod(D3,5 TTI)< = 3 TTI – 2 Ts。例如,375 µs <= mod(D3 ,5ms) <= 1625 us用于eSCO保护以免受LTE T和RT1影响。这个传输方案对应于图31中示出的传输方案。

作为另一种方法,可以如下保护BT SCO。根据蓝牙,HFP简档可能被用来通过SCO业务携带来自/去往耳机的语音,其占用1/3的通信介质时间并没有重传能力。在图33中给出了一个例子。

图33示出了传输图3300。

顶部时间线3301代表LTE-FDD UL中的VoLTE业务。具有T和RTn标签的子帧对应于VoLTE子帧的初始传输以及对应于它的第n重传(在HARQ重传的意义上)。VoLTE原始子帧由第一影线3103图解说明并且潜在的重传由第二影线3104图解说明。

底部时间线3102示出了从主设备的角度来看并且基于SCO分组的蓝牙HFP业务。

保护三分之二的BT分组交换(1TX时隙+ 1 RX时隙)以免受LTE UL传输的影响。如果发生一些LTE重传,它有可能干扰一些更多BT时隙。这可以通过以下来实现:要求BT相对于LTE活动子帧开始被延迟介于TTI-Ts和TTI之间并且TTI – Ts <= mod(D2,6 Ts) <= TTI。例如, 375 µs <= mod(D2, 3.75ms) <= 1ms用于SCO业务上的最小LTE VoLTE干扰。如果D2不在此范围内,则三分之二的SCO分组可能被VoLTE子帧传输所干扰。

总之,上面识别的VoLTE Tx和BT主设备Tx之间的延迟或延迟范围(这可能被视为最优)提供VoLTE子帧传输和BT HFP分组接收之间的最小冲突可能性。得出与用于BT HFP简档的eSCO分组使用或SCO分组使用对应的延迟要求。

eSCO分组的使用可能是期望的,因为它对于VoLTE业务图案共存更好得多。如果使用SCO,则三分之一的BT分组由于与VoLTE UL子帧的冲突而丢失,并且它可不能通过该帧的LTE拒绝而得以解决,因为它对呼叫质量的影响将更坏(20 ms损失比5 ms损失)。

此外在eSCO解决方案当中,第三种方法可能是期望的,因为:

- 它足以完全保护BT初始接收

- 它的延迟要求是相当宽松的(2×BT T时隙);这可以在呼叫期间LTE切换的情况下利用。

可能的概念可以如下:

A)呼叫设置

1)完成典型地发生在VoLTE呼叫建立之前的BT配对,而没有任何具体的共存约束。

2)当建立LTE呼叫时,周期性地分配的子帧(基于SPS)的信息被传送至在NRT消息传递中添加的BT。例如,它可以在SPS图案被应用之后5到10 ms可用。

3)BT主设备然后解析SPS指示消息(时段,持续时间,偏移量)并且使用LTE frame sync RT信号作为同步参考。

4)当建立eSCO/SCO业务时,BT主设备分配BT时隙,所述BT时隙满足关于VoLTE传输的延迟要求(这总是可能的,就第三种方法而论延迟为2xT时隙)。

B)LTE切换。

当LTE在VoLTE呼叫期间执行从第一小区到第二小区的切换时,所述第一小区中的LTE系统时钟在相位上可能不同于所述第二小区(或第二扇区)中的LTE系统时钟。SPS分配也可以是不同的。因此,BT和VoLTE业务图案之间的延迟可能不再得以满足:

1)切换以及新的SPS分配然后可以经由NRT消息传递而提供给BT

2)BT主设备可以改变eSCO业务的BT时间时隙分配以便再次满足延迟要求(只对于上述的第三种方法总是可能的)。

应当指出,由于不存在时间戳机制,可能仍然不保证BT可以从NRT消息传递中的SPS指示直接得出VoLTE子帧位置。如果否,则BT实体可经由使用SPS时段信息来监测LTE UL间隙包络(RT接口)而检测到它们。因为以这种方式可能需要几个VoLTE周期来获得VoLTE同步,所以BT可能在启动时进行盲目的eSCO调度并且重新调度一旦识别了VoLTE子帧就重新调度它。

可以看到这种机制针对具有20ms时段的VoLTE进行优化,但是它可以用于任何基于SPS的LTE业务。仅延迟要求可能被适配。

总之,对于在协议缓解的背景下的LTE-WLAN/BT共存,可以提供/执行如下内容:

- 共存友好的切换

- SR推迟

- 忽略UL授权

- LTE拒绝控制(利用分组错误率的监控的算法)

- 最小化LTE拒绝对LTE HARQ以及因此对LTE链路健壮性的影响(例如,通过对应的算法)

- 最小化BT HFP业务对VoLTE业务的影响。

根据本公开的一个方面,提供一种无线电通信装置,如在图34中图解说明。

图34示出了无线电通信装置3400。

无线电通信装置3400包括:第一收发器3401,配置为依照蜂窝广域无线电通信技术传输和接收信号;和第二收发器3401,配置为依照短程无线电通信技术或城域系统无线电通信技术传输和接收信号。无线电通信装置3400还包括:第一处理器3403,配置为控制所述第一收发器3401在传输时段期间传输信号,所述传输时段包括传输信号所在期间的第一时间段和没有传输信号所在期间的第二时间段;以及第二处理器3405,被配置为控制所述第二收发器3402考虑到第一收发器3401的传输时段来传输信号,使得第二收发器3402至少部分在第二时间段期间传输信号。

应当指出,虽然图解说明了第一收发器3401和第二收发器3402经由处理器3403、3404的连接,但是第一收发器3401和第二收发器3402也可以被直接连接。

第二处理器可以被配置为接收包括关于第一收发器的传输时段的第一时间段和第二时间段的信息的消息。

所述传输时段可以通过传输指定第一时间段和第二时间段的帧结构来确定。

所述第二时间段可以例如包括为第一收发器执行在一个或多个频率上接收的信号的测量而提供的测量间隙。

所述第二时间段可以例如包括为第一收发器执行在一个或多个蜂窝广域通信技术相邻无线电小区的一个或多个频率上接收的信号的测量而提供的测量间隙。

根据本公开的一个方面,第一收发器被配置为依照第三代合作伙伴计划无线电通信技术传输和接收信号。

第一收发器可以被配置为依照4G无线电通信技术传输和接收信号。

例如,第一收发器被配置为依照长期演进无线电通信技术传输和接收信号。

所述第二时间段可以包括为第一收发器执行在一个或多个相邻长期演进无线电小区的一个或多个频率上接收的信号的测量而提供的测量间隙。

根据本公开的一个方面,所述第二时间段包括多个测量间隙,所述测量间隙包括:第一测量间隙,被提供用于第一收发器执行在一个或多个相邻长期演进无线电小区的一个或多个频率上接收的信号的测量;第二测量间隙,被提供用于第一收发器执行在依照第二代蜂窝广域通信技术或者依照第三代蜂窝广域通信技术配置的一个或多个相邻无线电小区的一个或多个频率上接收的信号的测量;并且所述无线电通信装置还包括:确定器,被配置为确定相应的测量间隙是第一测量间隙还是第二测量间隙并且向第二处理器指示这一信息;其中所述第二处理器被配置为控制第二收发器以根据相应的测量间隙是第一测量间隙还是第二测量间隙来传输信号。

第二处理器可以被配置为控制第二收发器传输信号,使得第二收发器在第二测量间隙期间传输信号。

第二处理器可以被配置为控制第二收发器传输信号,使得在用于第一测量间隙中的测量的频率与用于第二收发器传输信号的频率彼此不重叠的情况下,第二收发器在第一测量间隙期间传输信号。

所述第二收发器可以被配置为依照选自由以下组成的组的短程无线电通信技术传输和接收信号:

蓝牙无线电通信技术;

超宽带无线电通信技术;

无线局域网无线电通信技术;

红外数据协会无线电通信技术;

Z-Wave无线电通信技术;

ZigBee无线电通信技术;

高性能无线电LAN的无线电通信技术;

IEEE 802.11无线电通信技术;以及

数字增强无绳无线电通信技术。

根据本公开的一个方面,所述第二收发器被配置为依照选自由以下组成的组的城域系统无线电通信技术传输和接收信号:

全球互通微波接入无线电通信技术;

WiPro无线电通信技术;

高性能无线电城域网无线电通信技术;以及

802.16m高级空中接口无线电通信技术。

根据本公开的一个方面,提供一种用于操作无线电通信装置的方法,如在图35中图解说明。

图35示出了流程图3500。

在3501中,第一收发器依照蜂窝广域无线电通信技术传输和接收信号。

在3502中,第二收发器依照短程无线电通信技术或城域系统无线电通信技术传输和接收信号。

在3503中,第一处理器控制第一收发器在传输时段期间传输信号,所述传输时段包括传输信号所在期间的第一时间段和没有传输信号所在期间的第二时间段。

在3504中,第二处理器控制所述第二收发器考虑到第一收发器的传输时段来传输信号,使得第二收发器至少部分在第二时间段期间传输信号。

该方法还可以包括第二处理器接收关于第一收发器的传输时段的第一时间段和第二时间段的信息的消息。

所述传输时段可以通过传输指定第一时间段和第二时间段的帧结构来确定。

所述第二时间段可以包括为第一收发器执行在一个或多个频率上接收的信号的测量而提供的测量间隙。

所述第二时间段可以包括为第一收发器执行在一个或多个蜂窝广域通信技术相邻无线电小区的一个或多个频率上接收的信号的测量而提供的测量间隙。

根据本公开的一个方面,第一收发器依照第三代合作伙伴计划无线电通信技术传输和接收信号。

例如,第一收发器依照4G无线电通信技术传输和接收信号。

例如,第一收发器依照长期演进无线电通信技术传输和接收信号。

根据本公开的一个方面,所述第二时间段包括为第一收发器执行在一个或多个相邻长期演进无线电小区的一个或多个频率上接收的信号的测量而提供的测量间隙。

根据本公开的一个方面,所述第二时间段包括多个测量间隙,所述测量间隙包括:第一测量间隙,被提供用于第一收发器执行在一个或多个相邻长期演进无线电小区的一个或多个频率上接收的信号的测量;第二测量间隙,被提供用于第一收发器执行在依照第二代蜂窝广域通信技术或者依照第三代蜂窝广域通信技术配置的一个或多个相邻无线电小区的一个或多个频率上接收的信号的测量;并且所述方法还包括:确定相应的测量间隙是第一测量间隙还是第二测量间隙;并且向第二处理器指示这一信息;其中所述第二处理器控制第二收发器以根据相应的测量间隙是第一测量间隙还是第二测量间隙来传输信号。

第二处理器可以控制第二收发器传输信号,使得第二收发器在第二测量间隙期间传输信号。

第二处理器可以控制第二收发器传输信号,使得在用于第一测量间隙中的测量的频率与用于第二收发器传输信号的频率彼此不重叠的情况下,第二收发器在第一测量间隙期间传输信号。

所述第二收发器可以依照选自由以下组成的组的短程无线电通信技术传输和接收信号:

蓝牙无线电通信技术;

超宽带无线电通信技术;

无线局域网无线电通信技术;

红外数据协会无线电通信技术;

Z-Wave无线电通信技术;

ZigBee无线电通信技术;

高性能无线电LAN的无线电通信技术;

IEEE 802.11无线电通信技术;以及

数字增强无绳无线电通信技术。

根据本公开的一个方面,所述第二收发器依照选自由以下组成的组的城域系统无线电通信技术传输和接收信号:

全球互通微波接入无线电通信技术;

WiPro无线电通信技术;

高性能无线电城域网无线电通信技术;以及

802.16m高级空中接口无线电通信技术。

根据本公开的一个方面,提供一种无线电通信装置,如图36所示。

图36示出了无线电通信装置3600。

无线电通信装置3600包括:第一收发器3601,配置为依照蜂窝广域无线电通信技术传输和接收信号;和第二收发器3602,配置为依照短程无线电通信技术或城域系统无线电通信技术传输和接收信号。

无线电通信装置3600还包括:第一处理器3603,配置为控制所述第一收发器3601在传输时段期间传输信号,所述传输时段包括为第一收发器执行在至少一个频率上接收的信号的测量而提供的至少一个测量间隙;和第二处理器3604,被配置为控制所述第二收发器3602考虑到第一收发器的传输时段来传输信号,使得第二收发器至少部分在至少一个测量间隙期间传输信号。

应当指出,虽然图解说明了第一收发器3601和第二收发器3602经由处理器3603、3604的连接,但是第一收发器3601和第二收发器3602也可以被直接连接。

第二处理器可以被配置为接收包括关于至少一个测量间隙的信息的消息。

所述传输时段可以通过传输指定至少一个测量间隙的定时的帧结构来确定。

所述至少一个测量间隙可以包括为第一收发器执行在一个或多个蜂窝广域通信技术相邻无线电小区的至少一个频率上接收的信号的测量而提供的至少一个测量间隙。

第一收发器可以被配置为依照第三代合作伙伴计划无线电通信技术传输和接收信号。

第一收发器可以被配置为依照4G无线电通信技术传输和接收信号。

例如,第一收发器被配置为依照长期演进无线电通信技术传输和接收信号。

所述至少一个测量间隙可以包括为第一收发器执行在一个或多个相邻长期演进无线电小区的一个或多个频率上接收的信号的测量而提供的至少一个测量间隙。

根据本公开的一个方面,所述至少一个测量间隙包括多个测量间隙,所述测量间隙包括:第一测量间隙,被提供用于第一收发器执行在一个或多个相邻长期演进无线电小区的一个或多个频率上接收的信号的测量;第二测量间隙,被提供用于第一收发器执行在依照第二代蜂窝广域通信技术或者依照第三代蜂窝广域通信技术配置的一个或多个相邻无线电小区的一个或多个频率上接收的信号的测量;并且所述无线电通信装置还包括:确定器,被配置为确定相应的测量间隙是第一测量间隙还是第二测量间隙并且向第二处理器指示这一信息;其中所述第二处理器被配置为控制第二收发器以根据相应的测量间隙是第一测量间隙还是第二测量间隙来传输信号。

第二处理器可以被配置为控制第二收发器传输信号,使得第二收发器在第二测量间隙期间传输信号。

第二处理器可以被配置为控制第二收发器传输信号,使得在用于第一测量间隙中的测量的频率与用于第二收发器传输信号的频率彼此不重叠的情况下,第二收发器在第一测量间隙期间传输信号。

所述第二收发器可以被配置为依照选自由以下组成的组的短程无线电通信技术传输和接收信号:

蓝牙无线电通信技术;

超宽带无线电通信技术;

无线局域网无线电通信技术;

红外数据协会无线电通信技术;

Z-Wave无线电通信技术;

ZigBee无线电通信技术;

高性能无线电LAN的无线电通信技术;

IEEE 802.11无线电通信技术;以及

数字增强无绳无线电通信技术。

根据本公开的一个方面,所述第二收发器被配置为依照选自由以下组成的组的城域系统无线电通信技术传输和接收信号:

全球互通微波接入无线电通信技术;

WiPro无线电通信技术;

高性能无线电城域网无线电通信技术;以及

802.16m高级空中接口无线电通信技术。

根据本公开的一个方面,提供一种用于操作无线电通信装置的方法,如在图37中图解说明。

在3701中,第一收发器依照蜂窝广域无线电通信技术传输和接收信号。

在3702中,第二收发器依照短程无线电通信技术或城域系统无线电通信技术传输和接收信号。

在3703中,第一处理器控制第一收发器在传输时段期间传输信号,所述传输时段包括为第一收发器执行在至少一个频率上接收的信号的测量而提供的至少一个测量间隙。

在3704中,第二处理器控制所述第二收发器考虑到第一收发器的传输时段来传输信号,使得第二收发器至少部分在至少一个测量间隙期间传输信号。

第二处理器可以接收包括关于至少一个测量间隙的信息的消息。

所述传输时段可以通过传输指定至少一个测量间隙的定时的帧结构来确定。

根据本公开的一个方面,所述至少一个测量间隙包括为第一收发器执行在一个或多个蜂窝广域通信技术相邻无线电小区的至少一个频率上接收的信号的测量而提供的至少一个测量间隙。

第一收发器可以依照第三代合作伙伴计划无线电通信技术传输和接收信号。

第一收发器可以依照4G无线电通信技术传输和接收信号。

例如,第一收发器依照长期演进无线电通信技术传输和接收信号。

根据本公开的一个方面,所述至少一个测量间隙包括为第一收发器执行在一个或多个相邻长期演进无线电小区的一个或多个频率上接收的信号的测量而提供的至少一个测量间隙。

根据本公开的一个方面,所述至少一个测量间隙包括多个测量间隙,所述测量间隙包括:第一测量间隙,被提供用于第一收发器执行在一个或多个相邻长期演进无线电小区的一个或多个频率上接收的信号的测量;第二测量间隙,被提供用于第一收发器执行在依照第二代蜂窝广域通信技术或者依照第三代蜂窝广域通信技术配置的一个或多个相邻无线电小区的一个或多个频率上接收的信号的测量;并且所述方法还包括:确定相应的测量间隙是第一测量间隙还是第二测量间隙;并且向第二处理器指示这一信息;其中所述第二处理器控制第二收发器以根据相应的测量间隙是第一测量间隙还是第二测量间隙来传输信号。

第二处理器可以控制第二收发器传输信号,使得第二收发器在第二测量间隙期间传输信号。

第二处理器可以控制第二收发器传输信号,使得在用于第一测量间隙中的测量的频率与用于第二收发器传输信号的频率彼此不重叠的情况下,第二收发器在第一测量间隙期间传输信号。

所述第二收发器可以依照选自由以下组成的组的短程无线电通信技术传输和接收信号:

蓝牙无线电通信技术;

超宽带无线电通信技术;

无线局域网无线电通信技术;

红外数据协会无线电通信技术;

Z-Wave无线电通信技术;

ZigBee无线电通信技术;

高性能无线电LAN的无线电通信技术;

IEEE 802.11无线电通信技术;以及

数字增强无绳无线电通信技术。

所述第二收发器可以依照选自由以下组成的组的城域系统无线电通信技术传输和接收信号:

全球互通微波接入无线电通信技术;

WiPro无线电通信技术;

高性能无线电城域网无线电通信技术;以及

802.16m高级空中接口无线电通信技术。

在所述无线电通信装置3400、3600中,例如第一收发器对应于LTE子系统2101,第二收发器对应于WLAN/蓝牙通信电路2102。所述第一处理器和第二处理器可以对应于这些通信模块的对应的控制器。例如,所述第一处理器可以对应于通信电路2104。例如,第一处理器可以对应(或包括)RT仲裁实体2111。备选地,任何对应的任务可以由应用处理器2105实施。

在下文中将给出用于LTE/BT/WLAN共存的其他示例。

NRT仲裁器2108使用(来自连接性和LTE应用程序的)应用要求和来自两个核心即LTE和蓝牙或WLAN的上下文信息的混合(例如频带,带宽,EARFCN)来仲裁并指示静态信息(比如选择的频带或选择的功率电平)给LTE和连接性(即蓝牙或WLAN)。它也可以向位于LTE子系统中的RT仲裁器提供指示。

例如,NRT仲裁器2108不在WLAN和BT之间仲裁(这些之间的仲裁例如在连接性芯片中完成)。

当LTE子系统预占新的小区时,LTE SW向NRT 2108仲裁器指示新的LTE信息,并且该信息被存储以例如根据2407、2408、2410在NRT算法中重新使用。

NRT仲裁器然后可以运行NRT算法从而保护BT以免受LTE-FDD影响。

这个算法在NRT仲裁单元2108中运行。它被分裂成两个子例程:

每当LTE子系统2101预占新的小区时,子例程1被激活,同时BT是活动的(例如BT状态经由NRT共存接口被单独指示)。它确定了在最坏的情况条件下BT可以安全地与LTE共同运行的频率范围。子例程1在图38中图解说明。

图38示出了消息流程图3800。

消息流发生在对应于NRT仲裁器2108的NRT仲裁器3801和对应于WLAN/BT通信电路2102的BT通信电路3802之间。

在3803中,NRT仲裁器3801从非易失性存储器加载参数。这些可能包括如下参数:LTE Tx和WLAN/BT Rx之间的Lant(天线隔离度), P_LTE_max(LTE的最大功率),为应用AFH所需的最小BT信道数Nmin,BT_max_PSD(以dBm/Mhz为单位)(最大BT功率谱密度),BT_MAX_BLKR(BT最大可容忍阻挡器干扰),BT_MAX_LIN(BT最大可容忍带内噪声干扰),L_OOB()(包含LTE传输器带外频谱(相对于带内功率))和ISM RX滤波器形状参数(例如Band7Filter(,1)(或RxFilter(,1))。

在3804中,NRT仲裁器3801基于如下参数来计算BT_SAFE_RX_FREQ_MIN和BT_SAFE_RX_FREQ_MAX:

- LTE频带

- BT最大可容忍的阻挡器干扰

- BT最大可容忍的带内噪声干扰

- LTE频率

- ISM RX滤波器形状

- LTE Tx OOB噪声

- 天线隔离度

BT_SAFE_RX_FREQ_MIN,BT_SAFE_RX_FREQ_MAX给出了在最坏的情况(LTE最大功率,最大带宽,BT Rx@灵敏度水平)下满足共同运行的目标(灵敏度降低,吞吐量损失)的ISM频率范围(1Mhz准确性)。这些例如是静态的,使得它们可以被预先计算并存储在查找表中。

在3805中,NRT仲裁器3801把BT_SAFE_RX_FREQ_MIN和BT_SAFE_RX_FREQ_MAX传送给BT通信电路3802。

在3806,BT通信电路3802存储BT_SAFE_RX_FREQ_MIN和BT_SAFE_RX_FREQ_MAX并且在3807中确认这些参数的接收。子例程2在图39中图解说明。

图39示出了消息流程图3900。

消息流发生在对应于NRT仲裁器2108的NRT仲裁器3901和对应于WLAN/BT通信电路2102的BT通信电路3902之间。

每当BT通信电路3902在3903中修改其AFH映射时,子例程2被激活。

出于业务目的或出于共存目的,此修改例如在BT侧自主地完成。

在3904中,然后BT通信电路3902根据改变的AFH映射而存储最小的BT频率和最大的BT频率。

在3905中,BT核心(即BT通信电路3902)评估其整个AFH映射是否包含在安全的频率范围内并且在3906中向NRT仲裁器3901指示结果(在这个例子中,借助于单一位指示)。当接收到信息时,NRT仲裁器3901在3907中启用/禁用实时接口(或在BT和WLAN之间的区分是可能的情况下实时接口的子集),并在3908中向BT通信电路3902发送确认。

在没有办法区分WiFi和BT的情况下,如果参数BT_RX_KILL和WIFI_RX_KILL(参见图41)都被禁用,则实时接口被禁用。否则,实时接口被启用。

此外,NRT仲裁器可以运行NRT算法从而保护WLAN以免受 LTE-FDD影响。

这个算法在NRT仲裁单元2108中运行。它被分裂成两个子例程:

每当LTE子系统2101预占新的小区时,子例程1被激活,同时WLAN是活动的(例如WLAN状态经由NRT共存接口被单独指示)。它确定了WLAN可以安全地与LTE共同运行的频率范围。子例程1在图40中图解说明。

图40示出了消息流程图4000。

消息流发生在对应于NRT仲裁器2108的NRT仲裁器4001和对应于WLAN/BT通信电路2102的WLAN通信电路4002之间。

在4003中,NRT仲裁器4001从非易失性存储器加载参数。这些可能包括参数:LTE Tx和WLAN/BT Rx之间的Lant(天线隔离度),P_LTE_max(LTE的最大功率),WLAN_max_PSD(最大WLAN功率谱密度),WLAN_MAX_BLKR(WLAN最大可容忍阻挡器干扰),WLAN_MAX_LIN(WLAN最大可容忍带内噪声干扰),L_OOB()(包含LTE传输器带外频谱(相对于带内功率))和ISM RX滤波器形状参数(例如Band7Filter(,BW)(或RxFilter(,BW))。Band7Filter(,BW)是集成在LTE小区BW上的ISM RX滤波器形状。5个Band7Filter表存储在NVM中,对应于BW = 1,5,10,15,20 Mhz)。

在4004中,NRT仲裁器4001基于如下参数来计算WLAN_SAFE_RX_FREQ_MIN和WLAN_SAFE_RX_FREQ_MAX:

- LTE频带

- WLAN最大可容忍的阻挡器干扰

- WLAN最大可容忍的带内噪声干扰

- LTE频率

- ISM RX滤波器形状

- LTE Tx OOB噪声

- 天线隔离度

WLAN_SAFE_RX_FREQ_MIN,WLAN_SAFE_RX_FREQ_MAX给出了在最坏的情况(LTE最大功率,最大带宽,WLAN Rx@灵敏度水平)下满足共同运行的目标(灵敏度降低,吞吐量损失)的ISM频带范围(1Mhz准确性)。这些例如是静态的,使得它们可以被预先计算并存储在查找表中。

在4005中,NRT仲裁器4001把WLAN_SAFE_RX_FREQ_MIN和WLAN_SAFE_RX_FREQ_MAX传送给WLAN通信电路4002。

在4006中,WLAN通信电路4002存储WLAN_SAFE_RX_FREQ_MIN和WLAN_SAFE_RX_FREQ_MAX并且在4007中确认这些参数的接收。子例程2在图41中图解说明。

图41示出了消息流程图4100。

消息流发生在对应于NRT仲裁器2108的NRT仲裁器4101和对应于WLAN/BT通信电路2102的WLAN通信电路4102之间。

每当WLAN通信电路4102在4103中修改其活动WLAN信道的列表时,子例程2被激活。

出于业务目的或出于共存目的,此修改例如在WLAN侧自主地完成。

在4104中,然后WLAN通信电路4102根据活动WLAN信道的改变列表而存储最小的WLAN频率和最大的WLAN频率。

在4105中,WLAN核心(即WLAN通信电路4102)评估其WLAN信道是否在安全的频率范围内并且在4106中向NRT仲裁器4101指示结果(在这个例子中,借助于单一位指示)。当接收到信息时,NRT仲裁器4101在4107中启用/禁用实时接口(或在BT和WLAN之间的区分是可能的情况下实时接口的子集),并在4108中向WLAN通信电路4102发送确认。在没有办法区分WiFi和BT的情况下,如果参数BT_RX_KILL(参见图41)和WIFI_RX_KILL都被禁用,则实时接口被禁用。否则,实时接口被启用。

在下文中,给出了非实时应用接口、非实时共存接口和存储在非易失性存储器中的参数的进一步例子。

NRT应用接口传输携带关于连接性和LTE应用的信息的消息。“I/O”字段具有以下参数含义:“I”意指从AP到NRTA,“O”意指从NRTA到AP。

NRT共存接口传输携带CWS信息的消息。“I/O”字段具有以下参数含义:“I”意指从CWS到NRTA,“O”意指从NRTA到CWS。

下表列出了存储在使用的非易失性存储器中的参数。

虽然已特别地参考具体方面示出和描述了本发明,但是本领域技术人员应当理解,在不脱离由所附的权利要求定义的本发明的精神和范围的情况下,可以在其中进行形式和细节上的各种改变。因此,本发明的范围由所附的权利要求指示,因此旨在涵盖在权利要求的等价物的含义和范围内的所有变化。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1