一种电化学合成铁氧体处理核电厂放射性废液的方法与流程

文档序号:14786850发布日期:2018-06-28 01:30阅读:240来源:国知局

本发明属于环保技术领域,涉及一种处理核电厂放射性废液的方法,尤其是涉及一种电化学合成铁氧体处理核电厂放射性废液的方法。



背景技术:

随着核能技术利用不断增加,放射性废水持续进入环境,严重威胁环境安全和人类健康,因此系统研究核电厂放射性废液的处理方法意义巨大。

目前,应用于核电厂中低放射性废液处理的技术有:化学沉淀法、离子交换法、吸附法、蒸发浓缩法、膜分离法、生物法等。化学沉淀法在强放射性条件下固液分离操作困难,影响絮凝沉淀效果的因素较多;离子交换法中树脂床很快会穿透而失效,一旦失效应立即更换;吸附法产生的固体废物不易处理;蒸发浓缩法热能消耗大,运行成本较高,同时在设计和运行时还要考虑腐蚀、结垢、爆炸等潜在威胁。由此可见,传统的单一的方法在处理放射性废液方面均有其局限性,更加经济有效的处理方法仍需进一步研究。

铁氧体法是一种处理重金属废水的特殊沉淀方法,其可以同时去除多种重金属离子。铁氧体法操作过程中生成的固体废物体积小,重金属离子不易浸出而造成二次污染。铁氧体法分为中和法和氧化法两种。但此两种方法都需要消耗大量的铁盐来为铁氧体的形成提供条件,因此操作比较复杂,处理大量废水时成本高。



技术实现要素:

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种离子去除效率高且工艺简单的电化学合成铁氧体处理核电厂放射性废液的方法。

本发明的目的可以通过以下技术方案来实现:

一种电化学合成铁氧体处理核电厂放射性废液的方法,包括以下步骤:

(1)在核电厂放射性废液中加入支持电解质,并搅拌均匀,配制成混合液;

(2)向步骤(1)制得的混合液中加入碱溶液调节pH值,插入电极并进行恒温电解合成;

(3)将步骤(2)的混合液静置,过滤,进行固液分离,即完成对待处理核电厂放射性废液的净化处理,所得沉淀物可通过磁分离而高效去除。

步骤(1)所述的核电厂放射性废液中的放射性元素的浓度为0.001~10mg/L,B3+浓度为0~3000mg/L。

步骤(1)所述的核电厂放射性废液中的放射性元素包括58Co、60Co、55Fe、59Fe、65Zn、51Cr或54Mn中的一种或多种。

本发明中,所述的核电厂放射性废液含有类似钴离子等易被铁氧体晶体结合的放射性元素。

步骤(1)所述的电解质包括Na2SO4、NaCl、Na2CO3、NaHCO3、NaNO3、K2SO4、KCl、K2CO3、KHCO3、KNO3中的一种,所述电解质在混合液中的浓度为0.01~0.5mol/L。

步骤(2)所述的电极选择纯铁、铸铁或碳钢等材料,所述的电极表面积为1~10cm2

步骤(2)所述的碱溶液为NaOH溶液、KOH溶液或Ca(OH)2溶液中的一种,所述的碱溶液的摩尔浓度为1~2mol/L,利用碱溶液调节混合液pH值为7~11。

步骤(2)所述的恒温电解合成处理的条件为:控制电流密度为10~500mA/cm2,控制反应温度为20~70℃,控制反应时间为30~60min,控制转速为80~300r/min,控制电极间距为1~10cm。

步骤(3)所述的过滤为定性滤纸的自然过滤。

本发明将电化学与铁氧体法相结合,通过电解金属阳极产生所需的Fe2+,控制电解条件,使部分Fe2+氧化成Fe3+,在一定条件下直接形成尖晶石型铁氧体,从而通过形成铁氧体来去除废水中相关金属离子,该方法不需要添加铁盐,具有创新性,其反应式为:

M2++2Fe3++8OH-→M(OH)2+2Fe(OH)3(初期溶胶)

→MFe2O4+nH2O(尖晶石型铁氧体)

上式M2+为二价可溶性金属离子。

与现有技术相比,本发明能够解决传统化学沉淀法产生的放射性污泥量大,容易造成二次污染的问题,且可以达到离子的高效去除并实现沉渣的高效磁分离,工艺简单,操作方便,不易造成二次污染。

具体实施方式

下面结合具体实施例对本发明进行详细说明。

实施例1:

模拟废液水样体积为500mL,反应温度通过恒温水浴槽控制,滴加碱液时通过电动搅拌来混合溶液。

实验步骤为:将六水氯化钴(CoCl2·6H2O)配成Co2+浓度为500mg/L的溶液,取5ml加入到500ml的容量瓶中,以配置Co2+浓度为5mg/L左右的模拟水溶液;再加入硼酸(H3BO3)2.8560g,使溶液中B3+浓度为1000mg/L;然后,按计量加入电解质Na2SO4,搅拌均匀配成原水溶液;再转移入600ml容器中,在一定温度的电热恒温水温槽中以60g/L的NaOH调节溶液pH值至实验设计值;选择实验所需的电极,电流密度,电极间距及电源,固定电极并且连接电源;调节搅拌速度到实验设计值;反应结束后在室温下用磁铁测定沉淀磁性,并冷却静置至上清液完全澄清,过滤,固液分离,取上清液测定Co2+浓度并称量反应后阳极重量,同时将所得沉淀用蒸馏水清洗并在60℃下干燥24h后进行称量。

其中,恒温水浴槽设置的温度是60℃,经NaOH调节溶液的初始pH为8,电流密度为30mA/cm2,反应时间50min,Na2SO4浓度0.1mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度1.25μg/L、总Fe浓度169.50μg/L。沉渣颜色为棕黑色,磁性强。

实施例2:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是60℃,经NaOH调节溶液的初始pH为8,电流密度为40mA/cm2,反应时间50min,Na2SO4浓度0.1mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度2.14μg/L、总Fe浓度159.57μg/L,沉渣颜色为棕黑色,磁性强。

实施例3:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是60℃,经NaOH调节溶液的初始pH为8,电流密度为50mA/cm2,反应时间50min,Na2SO4浓度0.1mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度1.00μg/L、总Fe浓度58.54μg/L,颜色为棕黑色,磁性强。

实施例4:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是60℃,经NaOH调节溶液的初始pH为8,电流密度为33.3mA/cm2,反应时间60min,Na2SO4浓度0.1mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度1.40μg/L、总Fe浓度78.20μg/L,颜色为棕黑色,磁性强。

实施例5:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是50℃,经NaOH调节溶液的初始pH为8,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.1mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度2.20μg/L、总Fe浓度65.72μg/L,颜色为棕黑色,磁性强。

实施例6:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是70℃,经NaOH调节溶液的初始pH为8,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.1mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度7.31μg/L、总Fe浓度106.10μg/L,颜色为棕黑色,磁性强。

实施例7:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是50℃,经NaOH调节溶液的初始pH为8.5,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.1mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度1.37μg/L、总Fe浓度60.13μg/L,颜色为棕黑色,磁性强。

实施例8:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是50℃,经NaOH调节溶液的初始pH为7,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.1mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度204.90μg/L、总Fe浓度80.72μg/L,颜色为墨绿,磁性弱。

实施例9:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是50℃,经NaOH调节溶液的初始pH为8.5,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.05mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度14.51μg/L、总Fe浓度31.55μg/L,颜色为灰棕色,磁性强。

实施例10:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是50℃,经NaOH调节溶液的初始pH为8.5,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.15mol/L,转速180r/min,电极间距1cm。

实验结果为:Co2+浓度2.58μg/L、总Fe浓度9.73μg/L,颜色为棕黑色,磁性强。

实施例11:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是50℃,经NaOH调节溶液的初始pH为8.5,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.15mol/L,转速130r/min,电极间距1cm。

实验结果为:Co2+浓度10.93μg/L、总Fe浓度75.65μg/L,颜色为棕黑色,磁性强。

实施例12:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是50℃,经NaOH调节溶液的初始pH为8.5,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.15mol/L,转速250r/min,电极间距1cm。

实验结果为:Co2+浓度64.90μg/L、总Fe浓度74.95μg/L,颜色为红棕色,无磁性。

实施例13:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是50℃,经NaOH调节溶液的初始pH为8.5,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.15mol/L,转速180r/min,电极间距2cm。

实验结果为:Co2+浓度10.81μg/L、总Fe浓度49.78μg/L,颜色为深棕,磁性较强。

实施例14:

实验步骤与实施例1相同,采用的工艺参数与实施例1不同,具体如下:恒温水浴槽设置的温度是50℃,经NaOH调节溶液的初始pH为8.5,电流密度为33.3mA/cm2,反应时间50min,Na2SO4浓度0.15mol/L,转速180r/min,电极间距3cm。

实验结果为:Co2+浓度8.72μg/L、总Fe浓度13.96μg/L,颜色为深棕,磁性较强。

上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1