用来确定旋转对称设备的纵向位置和角位置的设备的制作方法

文档序号:1108447阅读:239来源:国知局
专利名称:用来确定旋转对称设备的纵向位置和角位置的设备的制作方法
技术领域
本发明涉及一种用来确定在模拟或现实医疗干预,特别是经皮干预,期间使用的旋转对称设备的纵向位置和角位置的设备,和特别是一种使用光学导航传感器来测量旋转对称设备的运动的设备。
更具体地说,本发明涉及一种光学导航传感器,当经过围绕它的静态元件,例如一个插入护套时,该光学导航传感器用来间接地跟踪仪器的表面的运动。本发明还涉及允许插入仪器的辨别或其绝对位置的确定的技术,并且涉及诸如小直径金属丝之类的具体仪器的跟踪。
背景技术
外科模拟器、以及计算机辅助外科系统和其它用途,要求由用户操纵的仪器的位置的确定,或者从该确定得益。在微小创伤或经皮过程中,在仪器通常穿过诸如套针或护套之类的插入端口的场合,测量相对于这样的周围结构的运动可提供由计算机需要的全部或部分信息,以或者把用户姿势的效果施加到模拟模型上,或者指导、帮助或控制正在进行的诊断或治疗过程。其它系统可能依赖于相同跟踪装置,以否则处理来自操纵跟踪仪器的用户的输入,或者分析仪器的运动。
仪器跟踪可基于绝对位置测量,或基于从已知基准位置开始的连续运动测量。在后一种情况下,建立仪器的绝对位置的装置必须初始、和最终以规则间隔补偿测量误差的累积。可建立绝对位置测量。这样一种初始基准位置可通过要求用户把系统放置在限定状态下、通过探测仪器的插入、或通过探测在其表面上的绝对位置标记而建立(如由本申请人在WO 02071369 A中公开的那样)。
现有技术公开了使用机械系统来跟踪仪器、导管、或其它细长仪器的相对运动的装置,该机械系统与运动仪器相接触。
一些系统使用由附加到运动仪器上的缆索或齿轮直接驱动的跟踪轮或类似机构。这允许仪器的运动的可靠测量,但典型地要求运动仪器附加到跟踪装置上,防止用户从装置容易和完全地退出仪器。
在US 3304434中和在US 6038488中,公开了一种装置,其中球形物体或球与被跟踪表面直接接触。由摩擦力驱动,球滚动到位,以跟随下面的表面的运动。球本身的运动然后由两个线性运动编码器测量,该编码器由与球切线啮合的、处于力传递接触中的一对轴驱动。每根轴然后驱动编码轮,该编码轮报告沿轴线的运动,提供每个运动轴线的跟踪。
这种手段的缺陷包括在被跟踪仪器上强加的摩擦力和机构的惯性,这两者都可由操纵被跟踪仪器的用户感觉到。而且,由仪器的运动到球形物体的不可靠传递所引起的滑移问题可降低系统的精度。基于弹簧的机构典型地用来把小球保持到位,并且进一步增加摩擦力。
其它导管跟踪装置,如在EP 0970714 A中描述的那样,依赖于用来把导管保持在一对相对夹紧轮之间的运载组件。运载组件转动,以使所述导管绕其纵向轴线转动,并且夹紧轮转动,以使物体轴向平移。然而,这种机构的惯性明显干扰导管的自由运动。
在US 6267599中公开的另一个发明中,包括转动传感器的构架组件安装在平行导轨上。机动系统保证这种组件跟随插入仪器的末端的运动。伺服马达和力传感器用来补偿系统的摩擦力和惯性。同样,这样的系统未能消除可感觉的和干扰触觉的人为产物。
US 6323837公开了另一种用来跟踪在外科手术的模拟中使用的杆或导管的角位置的测量方法。为了测量仪器的运动,它使用两个独立和正交的界面,包括驱动编码轮的运动的驱动轮-该编码轮优选地是具有作为换能器的光学编码器的黑编码轮以检测其转动。这种手段的问题是,用来驱动每个界面的相同摩擦力产生对于仪器在另一个、正交方向上的运动的阻力。
另一种手段是使用仪器的表面紧密栅格状或加条纹标记,如在WO 9810387中描述的那样。其中公开的装置允许仪器运动的无接触读取,但只能跟踪专门指定的表面。被跟踪表面必须覆盖有紧密加条纹或栅格状图案,以允许运动探测。这增加制造成本,并且限制仪器的类型和可跟踪的表面。表面涂层也常常是脆弱的污点或划痕可能干扰跟踪。此外,也限制借助于这样一种系统可得到的分辨率。
因此,仍然需要一种能够进行仪器的纵向位置和旋转或角位置的精确测量而不通过过大摩擦力或惯性干扰仪器的操纵的紧凑装置。
基于图像捕获和分析的光学跟踪装置,称作光学导航传感器,最近已经介绍。它们主要被开发成改进计算机鼠标的可靠性和性能(US5578813、US 5644139、US 6256016、US 6281882)。不像要求下面的表面的特殊处理或构造的以前技术(US 4409479),这些光学导航传感器捕获运动表面的连续图像,并且把每个新获得的图像与以前图像的平移拷贝相匹配。这允许传感器分析和精确地测量附近表面的运动而不要求任何物理接触,因而允许跟踪几乎任何类型的表面。
这些传感器具体地用来测量在平坦平面中沿两个正交线性轴线的装置的位移,如在计算机鼠标中发生的那样。也已经公开了不同构造的这些传感器的使用,例如跟踪用户手指沿两个正交轴线的运动(US 6057540)、作为表面图像扫描装置的部分(US 5994710)、或者在条码读取仪器中(US 6585158)。

发明内容
本发明的目的在于,提供一种由光学跟踪装置来可靠地探测旋转对称设备的运动的设备。
按照本发明,借助于按照权利要求1中描述的一种设备,使用间接跟踪旋转对称仪器的纵向运动和绕其纵向轴线的转动的光学导航传感器,满足设置的目的。
更具体地说,根据本发明的、在跟踪与设备牢固地保持运动传递接触的小和轻重量球形物体的表面时包括的特征,允许使用间接测量的低摩擦和低惯性位置确定。
与直接跟踪仪器表面的设备相比,这种设备可有效地跟踪变化范围更大的表面材料,包括暗的、发光的、或透明的表面;以及非常小直径的仪器。与测量与仪器保持运动传递接触的球形物体的转动的其它设备相比,本发明依赖于通过使用跟踪和使用无接触手段靠压仪器的小球形物体而使摩擦力和惯性最小的手段。
根据本发明的设备的另外优选实施例公开在从属权利要求中。
一种借助于计算机用来对接旋转对称设备的运动的设备包括允许两个自由度的支撑、和光学导航传感器。当轴与支撑啮合时,它在保持与运动传递小球相接触的同时,能以两个自由度运动,其中光学导航传感器通过小球检测每个自由度。光学导航传感器提供设备的组合纵向和旋转位移的同时跟踪。
与设备或仪器处于运动传递接触的中间球,插入在被跟踪物体与光学导航传感器之间以减轻后者的限制,即当仪器相对于由传感器捕获的图像的尺寸过小时,或当仪器的表面性质(如过大亮度或高度光吸收)与足够质量的图像捕获不可比时。
本发明增强运动过周围结构-该周围结构可以是诸如套针或护套之类的专用插入端口、或用作用于位置测量的基准的另一个周围件,的旋转对称仪器的跟踪。
尽管不是完全没有接触,但这样一种设备产生非常低的摩擦力和惯性。
此后,通过球形物体进入或退出光学导航传感器的图像聚焦区域的位移,可探测插入仪器的存在或不存在。
本公开的另一个目的是,描述从由光学导航传感器捕获的图像的处理得到的信息如何可用作建立仪器的绝对纵向和旋转位置的设备通过探测在跟踪装置内仪器的存在或不存在、或根据本发明的另外实施例通过探测在仪器的表面上的光学标记。另外,表面标记的探测可用来辨别仪器。本发明的另一个目的因此是,提供容易识别模拟仪器的存在和/或确定存在模拟仪器的种类和/或其在跟踪装置内的绝对/基准位置的可能性。
本发明的又一个目的是,提供一种能够传送关于位于外部导管内的内部导管或柔性元件或仪器的运动的信息。


图1表示根据本发明实施例的光学传感器的实际布置和在待跟踪的表面上方的球形物体(“小球”);图2表示根据本发明优选实施例的、用来改进从被跟踪表面到中间小球的运动传递的磁铁的放置;图3表示小球的位移如何可用来探测插入设备的存在或不存在,该设备的表面被跟踪;图4表示允许变化直径的仪器由根据图1实施例的设备跟踪的机构;图5表示由用于运动跟踪的光学导航传感器捕获的图像的例子;及图6表示呈现沿仪器的表面可见的一系列着色段的仪器的示意图。
具体实施例方式
图1表示使用光学导航传感器2和球形物体100(下文“小球”)的设备的示意图,该球形物体100用来传送关于下面的表面点103的运动的信息。
仪器保持设备(未表示)包括用于小球100的轴承(未表示)和开口或透明区域,通过该开口或透明区域,诸如光学导航传感器2之类的光探测和处理系统可跟踪在图像捕获体积125内看到的小球100的中间下面的表面101。
在仪器保持设备内的开口或透明区域至少与由虚线102定界的成像光学导航传感器2的最大视场一样大。
小球100为了绕所有轴线的自由转动被安装它借助于微小摩擦力保持到位,从而它本身不能移动,或者可以只允许远离光学传感器2的运动,允许小球100离开中间图像捕获区125。
图像捕获体积125在纵向上由光学元件12所定义的景深和换能器32的相对位置定界。比图像捕获体积更靠近传感器2或离其更远的表面将不被照射和适当地成像。在横向上,图像捕获体积125由在景深内的区域定界,该区域是由光学元件12投影到换能器32的光敏区域上。
仪器保持设备与光学导航传感器2的折射光学元件12以这样一种方式相连接,使定位在传感器下方并且处于与仪器3运动传递接触的小球100保持在光学导航传感器2的适当距离处,从而小球100的表面101保持在用于仪器跟踪的图像捕获的焦点中。
在小球100与待跟踪的表面之间的运动传递接触的点103沿直径与由光学传感器2跟踪的小球区域相对。因此,跟踪表面点103沿轴线110和112的运动通过直接接触传递到小球100,并且由光学导航传感器2测量,分别作为沿轴线111和118的相同数值的位移。
通过使用小球100捕获下面的物体3的运动并且把该运动传递到光学传感器2,测量单元可减轻光学导航传感器和光学元件12的限制。具体地说-导航传感器可能未能捕获某些过分光滑、过分发光、或过分暗(光吸收)表面的有用图像。小球的表面和织造可选择成,保证适当跟踪、和来自仪器的表面的适当运动传递,而与该表面的光学性质无关;-被跟踪仪器可能具有过分小的直径,从而它不是大得足以由传感器适当地成像,或者它太小而未覆盖后者的图像捕获体积125。有可能的是,通过开发专门适应的光学元件12、或通过在光学元件12与下面的表面之间插入一个或多个透镜,校正这个问题。然而,更成本有效的可能是,使用适当直径的中间小球来捕获仪器的运动并把该运动传送到光学导航传感器。
下文将公开本发明的这个实施例的具体实施和特征。
由传感器记录的表面运动和仪器的运动的对应性用箭头110、112、111、118表示。由光学导航传感器2报告的、标有箭头111和118的表面运动轴线分别测量小球的纵向平移和轴向转动。
光学导航传感器2包括光源31和光探测和图像捕获换能器(transducer)32。光源31能是LED或另一种适当的发光元件。换能器32能是光电探测器的适当阵列,或例如CCD装置。光学导航传感器2通过把在图像捕获体积125中可见的各种特定光学特征直接成像为象素阵列,光学地探测运动。来自光源31从表面101反射的光聚焦到在光学导航传感器2内的换能器32上。各个光电探测器或CCD装置的响应被数字化成适当分辨率,并且作为帧存储到在存储器阵列内的对应位置中。图像捕获换能器32嵌在芯片内,该芯片也包括处理连续帧和连续地测量它们的相对位移的处理器。
具有集成图像处理的二维光学导航传感器2可包括几种现有装置的一种,如由Agilent Technologies制造的ADNS-2001、ADNS-2030或ADNS-2051。基于一系列捕获图像的处理的这种传感器安装在折射和透镜系统12后面,该系统12把图像捕获栅格聚焦到离传感器本身一定距离。发光二极管31布置在附近,以保证在传感器下面的表面的足够照明。
图5表示由用于表面运动跟踪的光学导航传感器捕获的图像的例子,以表明如何从由光学导航传感器2捕获的图像得到信息。
图像41和42表示由用来跟踪小球表面的光学导航传感器2捕获的两个连续图像。初始图像41(左边)和随后图像42(右边)的比较和匹配允许确定图像位移的数值和方向,该图像位移与被跟踪表面的位移成比例。
当传感器集成在诸如在本发明中描述的那些之类的设备中时,这种运动信息可转换成仪器3的纵向和旋转运动。图像位移分离成与仪器3的轴线相平行的纵向分量111、和与前面轴线相正交的横向分量118,两者都根据图像分辨率和其定标而定标。纵向分量通过跟踪装置直接测量仪器的纵向运动;仪器表面的横向位移通过把它除以仪器的半径,转换成相对于跟踪装置的仪器转动的度量。
图像43和44表示,当在图像捕获体积125中表面不可见时取得的图像43(左边)、与当小球表面已经进入图像捕获体积125视界中时取得的图像44(右边)之间可以典型发现的差别。在图像的区域之间的对比度,以可探测的方式增大。在受控和恒定照明下,图像的光度也典型地增大。图2和3表明仪器的插入如何可把小球移入和移出图像捕获体积125。当传感器依次报告首先与图像43(=图3小球移出,没有仪器插入)和然后与图像44(=图4小球移入,仪器存在)相似的图像时,可探测小球的这种位移。
在使用ADNS-2051光学导航传感器的本发明的实施例中,使用由光学导航传感器捕获的图像的如下性质1.由表面散反射的光的强度的测量,a.k.a.图像的亮度(B);2.在捕获图像不同区域上的光度的可变性,该光度有些与图像的对比度(C)相关。在ADNS-2051上,对比度(C)的测量作为表面质量测量是可得到的(SQUAL寄存器),并且通过把平均象素值除以快门曝光时间(Average_Pixel/Shutter_Lower或Shutter_Upper),可估计整体图像亮度(B)。这两个值的增大指示在图像44和图4(仪器插入)中描绘的情形,而减小反映在图像43和图3(没有仪器插入)中描绘的情形。
在这两种状态之间的过渡因此允许在设备中仪器末端的通过的探测,该末端在进入时升起小球,并且在退出时让它远离。当这种过渡发生时,仪器末端的绝对位置是已知的-并且可用作以后由ADNS-2051处理器所报告的位移测量而确定仪器的绝对位置的基准。
可选择地,小区域光学反射传感器,如由Agilent Technologies制造的HEDS-1100,可以添加到设备上,以便以高精度测量在仪器本身的表面上的单点的光度。这样一种光学反射传感器是在一个壳体中包含LED发射器和匹配IC光电探测器的完全集成模块。分叉非球形透镜用来把发射器和探测器的活性区域成像到一个单斑点。这种设备可用来探测在仪器表面上的光学标记,如不同颜色的着色段。
图6表示由一系列着色的、加阴影或不同织造的段制成的仪器3的示意图,这些段也可以涂膝或雕刻。当测量仪器的运动时,分离小区域光学反射传感器可查询它正在检测的表面的光度。相异加阴影区域因此当它们在成像光学导航传感器2下面通过时被探测,并且每段的长度可在仪器的纵向(在标有X轴线的方向21上)运动期间被测量。段颜色和长度(例如,黑色-S1、白色-S2、灰色-S3、黑色-S4、白色-S5、灰色-S6及黑色-S7)的结果图案可用来编码信息。这种信息可用作用于每个仪器的独特特征,因而当它插入时提供自动仪器辨别,或者沿仪器的长度辨别特定区域。
具体地说,这种信息可用来建立在设备内的被跟踪仪器的绝对位置,作为在独特地由它们的阴影或长度辨别的两个着色段之间的过渡,被探测。这个绝对位置可用作以后由ADNS-2051所报告的位移测量而确定仪器的绝对位置的基准。为了实施这样一种光学反射传感器或其方法,本领域的技术人员可以考虑于2003年9月22日以本申请人名义提交的EP申请No 03405694(与于2004年9月22日提交的美国申请No 10/946.684相对应),并且该申请的教导通过参考包括在这里。
在图1中,小球100可具有1cm以下的直径,而插入仪器3的截面可以具有任何直径,小到零点几毫米。例如,在医学过程中使用的某些导向丝具有0.3mm的直径,这比由光学导航传感器和通常在市场上找到的光学元件所成像的区域小。
因为小球100具有小尺寸和质量,所以其惯性保持得非常低,并且传递到运动设备上的摩擦力可保持感觉不到。
一个或多个光学导航传感器2可用来跟踪小球100的运动,并且可选择其它传感器位置,但在与其中小球100与被跟踪表面相接触的地方径向相对的位置中跟踪小球运动对于光学导航传感器是最佳的,并且简化计算。下面的物体3的纵向运动(箭头110表示)转化成小球100的旋转运动111。下面的物体3的旋转运动(箭头112表示)转化成小球100的旋转运动118。
图2表示应用于旋转对称、小直径设备3,如在现实或模拟医学干预中使用的导管或导向丝,的跟踪的、根据本发明的图1的实施例的细节。
设备(在这个视图中已经除去其前半部)的本体120由管状空腔横过,通过该管状空腔,仪器3可插入和自由地运动。小球100布置在钻削在本体内、与引导设备3的所述空腔相垂直的圆柱形井121内。显然,井可以具有适于打算目的的不同形状,如棱柱形或锥形。
附加到井121的顶部上的光学导航传感器2测量小球100的转动。当仪器的运动驱动小球100的转动时,由光学传感器2测量的表面位移直接与在与小球100的接触点103处的仪器表面的位移相对应(相同数值,但方向相反)-如在图1中描述的那样。
对于可靠跟随仪器运动的小球100,在接触点103处在小球100与仪器之间的摩擦力要求比在小球100与井121的壁之间的接触区122处的摩擦更大。如果设备被定向成小球100竖直地在导管上方,则重力可单独保证小球100随仪器运动。
然而,因为小球100的小质量和尺寸,力优选地施加在小球100上,以在小球100与运动仪器3之间可靠地产生适当接触压力。在优选实施例中,小球100至少部分地由顺磁材料制成,并且永久磁铁或电磁铁123用来分别被动地、主动地把小球100拉向仪器3。这保证,小球100可靠地跟随插入仪器3的运动,并且设备可在任何方位起作用,独立于重力、并且在小球上没有任何辅助接触或摩擦。
这种磁性系统允许尽可能地使跟踪装置的摩擦和惯性低。
与图2相比较的图3表明设备如何可探测导管的插入。当没有仪器插入时,如图3中所示,小球100安置得离光学传感器较远,由用来把小球100向仪器插入空腔吸引的磁铁123拉离。
小球100重叠仪器插入空腔124,并且超越嵌在光学导航传感器2中的图像捕获系统的图像捕获体积和焦距125。
图2表示在仪器3的插入之后的小球的位置插入仪器3已经升高小球100,该小球100现在在焦点上以便足够由光学导航传感器2成像和跟踪。
再参照图5,图像43和44反映分别在图3中和在图2中表明的情形下由成像传感器捕获的画面。
如对于图1和5的实施例解释的那样,光学导航传感器提供反映由光学导航传感器2捕获的图像的清晰度和质量的输出信号。由仪器3的插入(图2)或退出(图3)触发的小球100的位移,因此可由跟踪装置探测和报告。
图4表示允许各种直径的仪器3插入在跟踪装置内的本发明的实施例。
跟踪系统呈现在图2和3中描述的相同元件,但在这个实施例中,仪器插入空腔126包括允许较宽范围仪器直径的跟踪的机构127。空腔126的底部包括活动对中装置127,该活动对中装置127借助于比小球100施加在插入仪器3上的压力稍大的力,把插入仪器3推向光学传感器2。在与仪器3的轴线横交(transverse)的截面上空腔底部126的凹入形状保证,插入导管除相对于跟踪小球100升起之外被适当地对中。
为了允许仪器3的插入,仅当系统通过分离装置(像例如以前所提到的光学传感器)探测到已经插入仪器3时,对中装置127可以由主动机构升起。可选择地,对中装置127可以由基于弹簧128的机构被动地升起。
通过测量对中装置127的位置,可确定插入仪器3的直径。这个直径值在由光学设备测量的横向位移计算仪器的转动角度时使用。
根据图1至4的设备表示,把与运动传递小球100的使用相结合的光学导航传感器2应用于通过周围静态元件120的仪器运动的分析。这个设备可跟踪各种刚性或柔性仪器3,包括导管和导向丝,如对于医学干预、以及在用于训练的模拟过程期间使用的那些。
根据图1至4的设备的关键好处是其跟踪旋转对称仪器3的纵向和旋转运动的能力,该旋转对称仪器3具有任意直径、和任意表面质量,包括不能由光学导航传感器2直接跟踪的非常细金属导向丝。这在保持系统的摩擦和惯性非常低的同时实现,使它们对于操纵插入仪器的用户几乎感觉不到。也已经证明,通过小球的位移也可确定插入仪器的存在或不存在。
在图中未表示的、并且提供关于例如外部导管和在外部导管中提供的内部导管的纵向和旋转运动的信息的另一个实施例,基于这种用途的讲授。所述旋转对称仪器3是透明的第一旋转对称设备3。透明度提供在可以通过、跟随导管3的纵向和旋转运动、在光学导航传感器的附近的所有部分中。在所述第一设备3内是从第一设备3外侧可看到的第二内部旋转对称设备。因此,提供第二光源和第二图像捕获和处理装置,其中由所述第二光源发射的光被直接导向在第二旋转对称设备的外表面上。等效于表面101的表面在这种情况下在内部导管上。来自所述表面的反射光由所述第二光探测器探测,以产生表示在纵向方向上和在圆周方向上的局部变化分布的位置信号,以能够实现用于内部导管的相对位置和角测量,这样一种方法与在由本申请人在以前提到的专利申请(EP 03405694)中公开的那些相类似。这个实施例使内部导管的较大直径是必需的,所以所述第二光源的图像表面具有允许测量的足够尺寸,即使透明外部设备也是如此。在这个实施例中,小球100不仅用来允许图像的放大,而且也提供反射表面,外部导管本身的表面是透明的。
也有可能在设备的不同纵向位置处提供根据图1的两个或多个设备。那么优选的是,使用连接到两个传感器的输出上的控制单元。以这种方式,可探测和校正在一个导航传感器处发生的偶然滑移。比如,系统可依赖于报告最大运动的传感器。
权利要求
1.一种用来确定在周围元件(120)内被导向的旋转对称设备(3)的纵向(110)和角(112)位置的设备,包括至少一个光源(31),用来发射光在所述周围元件内;和至少一个光探测和处理系统(2),用来产生代表所述纵向和角位置的信号,其中,它还包括布置在所述周围元件(120)内并且与所述旋转对称设备(3)处于运动传递接触的球形物体(100),其中,所述发射的光被引向所述球形物体(100)的外表面(101)上,通过该外表面(101)所述发射的光被反射,所述光探测和处理系统(2)被布置成探测至少部分所述反射光,其中,所述球形物体(100)至少部分地由顺磁材料制成,及其中,所述设备包括辅助装置(123),该辅助装置(123)用来至少在所述球形物体(100)的区域中产生磁场,以保证在所述球形物体与所述旋转对称设备(3)之间的所述运动传递接触。
2.一种用来确定在周围元件(120)内被导向的旋转对称设备(3)的纵向(110)和角(112)位置的设备,包括至少一个光源(31),用来发射光在所述周围元件内;和至少一个光探测和处理系统(2),用来产生代表所述纵向和角位置的信号,其中,它还包括布置在所述周围元件(120)内并且与所述旋转对称设备(3)处于运动传递接触的球形物体(100),其中,所述发射的光被引向所述球形物体(100)的外表面(101)上,通过该外表面(101)所述发射的光被反射,所述光探测和处理系统(2)被布置成探测至少部分所述反射光,其中,所述设备还包括限定用于所述光探测和处理系统(2)的图像捕获体积(125)的聚焦光学元件(12),大体上当在所述设备(3)与所述球形物体(100)之间实现所述接触时,所述外表面(101)能够转移到该图像捕获体积(125)中,所述光探测和处理系统(2)还布置成能够探测在与在所述图像捕获体积(125)内没有所述外表面(101)相对应的第一图像(43)、与在所述图像捕获体积(125)内存在所述外表面(101)相对应的第二图像(44)之间的差别。
3.根据权利要求1所述的设备,其中,所述设备还包括限定用于所述光探测和处理系统的图像捕获体积(125)的聚焦光学元件(12),大体上当在所述设备(3)与所述球形物体(100)之间实现所述接触时,所述外表面(101)能够转移到该图像捕获体积(125)中,所述光探测和处理系统(2)还布置成能够探测在与在所述图像捕获体积(125)内没有所述外表面(101)相对应的第一图像(43)、与在所述图像捕获体积(125)内存在所述外表面(101)相对应的第二图像(44)之间的差别。
4.根据权利要求1至3任一项所述的设备,其中,通过在所述图像捕获体积(125)内捕获的至少两个连续图像(41、42)的比较,实现所述旋转对称设备(3)的纵向位置和角位置的所述确定。
5.根据权利要求1至3任一项所述的设备,其中,它适于确定在实际的或模拟的医学干预中使用的设备(3)的纵向位置和角位置。
6.根据权利要求1至3任一项所述的设备,其中,它还包括直接跟踪所述设备(3)的小区域的至少一个辅助光学传感器。
7.根据权利要求6所述的设备,其中,它包括基于所述小区域跟踪辨别所述设备(3)的性质的计算装置。
8.根据权利要求6所述的设备,其中,它包括与随着时间所述纵向和角位置的所述确定的结果相结合、基于所述小区域跟踪来辨别所述设备(3)的性质的计算装置。
9.根据权利要求2或3所述的设备,其中,它包括井(121),所述球形物体(100)布置在该井(121)内,并且在所述球形物体(100)与所述设备(3)之间实现所述接触时能够转移。
10.根据权利要求1至3任一项所述的设备,其中,它还包括容纳不同的直径的旋转对称设备(3)的装置、探测插入在所述周围元件(120)内的给定旋转对称设备(3)的直径的装置(126、127、128)、及与确定所述旋转对称设备(3)的角位置的所述光探测和处理系统(2)的信号相联系来计算所述直径的计算装置。
11.根据权利要求1至3任一项所述、用来确定第一透明旋转对称设备(3)的纵向位置和角位置的设备,其中,它包括辅助光源,该辅助光源用来发射光在所述周围元件(120)内并在第二内部旋转对称设备的方向上,该发射的光由该第二内部旋转对称设备反射,所述第二内部旋转对称设备能够在所述第一透明旋转对称设备(3)内并且相对于其纵向和角运动,该设备包括辅助光探测和处理系统,以探测所述反射光并且基于所述探测计算所述第二内部设备的纵向位置和角位置。
全文摘要
本发明涉及一种用来当在元件周围(120)内导向旋转对称设备(3)时确定其纵向位置和角位置的设备。该设备包括与所述设备保持运动传递接触的小球(100),并且包括通过比较小球的外表面(101)的连续图像(41、42)而测量所述小球的运动的成像光学导航传感器(2)。在优选实施例中,小球由顺磁材料制成,并且设备还包括用来把磁力施加到小球上以保证其与设备(3)的接触的装置(123)。设备的辅助特征用来辨别设备在装置中的插入和退出,因为它们引起小球的位移,因此允许设备的绝对位置的确定。
文档编号A61B19/00GK1973183SQ200580013133
公开日2007年5月30日 申请日期2005年3月8日 优先权日2004年3月12日
发明者伊万·韦切里纳, 斯戴芬·贝特里塞, 尤里杰·佐豪特 申请人:希塔克特股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1