本发明涉及固体分散体。具体地,本发明涉及固体分散体,其具有提高的活性药物成分的溶解度和吸收性质。本发明还涉及所述固体分散体的制备方法,含有所述固体分散体的药物组合物,以及所述固体分散体的药物用途。
[
背景技术:
]
在药物领域,采用固体分散体是有效改善活性药物成分(此后有时记为"API")的溶解度和吸收性质、提高活性药物成分的生物利用度的技术。
对于固体分散体已有报道,例如,专利文献1公开了一种固体分散体,其是含有水难溶性或水不溶性HER2抑制物质的药物组合物,其具有所述HER2抑制物质的改善的水溶解度。
专利文献2公开了一种药物组合物,其含有水难溶性或水不溶性富含脂质斑块退缩物质(lipid rich plaque retracting substance),其具有富含脂质斑块退缩物质的改善的水溶解度,专利文献3公开了制备固体分散体的方法,其中固体物质和溶剂以足够降低所述固体物质熔点的量进行热熔。此外,专利文献4公开了一种固体分散体,其含有p 38 MAP激酶抑制剂。
进一步地,专利文献5公开了一种固体分散体,其包含具有特定化学结构的噻唑烷衍生物或其盐、水溶性聚合物(但是排除羟丙甲基纤维素和甲基纤维素)、羟丙甲基纤维素和/或甲基纤维素,其中,这些成分以特定重量比例含有。
专利文献6公开了固体分散体制剂,其含有西尼地平或其药理学上可接受的盐以及选自甲基纤维素、羟丙甲基纤维素等中的至少一种水溶性聚合物。
专利文献7公开了一种固体分散体,其用作用于治疗涉及多巴胺D4受体的疾病的药物,所述固体分散体包含2-羰基噻唑衍生物,选自羟丙甲基纤维素、羟丙基纤维素、聚乙烯吡咯烷酮和甲基纤维素中的至少一种水溶性聚合物,和酸,酸可以是无机酸或者有机酸。
引用文献列表
专利文献
专利文献1:WO 02/48141
专利文献2:WO 02/47723
专利文献3:WO 02/100379
专利文献4:WO 2006/006691
专利文献5:JP 7-324086 A
专利文献6:WO 2008/120724
专利文献7:JP 2000-309588 A
技术实现要素:
技术问题
尽管已有如上所述的关于固体分散体的发现被报道,常规的固体分散体不能提供活性药物成分的足够的溶解度和吸收性质。这也可以从下述事实得到理解,例如,对于其中采用了某水溶性聚合物的固体分散体,由于药物的释放也开始于胃,药物成分在到达吸收位点前发生了重结晶和沉淀(EuropeanJournal of Pharmaceuticals and Biopharmacuetical,50(2000)47-60).
因此希望提供一种固体分散体,其具有活性药物成分的提高的溶解度和吸收性质。
解决技术问题的手段
本发明发现,通过向水难溶性或水不溶性化合物中添加肠溶性基质材料和甲基纤维素、肠溶性基质材料和有机酸、或肠溶性基质材料、甲基纤维素、和有机酸来提供固体分散体,可以得到具有出色的溶出性质的组合物。进过进一步持续研究,本发明人完成了本发明。也就是说,本发明至少涉及以下[1]-[15]的方面。
[1].固体分散体,其包含:
(1)无定形活性药物成分;
(2)选自甲基纤维素和有机酸中的一种或更多种物质;和
(3)肠溶性基质材料,
其中,当固体分散体包含甲基纤维素时,所述固体分散体除了甲基纤维素之外不包含水溶性聚合物。
[2].根据权利要求1的固体分散体,其中,保持过饱和状态。
[3].根据权利要求1的固体分散体,其中,所述活性药物成分具有不低于约80℃且不高于约350℃的熔点。
[4].根据权利要求1的固体分散体,其中,所述活性药物成分具有在约37℃小于10mg/mL的水溶解度。
[5].根据权利要求1的固体分散体,其由热熔挤出法(HME法)制备。
[6].根据权利要求1的固体分散体,其中,所述固体分散体包含甲基纤维素,甲基纤维素相对于活性药物成分的重量比为约1%-3000%。
[7].根据权利要求1的固体分散体,其包含一种或更多种有机酸。
[8].根据权利要求1的固体分散体,其中,所述肠溶性基质材料是选自羟丙甲基纤维素酞酸酯、羟丙甲基纤维素乙酸琥珀酸酯和甲基丙烯酸共聚物中的一种或更多种肠溶性基质材料。
[9].根据权利要求7的固体分散体,其中,有机酸选自富马酸、柠檬酸、琥珀酸和酒石酸。
[10].根据权利要求1的固体分散体,其中,所述活性药物成分是水难溶性或水不溶性中枢神经系统酶抑制物质或血管扩张剂。
[11].包含根据权利要求1-10中任一项的固体分散体的药物。
[12].在固体分散体中保持活性药物成分的过饱和状态的方法,所述固体分散体是由热熔挤出法(HME法)制备的,其包含无定形活性药物成分、一种或更多种选自甲基纤维素和有机酸中的物质、和肠溶性基质材料,其中,当所述固体分散体包含甲基纤维素时,所述固体分散体不包含除了甲基纤维素之外的水溶性聚合物。
[13].制备固体分散体的方法,所述固体分散体包含无定形活性药物成分、一种或更多种选自甲基纤维素和有机酸中的物质、和肠溶性基质材料,其中,当所述固体分散体包含甲基纤维素时,所述固体分散体不包含除了甲基纤维素之外的水溶性聚合物。
[14].制备固体分散体的方法,该方法包括:形成含有无定形活性药物成分、一种或更多种选自甲基纤维素和有机酸中的物质和肠溶性基质材料的混炼物的步骤(当所述混炼物含有甲基纤维素时,所述混炼物不含有除了甲基纤维素之外的水溶性聚合物)。
[15].制备固体分散体的方法,该方法包括:采用热熔挤出法形成含有无定形活性药物成分、一种或更多种选自甲基纤维素和有机酸中的物质和肠溶性基质材料的混炼物的步骤(当所述混炼物含有甲基纤维素时,所述混炼物不含有除了甲基纤维素之外的水溶性聚合物)。
本发明的优势
根据本发明,提供一种固体分散体,其具有活性药物成分的提高的溶解度和吸收性质。本发明的固体分散体通过API的过饱和,显示出水难溶性或水不溶性API的提高的溶出性质,从而以小剂量可以实现保持高的血液浓度-时间曲线下面积(AUC)。本发明的固体分散体因此从药物有效性来说具有优异的效果。
附图说明
[图1]图1显示了比较例1的X-射线粉末衍射的结果。
[图2]图2显示了比较例2的X-射线粉末衍射的结果。
[图3]图3显示了比较例3的X-射线粉末衍射的结果。
[图4]图4显示了实施例1的X-射线粉末衍射的结果。
[图5]图5显示了实施例2的X-射线粉末衍射的结果。
[图6]图6显示了实施例3的X-射线粉末衍射的结果。
[图7]图7显示了实施例4的X-射线粉末衍射的结果。
[图8]图8显示了实施例5的X-射线粉末衍射的结果。
[图9]图9显示了实施例6的X-射线粉末衍射的结果。
[图10]图10显示了实施例7的X-射线粉末衍射的结果。
[图11]图11显示了实施例8的X-射线粉末衍射的结果。
[图12]图12显示了实施例9的X-射线粉末衍射的结果。
[图13]图13显示了实施例10的X-射线粉末衍射的结果。
[图14]图14显示了实施例11的X-射线粉末衍射的结果。
[图15]图15显示了富马酸的X-射线粉末衍射的结果。
[发明的详述说明]
本发明将在后述进行更详细的说明。
[无定形活性药物成分]
本发明的固体分散体中含有的成分的无定形活性药物成分,是无定形状态的活性药物成分,可以不是完全地无定形,可以是不被一般地认为是晶体状态的状态。
一种或更多种活性药物成分可以用作本发明的活性药物成分。这些活性药物成分就性质而言没有特别限定,可以是任何的水溶性的、水难溶性的或水不溶性的固体物质。所述的"水难溶性或水不溶性"是指,所述固体物质具有在37℃的水溶解度例如为10mg/mL或更低,优选0.1mg/m或更低。活性药物成分的水溶解度可以是或可以不是pH-依赖性的。溶解度可以根据常规方法测定。
水溶性的活性药物成分的实例包括但不限于下述:
(1)抗生素:盐酸四环素,氨苄青霉素,哌拉西林等。(2)解热药/镇痛药/消炎药:水杨酸钠,舒林酸,吲哚美辛钠,吗啡盐酸盐等。(3)止咳剂和祛痰剂:盐酸麻黄碱,盐酸诺斯卡品,磷酸可待因,磷酸二氢可待因,盐酸异丙肾上腺素等。(4)镇静剂:盐酸氯丙嗪,硫酸阿托品等。(5)抗溃疡剂:甲氧氯普胺,盐酸组氨酸等。(6)抗心律失常药:盐酸普萘洛尔,盐酸阿普洛尔等。(7)抗高血压利尿剂:溴化六甲铵,盐酸可乐定等。(8)抗凝剂:肝素钠,柠檬酸钠等。
水难溶性或水不溶性活性药物成分的实例包括但不限于下述:
(1)解热,镇痛和抗炎剂:例如水杨酸,舒林酸,氟芬酸,双氯芬酸,吲哚美辛,阿托品,东莨菪碱,吗啡,哌替啶,左啡诺,酮洛芬,萘普生,布洛芬,羟吗啡酮,阿司匹林,氨基比林,非那西丁,对乙酰氨基酚,保泰松,酮基苯基保泰松,甲芬那酸,布库洛明,benzydamine,mepirizole,tialamide,tinoridine,xylocaine,pentazocine,地塞米松,氢化可的松,泼尼松龙,azulene,异丙基安替比林,萨西林,氯芬酸,依托度酸及其盐。(2)安定药:例如,地西泮,劳拉西泮,奥沙西泮,恶唑仑,地西泮,美达西泮,替马西泮,氟苯甲脒,美托吡酯,硝西泮和利眠宁。(3)抗精神病药:例如,氯丙嗪,丙氯拉嗪,三氟拉嗪,舒必利,盐酸氯普胺,佐替平,氟哌啶醇,和1-[2-氟-4-(1H-吡唑-1-基)苯基]-5-甲氧基-3-(1-苯基-1H-吡唑-5-基)哒嗪-4(1H)-酮。(4)抗菌剂:例如,灰黄霉素,兰卡杀菌素[J.Antibiotics,38,877-885(1985)],唑类化合物[2-[(1R,2R)-2-(2,4-二氟苯基)-2-羟基-1-甲基-3-(1H-1,2,4-三唑-1-yl)丙基]-4-[4-(2,2,3,3-四氟丙氧基)苯基-3-(2H,4H)-1,2,4-三唑啉,氟康唑,伊曲康唑等],萘啶酸,吡莫米酸,哌替啶酸三水合物,依诺沙星,西诺沙星,氧氟沙星,诺氟沙星,盐酸环丙沙星和磺胺甲恶唑-甲氧苄啶。(5)抗生素:例如庆大霉素,地贝卡星,卡那霉素,利多霉素,妥布霉素,阿米卡星,地贝卡星,弗拉霉素,sisomicin,四环素,土霉素,罗替利环素,多西环素,氨苄西林,哌拉西林,替卡西林,头孢噻吩,头孢噻肟,头孢噻肟,头孢噻肟,头孢甲肟,头孢噻肟,头孢唑啉,头孢噻肟,头孢哌酮,头孢唑肟,莫沙拉秦,噻菌胺,磺胺酸,氨曲南,阿莫西林,头孢氨苄,红霉素,巴卡西林,米诺环素,氯霉素及其盐。(6)抗肿瘤剂,例如,6-O-(N-氯乙酰基氨基甲酰基)烟曲霉醇,博来霉素,甲氨蝶呤,放线菌素-D,丝裂霉素-C,多柔比星,阿霉素,新制癌菌素,阿糖胞苷,氟尿嘧啶,四氢呋喃基-5-氟尿嘧啶,Picibanil,香菇多糖,左旋咪唑,苯丁酸氮芥,阿齐米星,甘草甜素,HER2抑制剂(e.g.,WO 01/77107等中描述的杂环化合物),紫杉醇,盐酸多柔比星,依托泊苷,米托蒽醌,美司钠,美司钠,氨鲁米特,他莫昔芬,丙烯醛,顺铂,卡铂,环磷酰胺,洛莫司汀(CCNU)和卡莫司汀(BCNU)。(7)抗高血脂药:例如氯贝特,2-氯-3-[4-(2-甲基-2-苯基丙氧基)苯基]乙基丙酸酯[Chem.Pharm.Bull,38-2792-2796(1990)]Pharm。Bull,38-2792-2796(1990)],克立替康,考来烯胺,肌醇,生育酚烟酸酯,尼可醇,紫檀醇,普罗布考和弹性蛋白酶。
(8)镇咳药和祛痰剂:例如麻黄碱,甲基麻黄碱,诺斯卡品,可待因,二氢可待因,异丙嗪,氯丙二醇,皮可哌啶胺,cloperastine,protokylol,异丙肾上腺素,沙丁胺醇,特布他林,溴己新,碳半胱氨酸,乙基半胱氨酸,甲基半胱氨酸及其盐。(9)肌肉松弛剂:例如,普瑞替尼,替比夫定,泮库溴铵,氯苯甘醚氨基甲酸酯,盐酸甲苯哌丙酮,盐酸乙苯哌丁酮,盐酸替哌啶酮,美芬太尼,氯唑沙宗,苯丙氨酸酯,美索巴莫,氯苯甲酮,甲磺酸普立地诺,巴氯芬和硝苯呋海因钠。(10)抗癫痫剂:例如,苯妥英,乙琥胺,乙酰唑胺,利眠宁,苯巴比妥,卡马西平和扑米酮。(11)抗溃疡剂:例如,兰索拉唑,甲氧氯普胺,法莫替丁,奥美拉唑,舒必利,特布匹酮,盐酸西曲氯酸盐,吉法酯(gefarnate),马来酸伊索格拉定,西咪替丁,盐酸雷尼替丁,尼扎替丁和盐酸罗沙替丁。(12)抗抑郁药:例如,丙咪嗪,氯米帕明,肾上腺素和苯乙肼。(13)抗过敏剂:例如,苯海拉明,氯苯那敏,三硒胺,方法瑞咪,克立咪唑,二苯吡林,甲氧基苯胺,富马酸氯马斯汀,盐酸赛庚啶,美喹他嗪和酒石酸阿利马嗪。(14)强心剂:例如,反式-氧代樟脑(trans-pi-oxocamphor),乙酸钠茶碱(theophyllol),氨茶碱和乙苯福林。(15)抗心律失常药:例如,普萘洛尔,阿普洛尔,布非洛尔(bufetolol),oxprenolol,普鲁卡因胺盐酸盐,丙吡胺,阿斯马林,硫酸奎尼丁,盐酸阿普地平,盐酸普萘芬酮和盐酸美西律。(16)血管扩张剂:例如,选自地尔硫卓,硝苯地平,盐酸地尔硫卓,维拉帕米和盐酸尼卡地平的钙拮抗剂,氧哌嗪,妥拉唑林,己糖苷,bamethan,硝酸异山梨酯,哌替啶,双嘧达莫,盐酸曲马多,酒石酸艾芬地尔(ifenprodil tartrate),马来酸桂哌齐特(cinepazide maleate),环奈德,桂利嗪和己酮可可碱。(17)抗高血压利尿剂:例如,溴化六甲铵,戊胺,美加明,ecarazine,可乐定,地尔硫,硝苯地平,呋塞米,三氯噻嗪,甲氯噻嗪,氢氯噻嗪,环氟噻嗪,氟噻嗪和依他尼酸。(18)抗糖尿病药:例如,glymidine,格列吡嗪,苯乙双胍,丁福明,二甲双胍,格列本脲和甲苯磺丁脲。(19)抗结核剂:例如,异烟肼,乙胺丁醇和对氨基水杨酸。(20)麻醉拮抗剂:例如,左洛啡烷,纳洛酮,纳洛酮及其盐。(21)激素药:类固醇激素,例如地塞米松,己雌酚,甲硫咪唑,倍他米松,曲安西龙,曲安奈德,氟轻松,泼尼松龙,氢化可的松和雌三醇。(22)骨软骨病预防和治疗剂:例如,非肽类成骨促进增强剂如前列腺素A1衍生物,维生素D衍生物,维生素K2衍生物,二十碳五烯酸衍生物,苄基膦酸酯,双膦酸衍生物,性激素衍生物,苯酚磺酞衍生物,苯并噻喃或苯并噻庚英衍生物,噻吩并吲唑衍生物,menatetrenone衍生物,和肽骨形成促进增强剂。(23)关节病治疗剂:例如,抗炎类固醇如p38MAP激酶抑制剂(e.g.,WO 00/64894等中描述的噻唑类化合物),基质金属蛋白酶抑制剂(MMPI),泼尼松龙,氢化可的松,甲泼尼龙,地塞米松/倍他米松和倍他米松,以及非甾体抗炎药如吲哚美辛,双氯芬酸,洛索洛芬,布洛芬,吡罗昔康和舒林酸。(24)用于治疗尿频的盐酸盐:例如,黄酮酸盐,盐酸奥昔布宁和盐酸特罗地林。(25)抗雄激素剂:例如,oxendolone,烯丙雌烯醇,醋酸氯地孕酮,己酸孕酮酮,醋酸奥沙特隆,氟他胺和比卡鲁胺。
(26)脂溶性维生素:维生素K如维生素K1,K2,K3和K4,叶酸(维生素M)等。(27)维生素的各种衍生物:例如维生素D3衍生物5,6-trance-胆钙化醇,2,5-羟基胆钙化醇,和1-α-羟基胆钙化醇,和维生素D 2衍生物如5,6-trance-麦角钙化醇。(28)其他如羟基樟脑,双醋瑞因,醋酸甲地孕酮,麦角溴烟酯和前列腺素,以及以及缺血性疾病治疗剂,免疫性疾病治疗剂,阿尔茨海默氏病治疗剂,骨质疏松治疗剂,血管生成治疗剂,视网膜病治疗剂,视网膜静脉闭塞治疗剂,老年斑状黄斑变性治疗剂,脑血管痉挛治疗剂,血栓形成治疗剂,脑梗塞治疗剂,脑栓塞治疗剂,脑内出血治疗剂,蛛网膜下出血治疗剂,高血压性脑病治疗剂,短暂性脑缺血发作治疗剂,多发性脑梗塞性痴呆治疗剂,动脉硬化治疗剂,亨廷顿病治疗剂,脑组织损伤治疗剂,视神经病治疗剂,青光眼治疗剂,高眼压治疗剂,视网膜脱离治疗剂,关节炎治疗剂,抗风湿剂,防腐剂,抗败血症休克剂,抗哮喘剂,特应性皮炎治疗剂,过敏性鼻炎治疗剂等也可使用。
在本发明的一个实施方式中,中枢神经系统酶抑制物质用作水难溶性或水不溶性活性药物成分。所述中枢神经系统酶抑制物质的实例包括上述的(2)镇定剂和(3)抗精神病药。
所述难溶性或水不溶性活性药物成分是优选在约37℃水溶解度为10mg/mL以下,更优选为0.1mg/mL以下,进一步优选为10μg/mL以下,特别优选为1μg/mL以下,特别优选为0.9μg/mL或更低的物质。虽然活性药物成分的熔点没有特别限制,但优选不低于约80℃,且不高于约350℃。尽管活性药物成分的结构没有特别限制,但活性药物成分在结构式中优选含有一个或多个芳环。例如,当活性药物成分是1-[2-氟-4-(1H-吡唑-1-基)苯基]-5-甲氧基-3-(1-苯基-1H-吡唑-5-基)哒嗪-4(1H)-酮时,优选具有在约37℃水溶解度为0.9μg/mL。
[肠溶性基质材料]
所述肠溶性基质材料表示在胃中的酸性条件下溶解被控制,并且在肠(胃肠道)环境中快速溶解的聚合物。所述肠溶性基质材料是在本发明的固体分散体中与甲基纤维素或有机酸组合使用的成分,并且因此被认为发挥维持活性药物成分的过饱和状态的作用。通常,胃肠道中的pH变化在胃中达到1至3.5,在十二指肠中达到5至6,在空肠中达到6至7,或在回肠中达到8。因此,优选的肠溶性基质材料在约5.0至7.0,优选约5.5至约6.5的pH范围内溶解。这样的肠溶性基质材料的具体实例包括羟丙甲纤维素酞酸酯,其具有每单位单元的取代度为21~35%的羧基苯甲酰基,18~24%的甲氧基和5~10%的羟基丙氧基(例如,HP-50和HP-55,来自Shin-Etsu Chemical Co.,Ltd.);羟丙甲基纤维素乙酸琥珀酸酯,其具有每单体单元的取代度为20~26%的甲氧基,5~10%的羟丙氧基,5~14%的乙酰基和4~18%的琥珀酰基(例如,AQOAT-AS-LF,AS-MF和AS-HG,来自Shin-Etsu Chemical Co.,Ltd.);甲基丙烯酸和甲基丙烯酸甲酯的共聚物,其在干燥的原料中具有27.6%至50.6%的甲基丙烯酸单元含量(例如,Eudragit L100和S100,来自Evonik);甲基丙烯酸和丙烯酸乙酯的共聚物,其在干燥的原料中具有46.0%至50.6%的甲基丙烯酸单元含量(例如,Eudragit L100-55和L30D-55,来自Evonik);以及甲基丙烯酸,丙烯酸甲酯和甲基丙烯酸甲酯的共聚物,其在干燥原料中甲基丙烯酸单元含量为9.2~12.3%(例如,Eudragit FS30D,来自Evonik).作为肠溶性基质材料的这些聚合物中的一种可以单独使用,也可以两种以上混合使用。
下述的影响各肠溶性基质材料溶解的pH范围的各条件,尽管在常规技术中它们可认定为水溶性聚合物的性质,但在本发明中,是赋予肠溶性的特性。
HPMCP(羟丙甲纤维素酞酸酯):
羟丙甲纤维素酞酸酯,其具有每个单体单元的取代度为21~35%的羧基苯甲酰基,18~24%的甲氧基和5~10%的羟基丙氧基。
HPMCAS(羟丙甲基纤维素乙酸琥珀酸酯):
羟丙甲基纤维素乙酸琥珀酸酯,其具有每单体单元的取代度为20~26%的甲氧基,5~10%的羟丙氧基,5~14%的乙酰基和4~18%的琥珀酰基。
丙烯酸和甲基丙烯酸的共聚物:
甲基丙烯酸和甲基丙烯酸甲酯的共聚物,其在干燥的原料中具有27.6%至50.6%的甲基丙烯酸单元含量:甲基丙烯酸和丙烯酸乙酯的共聚物,其在干燥的原料中具有46.0%至50.6%的甲基丙烯酸单元含量;和甲基丙烯酸,丙烯酸甲酯和甲基丙烯酸甲酯的共聚物,其在干燥原料中甲基丙烯酸单元含量为9.2~12.3%。
在本发明所用的肠溶性基质材料中,例如选自羟丙甲基纤维素酞酸酯,羟丙甲基纤维素乙酸琥珀酸酯和甲基丙烯酸共聚物中的一种或更多种是优选的。
下列也优选用作本发明的肠溶性基质材料:
1)羟丙甲基纤维素酞酸酯或羟丙甲基纤维素乙酸琥珀酸酯,其具有不小于18%且不大于26%的甲氧基,以及不小于5%且不大于10%的羟基丙氧基的每单体单元的取代度;和
2)丙烯酸与甲基丙烯酸的共聚物,其中,在干燥原料中甲基丙烯酸单元含量为9%以上且51%以下。
需要注意的是,本发明中使用的所述肠溶性基质材料可具有作为在肠环境中快速溶解的基础基质的性质,并且最终组合物(固体分散体)不需要肠溶。也就是说,本发明的固体分散体可以溶解于胃中。
[甲基纤维素作为水溶性聚合物]
水溶性聚合物是指水溶解度是pH-非依赖性的水溶性聚合物。即,本文的所述肠溶性基质材料和所述水溶性聚合物是从溶解度是否是pH-依赖性来区分的。本发明的固体分散体含有甲基纤维素单独作为水溶性聚合物。甲基纤维素是在本发明的固体分散体中连续以固体状态存在的成分,并且因此被认为发挥维持活性药物成分的过饱和状态的作用。虽然本发明中的甲基纤维素的平均分子量没有特别限制,但优选为10000以上且200,000以下,更优选为约24,000~150,000左右。此外,这样的甲基纤维素在2%水溶液(日本药典)在20℃下的粘度优选为3~1500mPa·S,更优选为4~400mPa·S。具有在上述分子量范围内的分子量的甲基纤维素和在上述粘度范围内具有粘度的甲基纤维素在水溶液中不形成高粘度凝胶,因此可以消除活性药物成分的溶出过度延迟的风险。
所述有机酸没有特别限制,只要其是通常用于药物制剂领域的有机酸即可。有机酸的实例包括己二酸,抗坏血酸,苯甲酸,油酸,琥珀酸,乙酸,酒石酸,山梨酸,富马酸,乳酸,马来酸,丙二酸,柠檬酸和苹果酸。富马酸,琥珀酸,柠檬酸,酒石酸和苹果酸是优选的,特别优选富马酸和琥珀酸。这些有机酸可以单独使用,或者两种或更多种组合使用。
[固体分散体]
如本文所使用的,固体分散体是指其中上述活性药物成分和其它物质均匀混合的固体组合物。此外,在本发明中,活性药物成分部分、优选大部分、更优选完全以无定形状态存在于固体分散体中。无定形状态表示具有短程有序而不是如晶体中的长程有序的物质的状态,并且例如被识别为在X射线衍射中显示晕峰。在本发明中,活性药物成分优选为50%以上,更优选为80%以上,进一步优选为90%以上,更优选为95%以上为无定形状态存在。
上述其他物质是指除了上述活性药物成分之外的物质,其为肠溶性基质材料、甲基纤维素作为水溶性聚合物、有机酸和其他添加剂。即,本发明的固体分散体是下述任意:固体分散体,其含有无定形活性药物成分、甲基纤维素作为水溶性聚合物、和肠溶性基质材料;固体分散体,其含有无定形活性药物成分、甲基纤维素作为水溶性聚合物、肠溶性基质材料和有机酸;以及,固体分散体,其含有无定形活性药物成分、肠溶性基质材料和有机酸。尽管本发明的固体分散体含有肠溶性基质材料,固体分散体本身的溶解度、药物从固体分散体释放的性质、或者固体分散体的溶出性质不需要是pH-依赖性的。所述活性药物成分、肠溶性基质材料和水溶性聚合物的比例没有特别限定,优选,所述肠溶性基质材料相对于活性药物成分的比例是200-600%,甲基纤维素相对于所述活性药物成分的比例是50%-150%;更优选,所述肠溶性基质材料相对于活性药物成分的比例是350-450%,水溶性聚合物相对于活性药物成分的比例是75-125%。尽管活性药物成分、肠溶性基质材料和有机酸的比例没有特别限定,但优选所述肠溶性基质材料相对于活性药物成分的比例为200-600%,所述有机酸相对于活性药物成分的比例为1%-400%;更优选地,所述肠溶性基质材料相对于活性药物成分的比例是350-450%,所述有机酸相对于活性药物成分的比例是10-200%。尽管活性药物成分、肠溶性基质材料和水溶性聚合物和有机酸的比例没有特别限定,但优选,所述肠溶性基质材料相对于活性药物成分的比例是200-600%,甲基纤维素相对于活性药物成分的比例是50%-150%,所述有机酸相对于活性药物成分的比例是1%-400%;更优选地,所述肠溶性基质材料相对于活性药物成分的比例是350-450%,水溶性聚合物相对于活性药物成分的比例是75-125%,所述有机酸相对于活性药物成分的比例是10-200%。固体分散体中的由添加剂引起的残留有机溶剂的量优选为0.1%以下,优选为0.05%以下,更优选为0.01%,以在固体分散体中的重量比计。残余有机溶剂包括通常用作有机溶剂的所有物质,其实例包括有机溶剂如醇,芳香烃,醚,酮,卤代烃,酰胺,亚砜,以及它们中的两种或更多种的混合物。残余有机溶剂的量可以使用例如气相色谱法定量。固体分散体中的水含量优选为5.0%以下,更优选为3.0%以下,进一步优选为1.0%,以在固体分散体中的重量比计。固体分散体中的水含量例如可以使用Karl-Fischer滴定法(第16次修订日本药典)进行定量。注意,除非另有说明,本文中使用的“%”意在表示wt%。
当本发明的固体分散体含有甲基纤维素时,无定形活性药物成分和固体状态的甲基纤维素分散在固体分散体中的所述肠溶性基质材料中。尽管不希望受理论的束缚,但可推测在该固体分散体中,所述肠溶性基质材料和甲基纤维素促进维持溶液中无定形状态的活性药物成分的过饱和状态,这提高了药物成分的吸收性质。推测甲基纤维素(其作为具有高熔点或玻璃化转变点且不易熔融或发生转变的水溶性聚合物)在固体分散体中以接近制备期间的粒径存在,以防止活性药物成分的分子之间的相互作用,保持固体分散体中的无定形状态,并且还防止溶液中活性药物成分的分子之间的相互作用,从而有助于增加溶解浓度和维持过饱和。在本发明的固体分散体中,优选保持无定形状态的固体分散体。
需要注意,在固体分散体中,活性药物成分是无定形状态,也是以分子水平分散的,能量高于晶体的状态;因此,活性药物成分是过饱和的,即,与以稳定的晶体形式的情况相比,在溶液中更多地溶解。
当本发明的固体分散体含有甲基纤维素时,(1)无定形活性药物成分相对于(2)甲基纤维素作为唯一的水溶性聚合物和(3)所述肠溶性基质材料在固体分散体中的重量比例没有特别限定,这些组分的重量比为1:1:3.5-4.5,例如,优选1:1:3.8-4.3,更优选1:1:4。
当本发明的固体分散体本发明含有甲基纤维素时,(2)甲基纤维素作为水溶性聚合物在固体分散体中的重量比没有特别限定,相对于所述活性药物成分,所述重量比为大约1%-大约3000%,例如,优选大约10%-大约1000%,更优选大约20%-大约200%。
其它添加剂是通常用于药物制剂领域的添加剂,即药学上可接受的载体,例如通常用作药物原料的各种有机和无机载体物质,并且作为赋形剂,润滑剂,粘合剂,崩解剂等加入。如果需要,也可以使用药物添加剂,例如防腐剂,抗氧化剂,着色剂和甜味剂。但是,本发明的固体分散体不需要含有通常作为增塑剂使用的添加剂,也可以含有不损害本发明的目的的量的添加剂。当本发明的固体分散体含有添加剂时,这些添加剂优选不是增塑剂。
即,在增塑剂降低溶出性的情况下,本发明的固体分散体优选不含增塑剂,或者可以含有不损害溶出性的量的增塑剂。当增塑剂不影响溶出性时,本发明的固体分散体不含或可含有增塑剂,并且优选固体分散体不含增塑剂,或者可含有不损害溶出性能的量的增塑剂。当增塑剂增强溶出性时,本发明的固体分散体可以含有或不含有增塑剂。在任何情况下,当增塑剂不显著提高溶出性时,本发明的固体分散体优选不含增塑剂,或可含有不损害溶出性的量的增塑剂。
增塑剂的实例可以是一般用作增塑剂的添加剂,包括聚乙二醇 400(聚乙二醇 400),聚乙二醇 600(聚乙二醇 600),聚乙二醇 1500(聚乙二醇 1500),聚乙二醇 4000(聚乙二醇 4000),聚乙二醇 6000(聚乙二醇 6000),丙二醇,单硬脂酸甘油酯,肉豆蔻酸异丙酯,甘油三乙酸酯,甘油,甘油脂肪酸酯,柠檬酸三乙酯,聚山梨醇酯80,二乙基邻苯二甲酸酯和二丁基邻苯二甲酸酯。
可用的赋形剂的合适实例包括乳糖,白软糖,D-甘露醇,淀粉,结晶纤维素,蔗糖,多孔淀粉,甘露醇,硅酸钙,硅酸镁铝,轻质无水硅酸,白色软糖/淀粉球颗粒,结晶纤维素/羧甲基纤维素和羟丙基淀粉。润滑剂的合适实例包括结晶纤维素,硬脂酸镁,硬脂酸钙,滑石,胶体二氧化硅,玉米淀粉和氧化镁。粘合剂的合适实例包括结晶纤维素,白色软糖,D-甘露醇和糊精。崩解剂的合适实例包括淀粉,羧甲基纤维素,羧甲基纤维素钙,交联羧甲纤维素钠,羧甲纤维素钙,低取代羟丙基纤维素,淀粉乙醇酸钠和部分预胶化淀粉。抗氧化剂的合适实例包括亚硫酸盐和抗坏血酸。这些添加剂可以单独使用,也可以两种或更多种组合使用。
[制备固体分散体的方法]
本发明的固体分散体的制备方法没有特别限定,所述固体分散体可以通过热熔挤出法(HME法),溶剂法,熔融-溶剂法等等制备。上述中优选的是热熔融挤出法,其通过将熔融状态的组分成形为均匀混炼物,将混炼物挤出,成形而得到固体分散体。固体分散体也可以根据目的切割成给定尺寸后使用。
在热熔挤出法中,可以使用在料筒中具有螺杆的挤出机(例如单螺杆挤出机和双螺杆挤出机)或注射成型机(例如双螺杆型挤出机)的注射装置。其中,优选双螺杆挤出机的注射装置。在这种情况下,活性药物成分和其它物质通过料斗注入保持在适当热熔温度的装置中,并且使螺杆旋转。这使得活性药物成分被热熔化,同时与其它物质混合并被挤出。冷却后,得到具有均匀组成的固体分散体。
使用热熔挤出法制备固体分散体的方法包括下列步骤,例如,将无定形状态的活性药物成分与甲基纤维素和/或所述有机酸以及肠溶性基质材料物理混合,在升压下加热并且使混合物熔融,然后快速冷却熔融物。当如上所述的在升压下加热时,具有低熔点的所述肠溶性基质材料首先熔融,然后活性药物成分熔融而溶解到上述的熔融的肠溶性基质材料中。进一步的加热使得上述活性药物成分以分子水平分散在肠溶性基质材料中。此时,固体状态得以保持,因为甲基纤维素和/或有机酸的熔点高于升高的温度。
本发明的固体分散体可以使用适当的研磨机研磨以容易地形成具有给定粒径的固体分散体颗粒,其可以直接用作粉末或颗粒。此外,粉碎的微粒可以适当地与其它添加剂混合,然后进行制备药物制剂所需的步骤,用作片剂,颗粒剂,细粒剂,胶囊剂,注射剂等。作为这里的其它添加剂,使用药理学上可接受的载体,例如通常用作药物原料的各种有机和无机载体物质,并且作为赋形剂,润滑剂,粘合剂,崩解剂,表面活性剂等添加。可以根据需要使用药学添加剂例如防腐剂,抗氧化剂,着色剂和甜味剂。赋形剂的适合的实例包括乳糖,白软糖,D-甘露醇,淀粉,结晶纤维素,蔗糖,多孔淀粉,甘露醇,硅酸钙,硅酸镁铝,轻质无水硅酸,白色软糖/淀粉球形颗粒,结晶纤维素/羧甲基纤维素和羟丙基淀粉。润滑剂的适合的实例包括结晶纤维素,硬脂酸镁,硬脂酸钙,滑石,胶体二氧化硅,玉米淀粉和氧化镁。粘合剂的适合的实例包括结晶纤维素,白软糖,D-甘露醇,糊精,羟丙基纤维素,羟丙甲基纤维素和聚乙烯吡咯烷酮。崩解剂的适合的实例包括淀粉、羧甲基纤维素,羧甲基纤维素钙,交联羧甲基纤维素钠,羧甲基淀粉钠,甲基纤维素,交联羧甲基纤维素钠,羧甲纤维素钙,低取代羟丙基纤维素,淀粉乙醇酸钠和部分预胶化淀粉。抗氧化剂的适合的实例包括亚硫酸盐和抗坏血酸。这些添加剂可以单独使用,也可以两种或更多种组合使用。
由本发明的制备方法得到的固体分散体组成或者是包含所述固体分散体的药物制剂能够安全地给与哺乳动物(e.g.,大鼠,小鼠,豚鼠,猴,牛,狗,猪或人)口服或者胃肠外给药(e.g.,静脉内,肌内,皮下,进入器官,鼻内,皮内,眼内,脑内,直肠内,阴道内,腹内或直接施用于损伤),根据活性成分的类型等。尽管含有或者由本发明的制备方法得到的固体分散体的药物制剂中所含的活性药物成分的剂量根据活性成分的类型等、给药对象、给药途径、目标疾病、症状等进行变化,当活性药物成分是1-[2-氟-4-(1H-吡唑-1-基)苯基]-5-甲氧基-3-(1-苯基-1H-吡唑-5-基)哒嗪-4(1H)-酮,其是中枢神经系统酶抑制物质,例如,当口精神分裂症患者口服给药时(成人体重大约60kg),给药的典型的量是大约0.1至大约20mg/kg体重,优选大约0.2至大约10mg/kg体重,更优选大约0.5至大约10mg/kg体重,每次给药,该量的活性药物成分可为一日给药一次或者分为几次给药(e.g.,三次)。
本发明还提供通过以固体状态使用上述甲基纤维素,在固体分散体中保持过饱和状体的方法,所述固体分散体以热熔挤出法制备的,其含有无定形活性药物成分、一种或更多种选自甲基纤维素和有机酸中的物质和肠溶性基质材料,其中,当所述固体分散体含有甲基纤维素时,该固体分散体不含有除了甲基纤维素之外的水溶性聚合物。
实施例
本发明接下来通过参考例和实施例来进行更具体的描述;然而,本发明并不以任何方式限定于这些实施例。请注意在下述实施例和比较例中,采用了满足日本药局方第16次改正版或者是日本药物辅料2013的产品作为药物添加剂。
参考例1
制备了具有下述组成比例的含有1-[2-氟-4-(1H-吡唑-1-基)苯基]-5-甲氧基-3-(1-苯基-1H-吡唑-5-基)哒嗪-4(1H)-酮(此后记为化合物A)的未包衣片剂。
在流化床制粒干燥机中(FD-5S,来自Powrex Corporation),加入52.82g的化合物A(含量调整),3694g的D-甘露醇(重量调整),897.1g的结晶纤维素、和263.9g的淀粉乙醇酸钠,并且边预热边混合,向其上喷雾含有将158.3g的羟丙基纤维素溶解在2480g的纯化水中的2638g的水溶液,这样得到制粒的粉末。将所得的制粒的粉末4651g通过电磨机Power Mill(P-3,来自Showa Kagaku Kikai Co.,Ltd.),得到整粒的粉末。在转鼓混合机中(tumbler mixer)(15L,来自Showa Kagaku Kikai Co.,Ltd.),加入4435g的整粒的粉末、以及138.6g的结晶纤维素和46.20g的硬脂酸镁,并且混合,这样得到混合的粉末。利用旋转压片机(Collect 12HUK from Kikusui Seisakusho Ltd.)将所述混合的粉末进行压片,得到每片100mg,冲直径6mm,这样得到未包衣片剂。
<含有化合物A的未包衣片剂的组成>
在薄膜包衣机(DRC-500,来自Powrex Corporation)中,加入2991g的所述得到的未包衣片剂,向其喷雾具有下述组成比例的1106.4g的包衣溶液,这样得到快速崩解片剂,重量约为103.05mg每片。
<包衣溶剂的组成>
参考例2
如下制备了具有下述组成比例的含有化合物A的未包衣片剂。在流化床制粒干燥机中(FD-5S,来自Powrex Corporation),加入264.2g的化合物A(含量调整),3483g的D-甘露醇(重量调整),897.1的结晶纤维素、和263.9g的淀粉乙醇酸钠,并且边预热边混合,向其上喷雾含有将158.3g的羟丙基纤维素溶解在2480g的纯化水中的2638g的水溶液,这样得到制粒的粉末。将所得的制粒的粉末4651g通过电磨机Power Mill(P-3,来自Showa Kagaku Kikai Co.,Ltd.),得到整粒的粉末。在转鼓混合机中(tumbler mixer)(15L,来自Showa Kagaku Kikai Co.,Ltd.),加入4435g的整粒的粉末、以及138.6g的结晶纤维素和46.20g的硬脂酸镁,并且混合,这样得到混合的粉末。利用旋转压片机(Collect 12HUK,来自Kikusui Seisakusho Ltd.)将所述混合的粉末进行压片,得到每片100mg,冲直径6mm,这样得到未包衣片剂。
<含有化合物A的未包衣片剂的组成>
在薄膜包衣机(DRC-500,来自Powrex Corporation)中,加入2991g的所述得到的未包衣片剂,向其喷雾具有参考例1所示的组成比例的1035.1g的包衣溶液,这样得到快速崩解片剂,重量约为103.05mg每片。
参考例3
如下制备了具有下述组成比例的含有化合物A的未包衣片剂。在流化床制粒干燥机中(FD-5S,来自Powrex Corporation),加入528.2g的化合物A(含量调整),3219g的D-甘露醇(重量调整),897.1的结晶纤维素、和263.9g的淀粉乙醇酸钠,并且边预热边混合,向其上喷雾含有将158.3g的羟丙基纤维素溶解在2480g的纯化水中的2638g的水溶液,这样得到制粒的粉末。将所得的制粒的粉末4651g通过电磨机Power Mill(P-3,来自Showa Kagaku Kikai Co.,Ltd.),得到整粒的粉末。在转鼓混合机中(tumbler mixer)(15L,来自Showa Kagaku Kikai Co.,Ltd.),加入4435g的整粒的粉末、以及138.6g的结晶纤维素和46.20g的硬脂酸镁,并且混合,这样得到混合的粉末。利用旋转压片机(Collect 12HUK,来自Kikusui Seisakusho Ltd.)将所述混合的粉末进行压片,得到每片100mg,冲直径6mm,这样得到未包衣片剂。
<含有化合物A的未包衣片剂的组成>
在薄膜包衣机(DRC-500,来自Powrex Corporation)中,加入2991g的所述得到的未包衣片剂,向其喷雾具有参考例1所示的组成比例的1049.0g的包衣溶液,这样得到快速崩解片剂,重量约为103.05mg每片。
参考例4
如下制备了具有下述组成比例的含有化合物A的未包衣片剂。在流化床制粒干燥机中(FD-5S,来自Powrex Corporation),加入1320g的化合物A(含量调整),2426g的D-甘露醇(重量调整),897.1的结晶纤维素、和263.9g的淀粉乙醇酸钠,并且边预热边混合,向其上喷雾含有将158.3g的羟丙基纤维素溶解在2480g的纯化水中的2638g的水溶液,这样得到制粒的粉末。将所得的制粒的粉末4651g通过电磨机Power Mill(P-3,来自Showa Kagaku Kikai Co.,Ltd.),得到整粒的粉末。在转鼓混合机中(tumbler mixer)(15L,来自Showa Kagaku Kikai Co.,Ltd.),加入4435g的整粒的粉末、以及138.6g的结晶纤维素和46.20g的硬脂酸镁,并且混合,这样得到混合的粉末。利用旋转压片机(Collect 12HUK,来自Kikusui Seisakusho Ltd.)将所述混合的粉末进行压片,得到每片100mg,冲直径6mm,这样得到未包衣片剂。
<含有化合物A的未包衣片剂的组成>
在薄膜包衣机(DRC-500,来自Powrex Corporation)中,加入2991g的所述得到的未包衣片剂,向其喷雾具有参考例1所示的组成比例的1030.0g的包衣溶液,这样得到快速崩解片剂,重量约为103.05mg每片。
[固体分散体的制备方法(实施例1-11和比较例1-3)]
按照表1中显示的针对各个实施例和比较例的处方的量称量原料。称得的原料在乳钵中手动混合1至3分钟。将适当量的所述混合的粉末使用带有6mm直径口径模具的双螺杆挤出机(锥形螺杆HB-1,来自Imoto Machinery Co.,Ltd.)进行熔融挤出,设定料筒温度为170-180℃,设定螺杆旋转速度为80rpm,由此得到了所述固体分散体的成型体。将所得成型体根据需要在咖啡磨(SM-1,来自Iuchi Seieido Co.,Ltd.)粗略地挤碎后,然后在球磨机(SPEX8000,来自SPEX Sample Prep)中粉碎。然后将粉碎的产物通过106μm筛径的筛进行过筛,然后收集过筛的产物,由此得到固体分散体的粉碎粉末。
请注意在表1中记为"化合物A"的化合物是1-[2-氟-4-(1H-吡唑-1-基)苯基]-5-甲氧基-3-(1-苯基-1H-吡唑-5-基)哒嗪-4(1H)-酮,其是具有至少一个芳香环的水难溶性化合物。
[表1]
表1-1处方
*:1-[2-氟-4-(1H-吡唑-1-基)苯基]-5-甲氧基-3-(1-苯基-1H-吡唑-5-基)哒嗪-4(1H)-酮
[表2]
表1-2处方
*:1-[2-氟-4-(1H-吡唑-1-基)苯基]-5-甲氧基-3-(1-苯基-1H-吡唑-5-基)哒唪-4(1H)-酮
[试验方法]
下述溶出试验(溶出试验1和2)是针对上述制备的固体分散体进行的。
溶出试验1
试验方法:
作为试验溶液,采用了在37℃的900mL的USP磷酸盐缓冲液(pH 6.8),试验是在溶出试验仪(NTR-6200AC,来自Toyama Sangyo Co.,Ltd.)中根据日本药典溶出试验的第二法(桨法),以桨转速100rpm进行的。在每个给定时间,取样10mL溶出试验溶液,然后过滤该样品溶液。将乙腈加入到5mL的所述过滤了的样品溶液中得到体积10mL,然后利用UPLC(ACQUITY UPLC System,来自WATERS)测定了在该稀释的溶液中的活性药物成分的浓度。
溶出试验2
试验方法:
作为试验溶液,采用了在37℃的900mL的USP磷酸盐缓冲液(pH 6.8),试验是在溶出试验仪(NTR-6200AC,来自Toyama Sangyo Co.,Ltd.)中根据日本药典溶出试验的第二法(桨法),以桨转速100rpm进行的。在每个给定时间,取样10mL溶出试验溶液,然后过滤该样品溶液。将乙醇加入到5mL的所述过滤了的样品溶液中得到体积10mL,然后利用紫外可见分光光度计(UV-1800,来自Shimadzu Corporation)测定了在该稀释的溶液中的活性药物成分的浓度。
X-射线粉末衍射测定:
X-射线粉末衍射测定是利用X-射线粉末衍射装置(RINT-TTR2,来自RIGAKU)在下述条件例如电压50kV、扫描速度40.0°/min、以及电流300mA的条件下进行的。
[结果]
在下述试验实施例1-8中描述的试验进行的结果如下所述。
试验实施例1:
溶出试验1是针对根据比较例1和实施例1的各固体分散体的粉碎的粉末来进行的,其量相当于约50mg的活性药物成分。如表2所示,根据实施例1的固体分散体的粉碎的粉末,在其中加入有甲基纤维素,相比于根据比较例1的不含有甲基纤维素的固体分散体的粉碎的粉末,在所有的测定时间,都显示出显著高的浓度的活性药物成分。
这些结果表明了单独使用甲基纤维素作为加入到本发明的固体分散体中的水溶性聚合物的效果。
试验实施例2:
溶出试验1是针对根据比较例1、实施例2、实施例4和实施例10的各固体分散体的粉碎的粉末来进行的,其量相当于约20mg的活性药物成分。如表2所示,根据实施例2的固体分散体的粉碎的粉末,在其中加入有甲基纤维素,或者实施例10的固体分散体的粉碎的粉末,在其中加入有富马酸,相比于根据比较例1的不含有甲基纤维素也不含有富马酸的固体分散体的粉碎的粉末,在所有的测定时间,都显示出显著高的浓度的活性药物成分。根据实施例4的固体分散体的粉碎的粉末,其含有甲基纤维素和富马酸,相比于根据实施例2和10的固体分散体的粉碎的粉末,其显示出更加显著高的浓度的活性药物成分。
这些结果表明了将甲基纤维素和有机酸中的任何加入到本发明的固体分散体中的效果。
试验实施例3:
溶出试验1是针对根据实施例1、3和5的各固体分散体的粉碎的粉末来进行的,其量相当于约50mg的活性药物成分。如表2所示,根据实施例3和5的固体分散体,在其中加入了有机酸,其显示出优于根据实施例1的固体分散体的溶出性质,实施例1由于添加有甲基纤维素而显示了显著改善的溶出性质。这表明了向本发明的固体分散体中添加有机酸的效果。
试验实施例4:
溶出试验1是针对根据比较例1、实施例2和比较例2的各固体分散体的粉碎的粉末来进行的,其量相当于约20mg的活性药物成分。如表2所示,根据实施例2的固体分散体的粉碎的粉末,在含有甲基纤维素,显示出了显著优于根据比较例1和根据比较例2的固体分散体的溶出性质,比较例1的固体分散体不含有甲基纤维素,比较例2的固体分散体含有PVA代替甲基纤维素。
这些结果显示,单独采用MC作为水溶性聚合物的本发明的固体分散体,具有优于采用其他水溶性聚合物的固体分散体的效果。
试验实施例5:
溶出试验1是针对根据实施例11和实施例6的各固体分散体的粉碎的粉末来进行的,其含有约20mg的活性药物成分。如表2所示,通过含有MC,这些实施例的固体分散体都显示出显著的高溶出性质。尤其是,与根据实施例11的固体分散体(其含有在纯化水中是酸性的轻质无水硅酸)的相比较,根据实施例6的固体分散体(其含有等量的富马酸)显示出更显著的优异的溶出性质。这些结果表明,在本发明的固体分散体中刚加入有机酸的效果优于加入无机酸的效果。
试验实施例6:
溶出试验2是针对根据实施例7、8和9的各固体分散体的粉碎的粉末来进行的,其量相当于约20mg的活性药物成分。如表2所示,与含有化合物A的情形一样,对于含有硝苯地平作为活性药物成分的情况,利用甲基纤维素或者富马酸也确认到得到了提高的溶出量的效果。
试验实施例7:
溶出试验1是针对根据实施例2和比较例3的各固体分散体的粉碎的粉末来进行的,其量相当于约20mg的活性药物成分。如表2所示,根据比较例3的固体分散体,其含有水溶性基质材料代替肠溶性基质材料,其显示出溶出量小于根据实施例2的固体分散体。这表明了肠溶性基质材料作为基质材料在本发明的固体分散体中的效果。
试验实施例8:
溶出试验1是针对根据比较例1和实施例10的各固体分散体的粉碎的粉末来进行的,其量相当于约20mg的活性药物成分。如表2所示,根据实施例10的固体分散体,其中加入了有机酸,显示出了大于根据比较例1的固体分散体的溶出量。这表明了向本发明的固体分散体中加入有机酸的效果。
试验实施例9:
X-射线粉末衍射测定是针对根据比较例1-3和实施例1-11的固体分散体的粉碎的粉末和富马酸来进行的。结果是,如图1-15所示,各被测物仅显示晕峰(halo peaks)或来自富马酸的峰,这确认了活性药物成分是无定形。
[表3]
表2溶出试验的结果
工业实用性
根据本发明,本发明提供一种固体分散体,其具有改善的活性药物成分的溶解度和吸收度。本发明因此对于药学工业以及其相关工业的发展具有极大的贡献。