本发明属于微电子领域,涉及半导体器件结构及制备方法,具体地说是一种碳化硅基的夹心串联式PIN结构α辐照电池及其制备方法,可用于微纳机电系统等微小电路和航空航天、深海、极地等需长期供电且无人值守的场合。技术背景随着人们对于低功耗、长寿命、高可靠性和小体积供电设备的需求,以及对核废料处理的关注,微型核电池变得愈发关注。微型核电池由于其突出的特点可用来解决微型管道机器人、植入式微系统、无线传感器节点网络、人工心脏起搏器和便携式移动电子产品等的长期供电问题。并有望取代太阳能电池和热电式放射性同位素电池,在航天和航空领域解决微/纳卫星、深空无人探测器和离子推进器等的长期供电问题。1953年由Rappaport研究发现,利用同位素衰变所产生的贝塔(α-Particle)射线能在半导体内产生电子-空穴对,此现象则被称为β-VoltaicEffect。1957年,Elgin-Kidde首先将β-VoltaicEffect用在电源供应方面,成功制造出第一个同位素微电池β-VoltaicBattery。自2006年,随着宽禁带半导体材料SiC制备和工艺技术的进步,出现了基于SiC的同位素微电池的相关报道。核电池在应用中,由于激发的高能粒子利用率比较低,能量收集率低,限制了电池的输出电压。中国专利CN101325093A中公开了由张林,郭辉等人提出的基于SiC的肖特基结式核电池。由于该肖特基结核电池中肖特基接触层覆盖整个电池区域,入射粒子到达器件表面后,都会受到肖特基接触层的阻挡,只有部分粒子能进入器件内部,而进入耗尽区的粒子才会对电池的输出功率有贡献。因此,这种结构的核电池入射粒子能量损失大,能量转换效率较低。文献“Demonstrationofa4HSiCbetavoltaiccell”介绍了由美国纽约Cornell大学的C.I.Tomas,M.V.S.Chandrashekhar,HuiLi等人提出了碳化硅PN结式核电池。这种结构采用的衬底为P型高掺杂衬底,而在其衬底上生长外延层的现有工艺不成熟,因此,易引入表面缺陷,器件漏电流大,能量转换率较低。文献“Demonstrationofatadiationresistant,hightefficiencySiCbetavoltaic”介绍了由美国新墨西哥州QynergyCorporation的C.J.Eiting,V.Krishnamoorthy和S.Rodgers,T.George等人共同提出了碳化硅p-i-n结式核电池,如图1所示。该PIN核电池自上而下依次为,放射性源7、P型欧姆接触电极6、P型高掺杂SiC层4、P型SiC层3、本征i层2、n型高掺杂SiC衬底1和N型欧姆接触电极5。这种结构中,只有耗尽层内及其附近一个少子扩散长度内的辐照生载流子能够被收集。并且,为避免欧姆接触电极阻挡入射离子,将P型欧姆电极做在器件的一个角落,使得离P型欧姆电极较远的辐照生载流子在输运过程中被复合,降低了能量转化率,减小了电池的输出电流。
技术实现要素:本发明的目的在于针对上述已有技术的不足,提出一种夹心串联式PIN结构α辐照电池及其制备方法,以提高α放射源的利用率,从而提高电池的输出电流和输出电压。本发明的技术方案是这样实现的:一.本发明的夹心串联式PIN结构α辐照电池,包括:PIN单元和α放射源层7’,其特征在于:所述PIN单元,采用上下两个PIN结串联构成;上PIN结自下而上依次为,N型外延层欧姆接触电极11、N型高掺杂外延层10、P型低掺杂外延层9、p型SiC衬底8、P型欧姆接触电极6;下PIN结自下而上依次为,N型欧姆接触电极5、n型SiC衬底14、N型低掺杂外延层13、P型高掺杂外延层4’、P型外延层欧姆接触电极12;α放射源层7’,夹在上PIN结的N型外延层欧姆接触电极11与下PIN结P型外延层欧姆接触电极12之间,以实现对高能α粒子的充分利用。作为优选,所述的α放射源层7’采用相对原子质量为241的镅元素或相对原子质量为238的钚元素,即Am241或Pu238。作为优选,所述的α放射源层7’的厚度h满足h≤m,其中m为α放射源所释放的高能α粒子在α放射源材料中的平均入射深度,对于α放射源为Am241的,其取值为:m=7.5μm,对于α放射源为Pu238的,其取值为:m=10μm。作为优选,所述的P型低掺杂外延层9和N型低掺杂外延层13的厚度L满足L≥g,其中,g为α放射源所释放的高能α粒子在4H-SiC中的平均入射深度,对于α放射源为Am241的,其取值为:i=10μm,对于α放射源为Pu238的,其取值为:i=18.2μm。作为优选,所述的p型SiC衬底8、n型SiC衬底14均采用掺杂浓度为8x1017cm-3的4H-SiC衬底,P型低掺杂外延层9、N型高掺杂外延层10、P型高掺杂外延层4’、N型低掺杂外延层13均为外延的4H-SiC材料,以提高电池的寿命和开路电压。二.本发明的制备方法包括以下步骤:第一步,制作上PIN结:1.1)对p型SiC衬底进行清洗,以去除表面污染物;1.2)利用化学气相淀积CVD法在清洗后的p型SiC衬底表面外延生长一层掺杂浓度为1x1015~3x1015cm-3,厚度为15~28μm的P型低掺杂外延层;1.3)利用化学气相淀积CVD法在P型低掺杂外延层表面外延生长一层掺杂浓度为1x1019~3x1019cm-3,厚度为0.1~0.2μm的N型高掺杂外延层;1.4)利用电子束蒸发法在N型高掺杂外延层表面和p型SiC衬底未外延的背面分别淀积厚度为300nm的Ni金属层,作为N型外延层欧姆接触电极和P型欧姆接触电极;第二步,制作下PIN结:2.1)对n型SiC衬底进行清洗,以去除表面污染物;2.2)利用化学气相淀积CVD法在清洗后的n型SiC衬底表面外延生长一层掺杂浓度为1x1015~3x1015cm-3,厚度为15~28μm的N型低掺杂外延层;2.3)利用化学气相淀积CVD法在N型低掺杂外延层表面外延生长一层掺杂浓度为1x1019~3x1019cm-3,厚度为0.1~0.2μm的P型高掺杂外延层;2.4)利用电子束蒸发法在P型高掺杂外延层表面淀积厚度为300nm的Al金属层,作为P型外延层欧姆接触电极;在n型SiC衬底未外延的背面淀积厚度为300nm的Ni金属层,作为N型欧姆接触电极;2.5)制备α放射源层:利用分子镀在上述n型SiC衬底淀积的Al金属层上镀一层厚度为4~8μm的α放射源层;第三步,利用键合法将上PIN结与下PIN结键合在一起,使α放射源层夹在上PIN结的N型外延层欧姆接触电极与下PIN结的P型外延层欧姆接触电极中间,形成夹心串联式PIN结构α辐照电池。本发明与现有技术相比具有如下优点:1.本发明由于将α放射源层夹在上下两个PIN结的外延层欧姆接触电极之间,较之于现有技术将放射源层置于电池的上表面,节省了α放射源材料,提高了α放射源的利用率,从而提高了电池的能量利用率;2.本发明由于P型和N型高掺杂外延层的厚度仅为0.1~0.2μm,以及α放射源层的厚度不大于α放射源所释放的高能α粒子在α放射源材料中的平均入射深度,可以减小高能α粒子在高掺杂外延层和α放射源层中的衰减,提高能量收集率;3.本发明由于外延的N型和P型低掺杂外延层厚度不小于α放射源所释放的高能α粒子在4H-SiC中的平均入射深度,可以减少高能α粒子在低掺杂外延层中的衰减,使得高能α粒子集中在高掺杂外延层和低掺杂外延层界面附近的空间电荷区,提高能量转化率;4.本发明由于将两个PIN结串联放置,提高了电池的输出电压。5.本发明由于采用衬底材料4H-SiC的禁带宽度比传统Si的禁带宽度大,抗辐照特性更好,可以减小高能α粒子对器件的损伤,提高电池的工作电压,同时延长电池的使用寿命;附图说明图1是现有的PIN核电池的截面示意图;图2是本发明夹心串联式PIN结构α辐照电池的截面示意图;图3是本发明制作夹心串联式PIN结构α辐照电池的流程图;图4是本发明制作上PIN结的流程示意图;图5是本发明制作下PIN结的流程示意图。具体实施方式参照图2,本发明的夹心串联式PIN结构α辐照电池,包括:PIN单元和α放射源层7’,所述PIN单元由上、下两个PIN结串联构成,其中:上PIN结包括N型外延层欧姆接触电极11、N型高掺杂外延层10、P型低掺杂外延层9、p型SiC衬底8、P型欧姆接触电极6。其中,N型外延层欧姆接触电极11是厚度为300nm的Ni金属层;N型高掺杂外延层10的厚度为0.1~0.2μm,其位于N型外延层欧姆接触电极11上方;P型低掺杂外延层9的厚度为15~28μm,其位于N型高掺杂外延层10的上方;p型SiC衬底8是浓度为8x1017cm-3的p型4H-SiC衬底,其位于P型低掺杂外延层9的上方;P型欧姆接触电极6是厚度为300nm的Ni金属层,其位于p型SiC衬底8的上方。下PIN结,包括N型欧姆接触电极5、n型SiC衬底14、N型低掺杂外延层13、P型高掺杂外延层4’、P型外延层欧姆接触电极12。其中,N型欧姆接触电极5是厚度为300nm的Ni金属层;n型SiC衬底14是浓度为8x1017cm-3的n型4H-SiC衬底,其位于N型欧姆接触电极5的上方;N型低掺杂外延层13的厚度为15~28μm,其位于n型SiC衬底14的上方;P型高掺杂外延层4’的厚度为0.1~0.2μm,其位于N型低掺杂外延层13的上方;P型外延层欧姆接触电极12是厚度为300nm的Al金属层,其位于P型高掺杂外延层4’上方;α放射源层7’的厚度为4~8um,其位于P型外延层欧姆接触电极12的上方。上、下PIN结进行键合,使α放射源层7’夹在上PIN结的N型外延层欧姆接触电极11与下PIN结P型外延层欧姆接触电极12之间。电池在工作状态下,从α放射源层7’放射出的高能α粒子分别穿过上、下两个PIN结的N型外延层欧姆接触电极11、P型外延层欧姆接触电极12,射入到P型高掺杂外延层4’和N型低掺杂外延层13界面附近的空间电荷区,以及N型高掺杂外延层10和P型低掺杂外延层9界面附近的空间电荷区,进而激发载流子,形成输出电流。参照图3,本发明制作夹心串联式PIN结构α辐照电池的方法给出如下三个实施例:实施例1,制备夹心放射源为Am241,α放射源层厚度为4μm的夹心串联式PIN结构α辐照电池。步骤1:制作上PIN结。参照图4,本步骤的实施如下:(1a)清洗p型SiC衬底,以去除表面污染物,如图4(a)所示:(1a.1)将掺杂浓度为8x1017cm-3的高掺杂p型4H-SiC衬底在NH4OH+H2O2试剂中浸泡10min,取出后烘干,以去除样品表面有机残余物;(1a.2)将去除表面有机残余物后的p型SiC衬底再使用HCl+H2O2试剂浸泡10min,取出后烘干,以去除离子污染物。(1b)外延生长P型低掺杂外延层,如图4(b)所示:在清洗后的p型SiC衬底上利用化学气相淀积CVD方法外延生长铝掺杂的P型掺杂外延层。其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝,得到铝掺杂浓度为1x1015cm-3,厚度为15μm的P型低掺杂外延层。(1c)外延生长N型高掺杂外延层,如图4(c)所示:在生长的P型低掺杂外延层上利用化学气相淀积CVD法外延生长氮掺杂的N型高掺杂外延层,其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为液态氮气,得到氮掺杂浓度为1x1019cm-3,厚度为0.1μm的N型高掺杂外延层。(1d)淀积欧姆接触电极,如图4(d)所示:(1d.1)对完成N型高掺杂外延层生长后的p型SiC衬底进行RCA标准清洗;(1d.2)将清洗后的样片放入电子束蒸发镀膜机中的载玻片上,调整载玻片到靶材的距离为50cm,并将反应室压强抽至5×10-4Pa,调节束流为40mA,在p型SiC衬底的N型高掺杂外延层的表面淀积一层厚度为300nm的Ni金属层,作为N型外延层欧姆接触电极;(1d.3)利用电子束蒸发法,在p型SiC衬底未外延的背面淀积厚度为300nm的Ni金属层,作为P型欧姆接触电极。步骤2:制作下PIN结。参照图5,本步骤的实施如下:(2a)清洗n型SiC衬底,以去除表面污染物,如图5(a)所示:(2a.1)将掺杂浓度为8x1017cm-3的高掺杂n型4H-SiC衬底在NH4OH+H2O2试剂中浸泡10min,取出后烘干,以去除样品表面有机残余物;(2a.2)将去除表面有机残余物后的n型SiC衬底再使用HCl+H2O2试剂浸泡10min,取出后烘干,以去除离子污染物。(2b)外延生长N型低掺杂外延层,如图5(b)所示:在清洗后的n型SiC衬底上利用化学气相淀积CVD方法外延生长氮掺杂的N型掺杂外延层。其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为液态氮气,得到氮掺杂浓度为1x1015cm-3,厚度为15μm的N型低掺杂外延层。(2c)外延生长P型高掺杂外延层,如图5(c)所示:在生长的N型低掺杂外延层上利用化学气相淀积CVD法外延生长铝掺杂的P型高掺杂外延层,其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝,得到铝掺杂浓度为1x1019cm-3,厚度为0.1μm的P型高掺杂外延层。(2d)淀积欧姆接触电极,如图5(d)所示:(2d.1)对完成P型高掺杂外延层生长后的n型SiC衬底进行RCA标准清洗;(2d.2)将清洗后的衬底放入电子束蒸发镀膜机中的载玻片上,调整载玻片到靶材的距离为50cm,并将反应室压强抽至5×10-4Pa,调节束流为40mA,在n型SiC衬底的P型高掺杂外延层的表面淀积一层厚度为300nm的Al金属层,作为P型外延层欧姆接触电极;(2d.3)利用电子束蒸发法,在n型SiC衬底未外延的背面淀积厚度为300nm的Ni金属层,作为N型欧姆接触电极。(2e)制备α放射源层,如图5(e)所示:在上述n型SiC衬底淀积的Al金属层上,利用分子镀方法,用Am241镀一层厚度为4μm的α放射源层。步骤3:利用键合法将上PIN结与下PIN结键合在一起,使α放射源层夹在上PIN结的N型外延层欧姆接触电极与下PIN结的P型外延层欧姆接触电极中间,形成夹心串联式PIN结构α辐照电池,如图2所示。实施例2,制备夹心放射源为Am241,α放射源层厚度为6μm的夹心串联式PIN结构α辐照电池。步骤一:制作上PIN结。参照图4,本步骤的实施如下:1a)清洗p型SiC衬底,以去除表面污染物,该p型SiC衬底的掺杂浓度为8x1017cm-3,如图4(a)所示:本步骤与实施例一的步骤(1a)相同。1b)外延生长P型低掺杂外延层,如图4(b)所示:在清洗后的p型SiC衬底上利用化学气相淀积CVD方法外延生长铝掺杂的P型掺杂外延层。其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝,得到铝掺杂浓度为2x1015cm-3,厚度为22μm的P型低掺杂外延层。1c)外延生长N型高掺杂外延层,如图4(c)所示:在生长的P型低掺杂外延层上利用化学气相淀积CVD法外延生长氮掺杂的N型高掺杂外延层,其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为液态氮气,得到氮掺杂浓度为2x1019cm-3,厚度为0.15μm的N型高掺杂外延层。1d)淀积欧姆接触电极,如图4(d)所示:本步骤与实施例一的步骤(1d)相同。步骤二:制作下PIN结。参照图5,本步骤的实施如下:2a)清洗n型SiC衬底,以去除表面污染物,该n型SiC衬底的掺杂浓度为8x1017cm-3,如图5(a)所示:本步骤与实施例1的步骤(2a)相同。2b)外延生长N型低掺杂外延层,如图5(b)所示:在清洗后的n型SiC衬底上利用化学气相淀积CVD方法外延生长氮掺杂的N型掺杂外延层。其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为液态氮气,完成氮掺杂浓度为2x1015cm-3,厚度为22μm的N型低掺杂外延层的生长。2c)外延生长P型高掺杂外延层,如图5(c)所示:在生长的N型低掺杂外延层上利用化学气相淀积CVD法外延生长铝离子掺杂的P型高掺杂外延层,其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝,完成铝掺杂浓度为2x1019cm-3,厚度为0.15μm的P型高掺杂外延层的生长。2d)淀积欧姆接触电极,如图5(d)所示:本步骤与实施例一的步骤(2d)相同。2e)制备α放射源层,如图5(e)所示:在上述n型SiC衬底淀积的Al金属层上,利用分子镀方法,用Am241镀一层厚度为6μm的α放射源层。步骤三:利用键合法将上PIN结与下PIN结键合在一起,使α放射源层夹在上PIN结的N型外延层欧姆接触电极与下PIN结的P型外延层欧姆接触电极中间,形成夹心串联式PIN结构α辐照电池,如图2所示。实施例3,制备夹心放射源α为Pu238,放射源层厚度为8μm的夹心串联式PIN结构α辐照电池。步骤A:制作上PIN结。参照图4,本步骤的实施如下:A1)清洗p型SiC衬底,以去除表面污染物,该p型SiC衬底的掺杂浓度为8x1017cm-3,如图4(a)。本步骤与实施例一的步骤(1a)相同。A2)外延生长P型低掺杂外延层,如图4(b)。在清洗后的p型SiC衬底上利用化学气相淀积CVD方法外延生长铝掺杂的P型掺杂外延层。其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝,得到铝掺杂浓度为3x1015cm-3,厚度为28μm的P型低掺杂外延层。A3)外延生长N型高掺杂外延层,如图4(c)。在生长的P型低掺杂外延层上利用化学气相淀积CVD法外延生长氮掺杂的N型高掺杂外延层,其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为液态氮气,得到氮掺杂浓度为3x1019cm-3,厚度为0.2μm的N型高掺杂外延层。A4)淀积欧姆接触电极,如图4(d)。本步骤与实施例一的步骤(1d)相同。步骤B:制作下PIN结。参照图5,本步骤的实施如下:B1)清洗n型SiC衬底,以去除表面污染物,该n型SiC衬底的掺杂浓度为8x1017cm-3,如图5(a)。本步骤与实施例1的步骤(1a)相同。B2)外延生长N型低掺杂外延层,如图5(b)。在清洗后的n型SiC衬底上利用化学气相淀积CVD方法外延生长氮掺杂的N型掺杂外延层。其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为液态氮气,完成氮掺杂浓度为3x1015cm-3,厚度为28μm的N型低掺杂外延层的生长。B3)外延生长P型高掺杂外延层,如图5(c)。在生长的N型低掺杂外延层上利用化学气相淀积CVD法外延生长铝离子掺杂的P型高掺杂外延层,其工艺条件为:外延温度为1550℃,压强为100mbar,反应气体是硅烷和丙烷,载气为纯氢气,杂质源为三甲基铝,完成铝掺杂浓度为3x1019cm-3,厚度为0.2μm的P型高掺杂外延层的生长。B4)淀积欧姆接触电极,如图5(d)。本步骤与实施例一的步骤(2d)相同。B5)制备α放射源层,如5(e)。在上述n型SiC衬底淀积的Al金属层上,利用分子镀方法,用Pu238镀一层厚度为8μm的α放射源层。步骤C:利用键合法将上PIN结与下PIN结键合在一起,使α放射源层夹在上PIN结的N型外延层欧姆接触电极与下PIN结的P型外延层欧姆接触电极中间,形成夹心串联式PIN结构α辐照电池,如图2所示。