深度采集模组及移动终端的制作方法

文档序号:16754788发布日期:2019-01-29 17:15阅读:132来源:国知局
深度采集模组及移动终端的制作方法

本发明涉及三维成像技术领域,更具体而言,涉及一种深度采集模组及移动终端。



背景技术:

飞行时间(timeofflight,tof)成像系统可通过计算光发射装置发射光信号的时刻,与光接收装置接收到光信号的时刻之间的时间差来计算被测物体的深度信息,为了减小飞行时间成像系统的整体尺寸,可以将光发射装置与光接收装置靠近设置。然而,当光发射装置与光接收装置靠得较近时,由于光发射装置与光接收装置的高度差可能较大,光发射装置发射的光可能会直接照射在光接收装置的外壳上,导致光发射装置发射的光不能完全照射到被测物体上,或者外界光在进入光接收装置前,可能被光发射装置阻挡。



技术实现要素:

本发明实施方式提供一种深度采集模组及移动终端。

本发明实施方式的深度采集模组包括第一基板组件、第一光学器件及第二光学器件。所述第一基板组件包括第一基板,所述第一基板开设有容置槽。所述第一光学器件设置在所述第一基板上。所述第二光学器件设置在所述第一基板组件上,且所述第二光学器件至少部分收容在所述容置槽内。

在某些实施方式中,所述容置槽贯穿所述第一基板或所述容置槽部分穿过所述第一基板。

在某些实施方式中,所述第一光学器件为光发射器,所述光发射器用于向外发射光信号;所述第二光学器件为光接收器,所述光接收器用于接收被反射回的所述光发射器发射的光信号。

在某些实施方式中,所述深度采集模组还包括垫块,所述垫块设置于所述第一基板上,所述第一光学器件设置于所述垫块上,所述第一基板组件还包括柔性电路板,所述柔性电路板的一端连接所述第一基板,另一端连接所述第一光学器件。

在某些实施方式中,所述第二光学器件包括壳体及设置在所述壳体内的光学元件,所述壳体与所述垫块为一体成型结构。

在某些实施方式中,所述第一光学器件包括第二基板组件、设置在所述第二基板组件上的光源组件及设置在所述第二基板组件上的外壳。所述第二基板组件设置在垫块上,所述第二基板组件与所述柔性电路板连接。所述光源组件用于发射所述光信号。所述外壳形成有收容空间以收容所述光源组件。

在某些实施方式中,所述第二基板组件包括第二基板及补强件,所述第二基板与所述柔性电路板连接,所述光源组件及所述补强件设置在所述第二基板的相背的两侧。

在某些实施方式中,所述补强件上形成有第一定位件,所述垫块包括本体及形成在所述本体上的第二定位件,所述第二基板组件设置在所述垫块上时,所述第一定位件与所述第二定位件配合。

在某些实施方式中,所述垫块与所述第一基板结合的一侧开设有收容腔,所述深度采集模组还包括设置在所述第一基板上的电子元件,所述电子元件收容在所述收容腔内。

在某些实施方式中,所述垫块开设有与至少一个所述收容腔连通的避让通孔,至少一个所述电子元件伸入所述避让通孔内。

在某些实施方式中,所述垫块包括伸出所述第一基板的侧边缘的凸出部,所述柔性电路板绕所述凸出部弯折设置。

在某些实施方式中,所述深度采集模组还包括连接器,所述连接器连接在所述第一基板上,并用于连接所述第一基板组件及外部设备,所述连接器与所述柔性电路板分别连接在所述第一基板的相背的两端。

在某些实施方式中,所述光发射器与所述光接收器沿一直线排列,所述连接器与所述柔性电路板分别位于所述直线的相背的两侧。

本发明实施方式的移动终端包括机壳及上述任一项实施方式的深度采集模组,所述深度采集模组安装在所述机壳上。

本发明实施方式的深度采集模组及移动终端中,由于第二光学器件设置在容置槽内,容置槽可以降低第二光学器件相对第一光学器件的高度,进而使得第一光学器件与第二光学器件的高度差减小,避免二者中的一个发射或接收光信号时被另一个遮挡。

本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:

图1是本发明某些实施方式的移动终端的一个状态的立体结构示意图;

图2是本发明某些实施方式的移动终端的另一个状态的立体结构示意图;

图3是本发明某些实施方式的深度采集模组的立体结构示意图;

图4是本发明某些实施方式的深度采集模组的俯视示意图;

图5是本发明某些实施方式的深度采集模组的仰视示意图;

图6是本发明某些实施方式的深度采集模组的侧视示意图;

图7是图3所示的深度采集模组沿vii-vii线的截面示意图;

图8是图4所示的深度采集模组沿viii-viii线的截面示意图;

图9是图8所示的深度采集模组中xi部分的放大示意图;

图10是本发明某些实施方式的深度采集模组在柔性电路板未弯折时的正面结构示意图;

图11至图14是本发明某些实施方式的光发射器的结构示意图。

具体实施方式

以下结合附图对本发明的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。

另外,下面结合附图描述的本发明的实施方式是示例性的,仅用于解释本发明的实施方式,而不能理解为对本发明的限制。

请参阅图1及图2,本发明实施方式的移动终端100包括机壳10及深度采集模组20。移动终端100可以是手机、平板电脑、游戏机、智能手表、头显设备、无人机等,本发明实施方式以移动终端100为手机为例进行说明,可以理解,移动终端100的具体形式并不限于手机。

机壳10可以作为移动终端100的功能元件的安装载体,机壳10可以为功能元件提供防尘、防水、防摔等的保护,功能元件可以是显示屏30、或可见光摄像头40、受话器50等。

在本发明实施例中,机壳10包括主体11及可动支架12,可动支架12在驱动装置的驱动下可以相对于主体11运动,例如可动支架12可以相对于主体11滑动,以滑入主体11(如图1所示)内部或从主体11中滑出(如图2所示)。部分功能元件(例如显示屏30)可以安装在主体11上,另一部分功能元件(例如深度采集模组20、可见光摄像头40、受话器50)可以安装在可动支架12上,可动支架12运动可带动该另一部分功能元件缩回主体11内或从主体11中伸出。深度采集模组20安装在机壳10上。

具体地,机壳10上可以开设有采集窗口,深度采集模组20与采集窗口对准安装以使深度采集模组20采集深度信息。

在本发明实施例中,深度采集模组20安装在可动支架12上,用户在需要使用深度采集模组20时,可以触发可动支架12从主体11中滑出以带动深度采集模组20从主体11中伸出,在不需要使用深度采集模组20时,可以触发可动支架12滑入主体11以带动深度采集模组20缩回到主体11中。

当然,图1及图2所示仅是对机壳10的一种具体形式的举例,不能理解为对本发明的机壳10的限制,例如在另一个例子中,机壳10上开设的采集窗口可以是固定不动的,深度采集模组20固定设置且与采集窗口对准;在又一个例子中,深度采集模组20固定设置在显示屏30的下方。

请参阅图3至图6,深度采集模组20包括第一基板组件21、第一光学器件23及第二光学器件24。第一基板组件21包括互相连接的第一基板211,第一基板211上开设有容置槽2112。第一光学器件23设置在第一基板211上。第二光学器件24设置在第一基板组件21上,第二光学器件24至少部分收容在容置槽2112内。

本发明实施方式的移动终端100中,由于第二光学器件24设置在容置槽2112内,容置槽2112可以降低第二光学器件24相对第一光学器件23的高度,进而使得第一光学器件23与第二光学器件24之间的高度差减小,避免二者(第一光学器件23或第二光学器件24)中的一个发射或接收光信号时被另一个遮挡。

具体地,当第一光学器件23为光发射器23,第二光学器件24为光接收器24时,光发射器23发射的光信号不易被光接收器24遮挡,使得光信号能够完全照射到被测物体上;当第一光学器件23为光接收器,第二光学器件24为光发射器时,外界的光信号在进入光接收器前,不会被光发射器阻挡。

下面将以第一光学器件23为光发射器23,第二光学器件24为光接收器24为例进行举例说明。可以理解,在其他实施方式中,第一光学器件23可以为光接收器,第二光学器件24可以为光发射器。

在某些实施方式中,容置槽2112贯穿第一基板211;或,容置槽2112部分穿过第一基板211。

具体地,根据第一光学器件23与第二光学器件24之间的高度差来设定容置槽2112在第一基板211的深度,当第一光学器件23与第二光学器件24之间的高度差较大,第二光学器件24的入射面高度较高时,容置槽2112可贯穿第一基板211,容置槽2112呈现为孔状,容置槽2112的深度为第一基板211的厚度,此时第二光学器件24也穿设第一基板211,以使第二光学器件24更多的收容在第一基板211,降低第一光学器件23与第二光学器件24之间的高度;

或容置槽2112部分穿过第一基板211(如图7),容置槽2112呈现为槽状,第二光学器件24可嵌设于容置槽2112内,容置槽2112在第一基板211的深度即第二光学器件24相对于第一光学器件23降低的高度。第二光学器件24的横截尺寸可等于或略小于容置槽2112的横截尺寸,以较稳固的收容于容置槽2112内,第二光学器件24与容置槽2112之间可通过胶水互相粘接固定。

在某些实施方式中,深度采集模组20包括垫块22,垫块22设置在第一基板211上,第一光学器件23设置在第一基板上,第一基板组件21包括及柔性电路板212。第一基板211可以是印刷线路板或柔性线路板,第一基板211上可以铺设有深度采集模组20的控制线路等。柔性电路板212的一端可以连接在第一基板211上,柔性电路板212可以发生一定角度的弯折,使得柔性电路板212两端连接的器件的相对位置可以有较多选择。

请参阅图3及图8。在一个例子中,垫块22与第一基板211接触且承载在第一基板211上,具体地,垫块22可以通过胶粘等方式与第一基板211结合。垫块22的材料可以是金属、塑料等。

在本发明实施例中,垫块22与第一基板211结合的面可以是平面,垫块22与该结合的面相背的面也可以是平面,使得光发射器23设置在垫块22上时具有较好的平稳性。

由于光发射器23设置在垫块22上,垫块22可以垫高光发射器23的高度,进而提高光发射器23的出射面的高度,光发射器23发射的光信号不易被光接收器24遮挡,使得光信号能够完全照射到被测物体上,使光发射器23更好的配合光接收器24,进一步降低光发射器23与光接收器24之间的相对高度。

光发射器23用于向外发射光信号,具体地,光信号可以是红外光,光信号可以是向被测物体发射的点阵光斑,光信号以一定的发散角从光发射器23中射出。光发射器23设置在垫块22上,在本发明实施例中,光发射器23设置在垫块22的与第一基板211相背的一侧,或者说,垫块22将第一基板211及光发射器23间隔开,以使光发射器23与第一基板211之间形成高度差。

光发射器23还与柔性电路板212连接,柔性电路板212弯折设置,柔性电路板212的一端连接第一基板211,另一端连接光发射器23,以将光发射器23的控制信号从第一基板211传输到光发射器23,或将光发射器23的反馈信号(例如光发射器23的发射光信号的时间信息、频率信息,光发射器23的温度信息等)传输到第一基板211。

请参阅图3、图4及图6,光接收器24用于接收被反射回的光发射器23发射的光信号。光接收器24设置在第一基板211的容置槽2112内。

具体地,光接收器24包括壳体241及光学元件242。壳体241设置在第一基板211上,第二光学器件24至少部分收容于容置槽2112内可以理解为,壳体241至少部分收容于容置槽2112内,当容置槽2112部分穿过第一基板211时,壳体241可嵌设于第一基板211;或当容置槽2112贯穿第一基板211时,壳体241可嵌设或穿设第一基板211。光学元件242设置在壳体241上,壳体241可以是光接收器24的镜座及镜筒,光学元件242可以是设置在壳体241内的透镜等元件。

进一步地,光接收器24还可以包括感光芯片(图未示),由被测物体反射回的光信号通过光学元件242作用后照射到感光芯片中,感光芯片对该光信号产生响应。深度采集模组20计算光发射器23发出光信号与感光芯片接收经被测物体反射该光信号之间的时间差,并进一步获取被测物体的深度信息,该深度信息可以用于测距、用于生成深度图像或用于三维建模等。

本发明实施例中,壳体241与垫块22连接成一体。

具体地,壳体241与垫块22可以是一体成型,壳体241与垫块22可以一并安装在第一基板211上。例如壳体241与垫块22的材料相同并通过注塑、切削等方式一体成型;或者壳体241与垫块22的材料不同,二者通过双色注塑成型等方式一体成型。如此便于安装,并提高了深度采集模组20的整体性和结构的稳定紧凑性。

更多地,壳体241与垫块22也可以是分别成型,二者形成配合结构,在组装深度采集模组20时,可以先将壳体241与垫块22连接成一体,再共同设置在第一基板211上;也可以先将壳体241与垫块22中的一个设置在第一基板211上,再将另一个设置在第一基板211上且连接成一体。

本发明实施方式的移动终端100中,由于光发射器23设置在垫块22上,垫块22可以垫高光发射器23的高度,进而提高光发射器23的出射面的高度,光发射器23发射的光信号不易被光接收器24遮挡,使得光信号能够完全照射到被测物体上。光发射器23的出射面可以与光接收器24的入射面齐平,也可以是光发射器23的出射面略低于光接收器24的入射面,还可以是光发射器23的出射面略高于光接收器24的入射面。

具体地,光发射器23的出射面的高度与光接收器24的入射面的高度可分别通过调整垫块22的高度以及容置槽2112在第一基板211的深度来调整。

比如提高或降低垫块22的高度,则光发射器23的出射面随之升高或降低;当容置槽2112部分贯穿基板211时,开设不同深度的容置槽2112,此时则光接收器24相对第一基板211的高度随深度的改变而改变;

当容置槽2112完全贯穿第一基板211时,此时容置槽2112相对于第一基板211的深度固定,为第一基板211的厚度,收容于容置槽2112内的光接收器24也可穿设第一基板211,此时光发射器23与光接收器24之间的相对高度由光接收器24穿设入第一基板211的多少影响。

请参阅图5及图8,在某些实施方式中,第一基板组件21还包括加强板213,加强板213结合在第一基板211的与垫块22相背的一侧。加强板213可以覆盖第一基板211的一个侧面,加强板213可以用于增加第一基板211的强度,避免第一基板211发生形变。

另外,加强板213可以由导电的材料制成,例如金属或合金等,当深度采集模组20安装在移动终端100上时,可以将加强板213与机壳10电连接,以使加强板213接地,并有效地减少外部元件的静电对深度采集模组20的干扰。

请参阅图8至图10,在某些实施方式中,垫块22包括伸出第一基板211的侧边缘2111的凸出部225,柔性电路板212绕凸出部225弯折设置。

具体地,垫块22的一部分直接承载在第一基板211上,另一部分未与第一基板211直接接触,且相对第一基板211的侧边缘2111伸出形成凸出部225。柔性电路板212可以连接在该侧边缘2111,柔性电路板212绕凸出部225弯折,或者说,柔性电路板212弯折以使凸出部225位于柔性电路板212弯折围成的空间内,当柔性电路板212受到外力的作用时,柔性电路板212不会向内塌陷而导致弯折的程度过大,造成柔性电路板212损坏。

进一步地,如图9所示,在某些实施方式中,凸出部225的外侧面2251为平滑的曲面(例如圆柱的外侧面等),即凸出部225的外侧面2251不会形成曲率突变,即使柔性电路板212贴覆着凸出部225的外侧面2251弯折,柔性电路板212的弯折程度也不会过大,进一步确保柔性电路板212的完好。

请参阅3至图5,在某些实施方式中,深度采集模组20还包括连接器26,连接器26连接在第一基板211上。

连接器26用于连接第一基板组件21及外部设备。连接器26与柔性电路板212分别连接在第一基板211的相背的两端。连接器26可以是连接座或连接头,当深度采集模组20安装在机壳10内时,连接器26可以与移动终端100的主板连接,以使得深度采集模组20与主板电连接。连接器26与柔性电路板212分别连接在第一基板211的相背的两端,例如可以是分别连接在第一基板211的左右两端,或者分别连接在第一基板211的前后两端。

请参阅图4及图5,在某些实施方式中,光发射器23与光接收器24沿一直线l排列,连接器26与柔性电路板212分别位于直线l的相背的两侧。

可以理解,由于光发射器23与光接收器24排列设置,因此沿直线l的方向上,深度采集模组20的尺寸可能已经较大。连接器26与柔性电路板212分别设置在直线l的相背的两侧,不会再增加深度采集模组20沿直线l方向上的尺寸,进而便于将深度采集模组20安装在移动终端100的机壳10上。

请参阅图8及图9,在某些实施方式中,垫块22与第一基板211结合的一侧开设有收容腔223。深度采集模组20还包括设置在第一基板211上的电子元件25,电子元件25收容在收容腔223内。

具体地,电子元件25可以是电容、电感、晶体管、电阻等元件,电子元件25可以与铺设在第一基板211上的控制线路电连接,并用于驱动或控制光发射器23或光接收器24工作。电子元件25收容在收容腔223内,合理地利用了垫块22内的空间,不需要增加第一基板211的宽度来设置电子元件25,利于减小深度采集模组20的整体尺寸。

收容腔223的数量可以是一个或多个,多个收容腔223可以是互相间隔的,在安装垫块22时,可以将收容腔223与电子元件25的位置对准并将垫块22设置在第一基板211上。

请参阅图8及图10,在某些实施方式中,垫块22开设有与至少一个收容腔223连通的避让通孔224,至少一个电子元件25伸入避让通孔224内。

可以理解,需要将电子元件25收容在收容腔223内时,要求电子元件25的高度不高于收容腔223的高度。而对于高度高于收容腔223的电子元件25,可以开设与收容腔223对应的避让通孔224,电子元件25可以部分伸入避让通孔224内,以在不提高垫块22高度的前提下布置电子元件25。

请参阅图8,在某些实施方式中,光发射器23包括第二基板组件231、光源组件232及外壳233。

第二基板组件231设置在垫块22上,第二基板组件231与柔性电路板212连接。光源组件232设置在第二基板组件231上,光源组件232用于发射光信号。外壳233设置在第二基板组件231上,外壳233形成有收容空间2331,收容空间2331可用于收容光源组件232。柔性电路板212可以是可拆装地连接在第二基板组件231上。光源组件232与第二基板组件231电连接。外壳233整体可以呈碗状,且外壳233的开口向下罩设在第二基板组件231上,以将光源组件232收容在收容空间2331内。

在本发明实施例中,外壳233上开设有与光源组件232对应的出光口2332,从光源组件232发出的光信号穿过出光口2332后发射到出去,光信号可以直接从出光口2332穿出,也可以经其他光学器件改变光路后从出光口2332穿出。

请继续参阅图8,在某些实施方式中,第二基板组件231包括第二基板2311及补强件2312。第二基板2311与柔性电路板212连接。光源组件232及补强件2312设置在第二基板2311的相背的两侧。

具体地,第二基板2311的具体类型可以是印刷线路板或柔性线路板等,第二基板2311上可以铺设有控制线路。补强件2312可以通过胶粘、铆接等方式与第二基板2311固定连接,补强件2312可以增加第二基板组件231整体的强度。光发射器23设置在垫块22上时,补强件2312可以与垫块22直接接触,第二基板2311不会暴露在外部,且不需要与垫块22直接接触,第二基板2311不易受到灰尘等的污染。

在如图8所示的实施例中,补强件2312与垫块22分体成型。

在组装深度采集模组20时,可以先将垫块22安装在第一基板211上,此时柔性电路板212的两端分别连接第一基板211及第二基板2311,且柔性电路板212可以先不弯折(如图10所示的状态)。然后再将柔性电路板212弯折,使得补强件2312设置在垫块22上。

当然,在其他实施例中,补强件2312与垫块22可以一体成型,例如通过注塑等工艺一体成型,在组装深度采集模组20时,可以将垫块22及光发射器23一同安装在第一基板211上。

请参阅图10,在某些实施方式中,补强件2312上形成有第一定位件2313。垫块22包括本体221及第二定位件222,第二定位件222形成在本体221上。第二基板组件231设置在垫块22上时,第一定位件2313与第二定位件222配合。

具体地,第一定位件2313与第二定位件222配合后,能有效地限制第二基板组件231与垫块22之间的相对运动。第一定位件2313及第二定位件222的具体类型可以依据需要进行选择,例如第一定位件2313为形成在补强件2312上的定位孔,同时第二定位件222为定位柱,定位柱伸入定位孔内以使第一定位件2313与第二定位件222相互配合;

或者第一定位件2313为形成在补强件2312上的定位柱,第二定位件222为定位孔,定位柱伸入定位孔内以使第一定位件2313与第二定位件222相互配合;

或者第一定位件2313及第二定位件222的数量均为多个,部分第一定位件2313为定位孔,部分第二定位件222为定位柱,部分第一定位件2313为定位柱,部分第二定位件222为定位孔,定位柱伸入定位孔内以使第一定位件2313与第二定位件222相互配合。

下面将对光源组件232的结构进行举例说明:

请参阅图11,光源组件232包括光源60、镜筒70、扩散器(diffuser)80及保护罩90。光源60连接在第二基板组件231上,镜筒70包括相背的第一面71及第二面72,镜筒11开设贯穿第一面71与第二面72的收容腔75,第一面71朝第二面72凹陷形成与收容腔75连通的安装槽76。扩散器80安装在安装槽76内。保护罩90安装在镜筒70的第一面71所在的一侧,扩散器80夹设在保护罩90与安装槽76的底面77之间。

保护罩90可以通过螺纹连接、卡合、紧固件连接的方式安装在镜筒70上。例如,请参阅图11,当保护罩90包括顶壁91及保护侧壁92时,保护罩90(保护侧壁92)上设置有内螺纹,镜筒70上设置有外螺纹,此时保护罩90的内螺纹与镜筒70的外螺纹螺合以将保护罩90安装在镜筒70上;

或者,请参阅图12,当保护罩90包括顶壁91时,保护罩90(顶壁91)开设有卡孔95,镜筒70的端部设置有卡勾73,当保护罩90设置在镜筒70上时,卡勾73穿设在卡孔95内以使保护罩90安装在镜筒70上;

或者,请参阅图13,当保护罩90包括顶壁91及保护侧壁92时,保护罩90(保护侧壁92)开设有卡孔95,镜筒70上设置有卡勾73,当保护罩90设置在镜筒70上时,卡勾73穿设在卡孔95内以使保护罩90安装在镜筒70上;

或者,请参阅图14,当保护罩90包括顶壁91时,镜筒70的端部开设有第一定位孔74,保护罩90(顶壁91)上开设有与第一定位孔74对应的第二定位孔93,紧固件94穿过第二定位孔93并锁紧在第一定位孔74内以将保护罩90安装在镜筒70上。当保护罩90安装在镜筒70上时,保护罩90与扩散器80抵触并使扩散器80与底面77抵触,从而使扩散器80被夹设在保护罩90与底面77之间。

光源组件232通过在镜筒70上开设安装槽76,并将扩散器80安装在安装槽76内,以及通过保护罩90安装在镜筒70上以将扩散器80夹持在保护罩90与安装槽76的底面77之间,从而现实将扩散器80固定在镜筒70上。且避免使用胶水将扩散器80固定在镜筒70上,从而能够避免胶水挥发后凝固在扩散器80的表面而影响扩散器80的微观结构,并能够避免连接扩散器80和镜筒70胶水挥发过多时扩散器80从镜筒70上脱落。

在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1