一种防水TPU复合材料及其制备方法与流程

文档序号:19990416发布日期:2020-02-22 02:11阅读:294来源:国知局

本发明属于复合面料技术领域,尤其涉及一种防水tpu复合材料及其制备方法。



背景技术:

纺织行业中,我们一般要求薄膜既能阻止液体通过,又能允许水蒸气散逸。要达到这两种功能的完美结合,就要使涂层或薄膜既能透水汽,又能阻隔液体,可以采用致密型薄膜和微孔型薄膜。目前,最受欢迎的防水透湿薄膜之一就是tpu薄膜。

tpu,又称热塑性聚氨酯橡胶或热塑性聚氨酯弹性体,是一种线性嵌段共聚物,由低聚物多元醇软段和异氰酸酯硬段构成。大分子二元醇和异氰酸酯连接形成长链结构,因分子链长,表现出柔性,所以形成整个大分子链中的软段结构;小分子多元醇和异氰酸酯连接形成短链结构,因分子链短,从而呈现刚性,形成大分子链结构中的硬段结构。软段部分通常与刚性的硬段交替存在于tpu分子链中,以共价键尾尾连接。由于聚氨酯硬段间的相互作用,所以它具有良好的机械性能。

cn105421088a公开了一种银纤维防水透湿面料,所述银纤维防水透湿面料包括tpu防水透气膜和面料主体组成,所述面料主体是由经纱和纬纱编织而成,所述经纱为银纤维,所述纬纱为锦纶和涤纶混纺而成,本发明虽然在一定程度上能够防水透湿,但是该tpu防水透气膜的硬度、抗拉强度、抗撕强度等机械强度较低,且对于高水压环境的防水透湿能力弱。

因此,开发一种硬度高、抗拉强度高、抗撕强度高,且绿色环保、防水性能优异的tpu复合材料,是优化防水透气膜的关键。



技术实现要素:

针对现有技术的不足,本发明的目的在于提供一种硬度高、抗拉强度高、抗撕强度高,且绿色环保、防水性能透湿性能优异的tpu复合材料及其制备方法。

为达到此发明目的,本发明采用以下技术方案:

第一方面,本发明提供一种防水tpu复合材料,其特征在于,所述防水tpu复合材料包括两层结构,外层为防水tpu聚合物层,内层为tpu薄膜层。

优选地,所述防水tpu聚合物层由经丝和纬丝交织而成,所述经丝为聚氨酯纤维和石墨烯纤维的混合物,所述纬丝为银纤维。

在本发明中,所述经丝为聚氨酯纤维和石墨烯纤维的混合物,其中石墨烯不仅具有优良的物理、化学以及力学性能,还能够充分提高聚合物的防水性能和阻隔性能;将石墨烯加入tpu复合材料中,能够有效改善复合材料的宏观力学性能,如tpu复合材料的硬度、抗拉强度、抗撕强度等机械强度。

在本发明中,所述纬丝为银纤维,银纤维自身具有防辐射性能,抗静电性抗静电,使产品具有无静电之舒适感,可保护人体免受电磁波侵害,银纤维表面的银离子能非常迅速将阿摩尼亚及变质的蛋白质吸附其上而降低或消除臭味,强力抗菌,是一种自然界形成的天然元素,完全无一般化学性产品之毒副作用,绿色环保,手感舒适。

在本发明中,所述防水tpu聚合物层由经丝和纬丝交织而成,银纤维配合聚氨酯纤维和石墨烯纤维的混合物,二者协同增效,可以极大地提升防水性能和阻隔性能,使得面料具有优异的透湿性和耐用性,保证在高水压环境下仍具有防水透湿能力。

优选地,所述聚氨酯纤维和石墨烯纤维的质量比为(1-3):1,例如可以是1:1、1.3:1、1.5:1、1.8:1、2:1、2.2:1、2.5:1、2.9:1或3:1。

本发明进一步优选了合理的聚氨酯纤维和石墨烯纤维的质量比,不仅可以进一步提升产品的机械强度,如硬度、抗拉强度和抗撕强度,还可以帮助石墨烯很好地扩散在聚氨酯纤维内,避免石墨烯产生团聚现象。

优选地,所述聚氨酯纤维和银纤维的质量比为(3-8):1,例如可以是3:1、3.5:1、4:1、4.5:1、5:1、5.5:1、6:1、6.5:1、7:1、7.5:1或8:1。

本发明进一步优选了合理的聚氨酯纤维和银纤维的质量比,目的是进一步提升防水性能、阻隔性能以及透气透湿性能。

优选地,所述防水tpu聚合物层的组织纹路为斜纹。

本发明组织纹路优选为斜纹,是由于斜纹组织有浮长线出现,使织物表面的光泽较平纹亮,达到手感柔软、舒适的效果。

优选地,所述外层与内层的厚度比为1:(1-5),例如可以是1:1、1:1.5、1:2、1:2.5、1:3、1:3.5、1:4、1:4.5或1:5。

第二方面,本发明提供了一种如第一方面所述的防水tpu复合材料的制备方法,所述方法包括以下步骤:

将防水tpu聚合物层与tpu薄膜层采用热压合的方式进行压合,得到所述防水tpu复合材料。

优选地,所述热压合的温度为85-120℃,例如85℃、88℃、90℃、95℃、98℃、100℃、105℃、110℃、115℃或120℃。

优选地,所述防水tpu聚合物层通过如下方法制备得到:

将聚氨酯纤维和石墨烯纤维混合均匀作为经丝,以银纤维为纬丝,以斜纹为组织纹路,编织成所述防水tpu聚合物层。

在本发明中,采用聚氨酯纤维和石墨烯纤维先混和均匀的方式,从而促进其石墨烯在聚氨酯纤维中的分散,避免石墨烯团聚,从而进一步提高tpu复合材料的力学性能。

优选地,所述方法包括以下步骤:

(1)将聚氨酯纤维和石墨烯纤维混合均匀作为经丝,以银纤维为纬丝,以斜纹为组织纹路,编织成防水tpu聚合物层;

(2)将防水tpu聚合物层与tpu薄膜层采用热压合的方式在85-120℃下进行压合,得到所述防水tpu复合材料。

相对于现有技术,本发明具有以下有益效果:

(1)本发明的防水tpu聚合物层,经丝为聚氨酯纤维和石墨烯纤维的混合物,具有绿色环保、透气透湿性能好的特点,tpu防水复合材料的机械强度得到很大提升。

(2)本发明的防水tpu聚合物层,纬丝为银纤维,进一步加强了防水性能以及阻隔性能,而且具有绿色环保、透气透湿性能好、抗菌抗辐射、手感舒适的优点。

(3)本发明所述经丝为聚氨酯纤维和石墨烯纤维的混合物,纬丝为银纤维,二者相互配合协同增效,使本发明所述tpu复合材料具有极强的防水性能、透湿性能,透湿量范围在7800-10000g/m2.24h之间,极大地提升了各种机械强度,如硬度范围在85-120a之间、抗拉强度范围在600-770kgf/cm2之间、抗撕强度范围在450-650kgf/cm2之间,且在较高水压环境5500-8000mmh2o内稳定仍可以使用。

具体实施方式

下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。

实施例1

一种防水tpu复合材料,包括两层结构,外层为防水tpu聚合物层,内层为tpu薄膜层,所述防水tpu聚合物层由经丝和纬丝交织而成,所述经丝为聚氨酯纤维和石墨烯纤维的混合物,所述纬丝为银纤维,所述聚氨酯纤维和石墨烯纤维的质量比为2:1,所述聚氨酯纤维和银纤维的质量比为5:1,所述防水tpu聚合物层的组织纹路为斜纹,所述外层与内层的厚度比为1:3。

所述防水tpu复合材料具体方法包括以下步骤:

(1)将聚氨酯纤维和石墨烯纤维质量比为2:1混合均匀作为经丝,以聚氨酯纤维和银纤维的质量比为5:1的银纤维为纬丝,以斜纹为组织纹路,编织成防水tpu聚合物层;

(2)将防水tpu聚合物层与tpu薄膜层采用热压合的方式在100℃下进行压合,所述外层与内层的厚度比为1:3,得到所述防水tpu复合材料。

实施例2

一种防水tpu复合材料,包括两层结构,外层为防水tpu聚合物层,内层为tpu薄膜层,所述防水tpu聚合物层由经丝和纬丝交织而成,所述经丝为聚氨酯纤维和石墨烯纤维的混合物,所述纬丝为银纤维,所述聚氨酯纤维和石墨烯纤维的质量比为1:1,所述聚氨酯纤维和银纤维的质量比为8:1,所述防水tpu聚合物层的组织纹路为斜纹,所述外层与内层的厚度比为1:3。

所述防水tpu复合材料具体方法包括以下步骤:

(1)将聚氨酯纤维和石墨烯纤维质量比为1:1混合均匀作为经丝,以聚氨酯纤维和银纤维质量比为8:1的银纤维为纬丝,以斜纹为组织纹路,编织成防水tpu聚合物层;

(2)将防水tpu聚合物层与tpu薄膜层采用热压合的方式在85℃下进行压合,所述外层与内层的厚度比为1:1,得到所述防水tpu复合材料。

实施例3

一种防水tpu复合材料,包括两层结构,外层为防水tpu聚合物层,内层为tpu薄膜层,所述防水tpu聚合物层由经丝和纬丝交织而成,所述经丝为聚氨酯纤维和石墨烯纤维的混合物,所述纬丝为银纤维,所述聚氨酯纤维和石墨烯纤维的质量比为3:1,所述聚氨酯纤维和银纤维的质量比为8:1,所述防水tpu聚合物层的组织纹路为斜纹,所述外层与内层的厚度比为1:5。

所述防水tpu复合材料具体方法包括以下步骤:

(1)将聚氨酯纤维和石墨烯纤维质量比为3:1混合均匀作为经丝,以聚氨酯纤维和银纤维质量比为8:1的银纤维为纬丝,以斜纹为组织纹路,编织成防水tpu聚合物层;

(2)将防水tpu聚合物层与tpu薄膜层采用热压合的方式在120℃下进行压合,所述外层与内层的厚度比为1:5,得到所述防水tpu复合材料。

实施例4

一种防水tpu复合材料,包括两层结构,外层为防水tpu聚合物层,内层为tpu薄膜层,所述防水tpu聚合物层由经丝和纬丝交织而成,所述经丝为聚氨酯纤维和石墨烯纤维的混合物,所述纬丝为银纤维,所述聚氨酯纤维和石墨烯纤维的质量比为5:1,所述聚氨酯纤维和银纤维的质量比为10:1,所述防水tpu聚合物层的组织纹路为斜纹,所述外层与内层的厚度比为1:7。

所述防水tpu复合材料具体方法包括以下步骤:

(1)将聚氨酯纤维和石墨烯纤维质量比为5:1混合均匀作为经丝,以聚氨酯纤维和银纤维质量比为10:1的银纤维为纬丝,以斜纹为组织纹路,编织成防水tpu聚合物层;

(2)将防水tpu聚合物层与tpu薄膜层采用热压合的方式在80℃下进行压合,所述外层与内层的厚度比为1:7,得到所述防水tpu复合材料。

实施例5

一种防水tpu复合材料,包括两层结构,外层为防水tpu聚合物层,内层为tpu薄膜层,所述防水tpu聚合物层由经丝和纬丝交织而成,所述经丝为聚氨酯纤维和石墨烯纤维的混合物,所述纬丝为银纤维,所述聚氨酯纤维和石墨烯纤维的质量比为1:2,所述聚氨酯纤维和银纤维的质量比为1:1,所述防水tpu聚合物层的组织纹路为斜纹,所述外层与内层的厚度比为2:1。

所述防水tpu复合材料具体方法包括以下步骤:

(1)将聚氨酯纤维和石墨烯纤维质量比为1:2混合均匀作为经丝,以聚氨酯纤维和银纤维质量比为1:1的银纤维为纬丝,以平纹为组织纹路,编织成防水tpu聚合物层;

(2)将防水tpu聚合物层与tpu薄膜层采用热压合的方式在130℃下进行压合,所述外层与内层的厚度比为2:1,得到所述防水tpu复合材料。

对比例1

同实施例1,区别仅在于所述经丝仅为聚氨酯纤维,不含石墨烯纤维,其他组分含量以及制备方法不变。

对比例2

同实施例1,区别仅在于所述防水tpu聚合物层的经丝和纬丝均为聚氨酯纤维和石墨烯混合物,不含银纤维,其他组分含量以及制备方法不变。

对比例3

同实施例1,区别仅在于所述经丝聚氨酯纤维和银纤维的混合物,纬丝为石墨烯纤维,其他组分含量以及制备方法不变。

产品性能测试

试验例1

防水性能测试:

取实施例1-5和对比例1-3制得的防水tpu薄膜为样品,测试时,沿经向剪取20cm×20cm的试样,将其一端浸入一杯盛有0.5%的重铬酸钾溶液的烧杯中,然后将盛溶液的烧杯置于温水浴内,30分钟后测量样品表面的水面上升高度。测试原理为毛细管效应,液态水在微孔中发生上升或下降的现象,毛细管高度为其衡量指标。

试验例2

透湿性能测试:

取实实施例1-5和对比例1-3制得的防水tpu薄膜为样品,样品封在盛有水的透湿杯中,放置于规定温度和相对湿度的密封环境中,根据一定时间内透湿杯(包括样品和水)质量的变化计算透湿量,计算功式如以下:wvt=(24·△m)/(s·t)。

试验例3

力学性能测试

取实施例1-5和对比例1-3制得的防水tpu薄膜为样品,分别测试每个样品的硬度、抗拉强度和抗撕强度。

试验例4

耐水压测试

取实施例1-5和对比例1-3制得的防水tpu薄膜为样品,在标准实验室条件下,织物承受蒸馏水往上喷的压力,并记录水压值,即单位面积可承受压力而不会发生渗漏。

产品性能测试结果如表1所示:

表1

由表1数据可知,实施例1-5的样品的水面上升高度很低甚至不上升,表明本发明的防水tpu复合材料的防水性能好;实施例1-5的样品透湿量范围在7800-10000g/m2.24h之间,表面本发明的防水tpu复合材料的透湿性能好;实施例1-5的样品硬度范围在85-120a之间、抗拉强度范围在600-770kgf/cm2之间、抗撕强度在450-650kgf/cm2之间,表面本发明的防水tpu复合材料的机械强度高;实施例1-3的样品耐水压范围在5500-8000mmh2o之间,表明本发明的防水tpu复合材料在水压较高范围内仍能够保持稳定。

实施例1-3为本申请所述防水tpu优选范围内的样品,其防水性能和机械强度更为优异,其水面上升高度为0,其透湿量范围在9500-10000g/m2·24h之间,硬度范围在110-120a之间、抗拉强度范围在730-770kgf/cm2之间、抗撕强度在610-650kgf/cm2之间,耐水压范围在7500-8000mmh2o之间。

从实施例1-5和对比例1-2可以看出,当石墨烯或银纤维缺少任意一种时,tpu复合材料的防水性能以及机械强度下降得十分明显;从对比例3可以看出当石墨烯纤维单独成纬丝,虽然相比于对比例1-2的tpu复合材料的诸项性能有所提升,但是由于石墨烯纤维容易团聚,会造成其在编织过程中分散不均匀,导致其相较于本申请所述的tpu复合材料,其防水性能以及机械强度仍然低得多。

综上所述,本发明所述经丝为聚氨酯纤维和石墨烯纤维的混合物,纬丝为银纤维,二者相互配合协同增效,使本发明所述tpu复合材料具有极强的防水性能、透湿性能,极大地提升了各种机械强度,如硬度、抗拉强度、抗撕强度,且在较高水压环境内仍可以使用。

申请人声明,本发明通过上述实施例来说明本发明的工艺方法,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1