高固体含量的SiO的制作方法

文档序号:1831693阅读:336来源:国知局
专利名称:高固体含量的SiO的制作方法
本申请是2002年3月11日递交的、发明名称为“高固体含量的SiO2分散液、其制造方法及用途”的00812728.X号申请的分案申请。
本发明涉及高固体含量的SiO2分散液、其制造方法以及由该分散液制造具有极高固体含量的多孔性无定形SiO2型材(Formkoerper)的方法、这些型材及其制备。
多孔性、无定形SiO2型材在工业界的用途非常广泛,例如用作过滤材料、绝热材料及防热板。
此外,借助烧结和/或熔化作用可由无定形、多孔性SiO2型材制成各种石英制品。例如,高纯度多孔性SiO2型材可用作玻璃纤维或光纤维的“预制件”。另外,用以抽拉硅单晶体的坩埚也可以此方式制造。
无论此类多孔性型材用作何种用途,总是致力于将型材制成尽可能接近最终产品的尺寸。这意味着在制造型材过程中仅有轻微收缩或没有收缩。
原则上,制造多孔性SiO2型材可采用挤压适当的SiO2粉末法或湿化学方法。
在陶瓷界挤压粉末的已知方法中(例如冷成熟均压法),为制得强固坏体,通常需添加有机粘合剂。在随后的步骤内,此类粘合剂必须加以沥除或烧掉。该类工作在技术上非常复杂、成本极高而且会引进不良杂质,尤其在制造用以抽拉硅单晶体的坩埚时,必须不含不良杂质。
所以,制造多孔性SiO2型材的适合方法是湿化学方法。文献上曾公开的一种方法是溶胶-凝胶法。该方法从溶解于溶剂中的含硅单体(溶胶)出发,借助于水解作用和/或聚缩合作用,将其转化成纳米孔的三维SiO2网(凝胶)。随后,借助次临界或起临界烘干制得多孔性型材。该方法除起始原料昂贵之的外,所制得凝胶的固体含量仅约10至20wt%。所以,次临界烘干会造成极高度的收缩作用,因而无法重复制造接近最终产品尺寸的型材。若实施超临界烘干,型材虽不收缩,但其固体含量仅达10至20wt%。
欧洲专利EP 705797中公开了一种制备较高固体含量SiO2型材的方法。在该方法中,在溶胶内添加细粉状石英微粒(烟石英)。如此可获得约40wt%的固体含量。但是,该溶胶的制备方法仍极其昂贵,且烘干方法也很复杂。
欧洲专利EP 318100公开了另一种方法。在该方法中,先制得一粒径10至500纳米的细粉状石英(烟石英)在水中的分散液;将该分散液成形及固化之后,烘干制得相应的型材。所得型材的固体含量高达60wt%。
欧洲专利EP 653381及德国专利DE-A2218766中公开了一种滑移浇注方法,其中先制得一粒径0.45至70微米(尤以1至10微米更佳)的熔融石英微粒在水中的分散液。该分散液的固体含量为78至79wt%。随后于一多孔性模具内,缓缓抽取水分,将该分散液加以固化,自模具中取出再予以烘干。虽然用此方法可制得固体含量极高的型材,但由于滑移浇注方法的脱水与扩散作用有关,所以非常耗时,而且仅可用以制造薄壁型材。再者,多孔性模具脱水的固化作用可导致型材内不良的密度梯度,在随后烧结过程中该密度梯度可造成不同的烧结温度、烧结时间以及密度差异。
若避开使用复杂的滑移浇注方法,而且使所得型材尽可能接近最终产品尺寸,分散液必须具有极高的固体含量。实际上,这样会带来极大得问题,因为经分散的SiO2微粒具有强烈的摇溶效果。在实施分散作用的过程中,产生一膨胀(加压增粘)物相。当悬浮液的粘度上升及剪切力增加时而显示出来。为制得一固体含量高,而且仍可浇注的分散液,需要采用一复杂的方法,其中搅入过程中的低剪切力可变为均质化过程中的高剪切力。由于高固体含量悬浮液的固化作用非常快速,在达到分散液均匀成形方面也会遭遇到许多问题。
英国专利GB-B-2329893中公开了一种制造透明石英的组合物,该组合物含有平均粒径为5×10-3至1×10-1微米、比表面积为50至400平方米/克的热解石英,以及平均粒径为2至15微米及比表面积较热解石英较低的热处理石英(热解石英的粘聚物),连同增塑剂(例如氢氧化四甲铵)、分散剂(例如聚乙基恶唑啉、甘油)及粘合剂(例如甲酸甲酯)。由于含有不同有机和/或无机添加剂,该组合物不适于制造高纯度的烧结体。再者,该文献所揭示组合物及由其制得的坯体中的固体含量仅高达51wt%。
日本专利JP 5294610中公开了一种制造固体含量高达80wt%的无定形SiO2型材的方法。在该方法中,所用SiO2微粒的平均粒径为0.1至100微米。为达到如此高的固体含量,必须长时间施以高剪切力(例如球磨机),将所述微粒分散于碱性水内(pH值>10,例如借助于氢氧化四甲铵)。在长时间而且密集地施以剪切力的过程中,使用碱性物质及磨蚀剂(SiO2微粒的磨蚀性能)会造成不可避免的污染,因而这样的组合物完全不适于制造高纯度的SiO2型材。
美国专利US-A-4,929,579中公开了一种方法,借助于该方法,利用含有具有三模态粒径分布的无定形SiO2微粒的分散液,由石英制造耐火物品。该分散液的制造方法非常复杂。此外,由于较大微粒(平均粒径>300微米)的比例偏高,以致分散液内发生不均匀及沉淀现象。如此则导致分散液或型材内的密度起伏变化,因而造成随后成形加工及烧结过程中有关形状精度及等向(各向同性)收缩的重大困难。
本发明的目的在提供一SiO2粒子固体含量高且没有现有技术中已知缺点的、均匀的、极易浇注的分散液。
将一无定形SiO2微粒均匀分散在一分散介质中,可达到上述目标,其中所述分散液的固体含量为至少80wt%的无定形SiO2微粒,且此无定形SiO2微粒具有双模态粒径分布。
该分散液的固体含量优选为至少83wt%的无定形SiO2微粒。
该分散液的固体含量更优选为至少86wt%的无定形SiO2微粒。
若用水作为分散介质,无定形SiO2微粒固体含量的上限以约95wt%为佳,若用其他不同密度的分散介质,则为一相应值。
分散介质可能为极性或非极性有机溶剂,例如醇类、醚类、酯类、有机酸类、饱和或非饱和烃类或水或其混合物。
分散介质优选为甲醇、乙醇或丙醇等醇类或丙酮或水或其混合物。但更优选为丙酮及水或其混合物,尤以水为最佳。
所用上述分散介质最好具有高纯度,可按文献上公开的方法制得或可商购。
所用的水最好是经特别纯化的水,其电阻≥18百万欧姆*厘米。
水中优选添加矿物酸(例如;HCl、HF、H3PO4、H2SO4或硅酸),或无机添加物(例如氟化盐类)。但以添加HCl或HF较佳,尤以HF最佳。也可以使用前述化合物的混合物。所得分散液的酸度值应为2至7,尤以3至5更佳。
另一适当的类似变通方式是水中可添加一矿物碱(例如NH3、NaOH或KOH)。但以NH3及NaOH较佳,尤以NH3最佳。亦可使用前述化合物的混合物。所得酸度值应为7至11,尤以9至10更佳。
酸度值的减小或增大导致摇溶的降低,所以可达到高固体含量,且该分散液更容易流动及更容易成形。
例如,由

图1可看出,较大无定形SiO2微粒基本上呈圆形,亦即为球形且具有致密形态。
此类较大无定形SiO2微粒的粒径分布d50以1至200微米为佳,但以1至100微米较佳,尤以10至50微米更佳及10至30微米最佳。而且,狭窄的粒径分布更为有利。
无定形SiO2微粒的BET比表面积以0.001平方米/克至50平方米/克为佳,但以0.001平方米/克至5平方米/克较佳,尤以0.01平方米/克至0.5平方米/克最佳。
借助于混入如下粒径的无定形SiO2微粒(例如熔融或烟石英),可获得双模态微粒粒径分布;所述SiO2微粒粒径为1至400纳米,但以10至200纳米较佳,尤以50至130纳米最佳;其量为0.1至50wt%(以分散液的总固体含量为基准),但以1至30wt%较佳,尤以1至10wt%最佳。
此类无定形SiO2微粒的BET比表面积以30至400平方米/克为佳,尤以130至300平方米/克更佳。
纳米大小的无定形SiO2微粒具有作为较大型SiO2微粒间一种无机粘合剂的功能,但并非作为填料以大幅提高固体含量。此类纳米大小的无定形SiO2微粒可完成在制造强固型材时所忽略的除水作用。另外,此类SiO2微粒影响分散液的粘度或其可塑性性能。
无定形SiO2微粒的比密度以1.0至2.2克/立方厘米为佳,但以1.8至2.2克/立方厘米较佳,尤以2.0至2.2克/立方厘米最佳。
再者,所述无定形SiO2微粒外表面上以有≤3个羟基/平方纳米为佳,但以≤2个羟基/平方纳米较佳,尤以≤1个羟基/平方纳米最佳。
所述无定形SiO2微粒所含晶形物质最好不超过1%。再者,其与分散介质的相互作用最好非常低。
来源不同的无定形SiO2微粒均显示有此类性能,例如后-烧结石英(熔融石英)及任何类型无定形的烧结或致密SiO2。所以这些无定形SiO2微粒适合用于制造本发明的分散液。
适当的材料可以已知的方式于一氢/氧焰内制造。亦可商购,例如日本床山公司出品的商名为Excelica的产品。
若符合上述标准,亦可能使用不同来源的微粒,例如天然石英、熔融石英砂、透明石英、磨碎熔融石英或磨碎熔融石英小片,及化学方法制造的透明石英,例如沉淀石英、细粉状石英(借助于焰内热解制得的烟石英)、干凝胶或气凝胶。
较大型无定形SiO2微粒以沉积石英、细粉状石英、熔融石英或致密SiO2微粒为佳,但以细粉状石英或熔融石英较佳,尤以熔融石英最佳。前述不同SiO2微粒的混合物亦同样可能而且适合。
在一特别具体实施例中,上述微粒是呈高纯度形式,亦即外来原子含量(尤其金属)≤300ppmw(百万之一重量份),但以≤100ppmw较佳,尤以≤10ppmw更佳及≤1ppmw最佳。
在另一适合具体实施例中,分散液内亦可添加玻璃纤维、压碎玻璃或玻璃微粒等添加剂。尤以添加熔融石英纤维更佳。
在另一特定具体实施例中,分散液内可另外含有金属微粒、金属化合物或金属盐类。其中以可溶于分散介质的化合物为佳,尤以水溶性金属盐类更佳。
作为添加剂的金属微粒、金属化合物成金属盐类可于分散液制造期间或之后加入。
本发明还提供了一种以很简单方式制造本发明分散液的方法。在本发明的方法中,圆形或致密形的无定形SiO2微粒掺入一带有初始电荷的分散介质内。在该过程中,最好将膨胀性能的形成大部分加以抑致。
在该方法中,可完全省略流化剂,尤其含有有机成分的流化剂。
例如,缓缓地添加SiO2微粒于初始带有电荷的分散介质内,添加开始时仅极慢地搅拌该混合物随后加快,至添加工作终止,可压抑膨胀(加压增粘)性能的形成。但是,因剪切力磨耗分散液的器具及磨擦发热,对固体含量发生负面影响,所以在制造分散液的整个过程中应避免相对高的剪切力。
在制造分散液过程中,首先使分散介质带有电荷,随后缓缓地及最好连续地将SiO2微粒加入。但SiO2微粒亦可分为多次加入(每次加入少许)。
用选定目标的方法,适当选择调节SiO2微粒大小及颗粒大小,可确定由分散液所制型材内的微粒大小及分布。
本领域熟练人员所已知的器具及装备皆可能用作分散液的器具。为防止因磨耗作用而造成金属污染,所用器具最好没有致接触分散液的金属零件。
分散液制造应于0℃至50℃温度下实施为佳,尤以5℃至30℃更佳。
制造分散液之前和/或期间和/或之后,分散液内所含任何气体(例如空气)可借助于本领域熟练人员已知的方法(例如真空作用)予以移除。该项气体移除工作可在分散液制造期间和/或制造完成之后实施。
如此制造、固体含量至少80wt%、83wt%较佳及86wt%优佳的安定均匀分散液,保持可浇注的时间为至少2小时,但以30分钟较佳,尤以至少10分钟最佳。
本发明的另一目的是提供一简单、快速且廉价的方法,借助该方法可由本发明的分散液制得固体含量极高的多孔性无定形SiO2型材,而无现有技术已知的缺点。
借助于包括下列诸步骤的方法可达到该目的1)制造一SiO2微粒的分散液,2)将该分散液送入模具内,3)于该分散液固化后将型材自模具中取出,4)将该型材烘干,其中,在制造SiO2微粒分散液时所达到的固体含量至少为80wt%。
所述分散液进入模具(步骤2)之前,可借助于矿物酸或碱另将其酸度值加以改变。
优选的酸是HCl、HF、H3PO4、H2SO4或硅酸,优选的碱是NH3、NaOH及KOH。但以HCl、HF或NH3及NaOH较佳,尤以HF及NH3最佳。添加酸或碱应使酸度值成为2至7或7至11,尤以3至5或9至10更佳。
将分散液送入一模具内是采用本领域技术人员所已知的方式,例如倾倒入一模具内。
成形的温度为0℃至分散介质沸点。但以20℃至30℃较佳。
原则上适当的模具乃本领域熟练人员所已知的所有模具。视预期型材而定,可能使用有砂心或无砂心模具。再者,该导模具可能是一件式者或由许多零件组成者。坩埚型模具最好呈至少1°角的圆锥形,以便有助于铸件自模内取出。
原则上陶瓷界常用的所有材料均是适当材料。其中以不粘附分散液的材料为佳,例如塑料、聚硅氧烷、玻璃、熔融石英或石墨。但以聚乙烯(PE)、聚丙烯(PP)、聚四氟乙烯(PTFE)、聚酰胺、聚硅氧橡胶及石墨较佳。尤以PTFE及石墨最佳。
亦可以使用经涂覆的材料,例如涂以PTFE的金属。
所述模具的表面最好非常平滑,例如经抛光的表面。
所述模具可能是多孔或非多孔性及透气或不透气。再者,该模具可能是具有弹性或无弹性。
在一特别具体实施例中,模具包括一薄膜或一薄膜管。如欧洲专利EP 318100中所述,该类模具特别适于制造棒状物及管状物。
作为薄膜,原则上可能使用任何类型的薄膜。其中以由PE、PP、聚酯、聚四氟乙烯、纤维素、纤维-加强的纤维素或聚酰胺等材料制成的薄膜为佳。
在一特别具体实施例中,模具自分散液中移除部分分散介质。例如德国专利DE-OS 2218766中所述,本领域熟练人员已知的所有类型的滑移浇注法均可实施。如此,在成形过程中成形部分的固体含量可增加至高达95wt%。
再者,借助于本领域熟练人员已知的成形法,例如翻转法、滚转法或旋转铸造法,亦可制得旋转对称型的型材。
亦可用陶瓷界领域熟练人员已知的压力铸造法。
再者,型材亦可于一现有型材上由内部和/或外部加以成形。如欧洲专利EP 473104中所述,本领域熟练人员已知的所有方法均可作此用途。例如,如此可制造具有多孔性内部和/或外部区域的透明石英管或棒。用此方法亦可制造由不同层次组成的型材。
在步骤3)内,自模具中取出的固化分散液是一形状稳定的型材。悬浮液的固化时间视分散液的固体含量、微粒分布、温度及酸度值而定。固化温度以-196℃至分散介质的沸点为佳,但以-76℃至50℃较佳,尤以-20℃至30℃更佳及0℃至30℃最佳。
通常,固化成为形状稳定型材所花时间为1分钟至24小时;但以1分钟至6小时较佳,尤以1分钟至30分钟最佳。
在分散液固化成为一形状稳定型材的过程中,未发生显著收缩现象。线缩量以0至0.5%为佳。
若少部分分散介质藉蒸发作用亦可自模具中逸出,如此将加速分散液的固化作用。
为使型材更容易自模具中取出而不损坏或不形成破裂,在装填本发明分散液之前,模具内可放入本领域熟练人员已知的适当脱模剂。例如,石墨是一适合的脱模剂。
自模具中取出成形品的实际操作同本领域熟练人员已知的方式。
再者,例如,藉施以拉力而于型材及模具间产生一水层,借助于该水层亦可能将成形盐自模具中取出。例如,如美国专利US 5578101曾指出本领域已知的所有方法均属可能。
在步骤4)中,将自步骤3)制得型材加以烘干。实施烘干是使用本领域熟练人员已知的方法,例如真空烘干、热气(例如氮或空气)烘干或接触烘干。各个烘干方法结合使用亦属可能。其中以热气烘干较佳。
借助于微波或红外线辐射能也很适合。
依照本发明,按不同顺序实施步骤3)及4)原则上自然亦属可能。
烘干工作是在型材内温度25℃至型材中微孔内分散介质沸点之间实施。
烘干时间则视烘干型材的体积、最大厚度、分散介质及型材的微孔结构而定。
烘干型材时略有收缩现象。收缩程度则视湿型材的固体含量而定。固体含量为80wt%时,体积收缩量≤2.5%及线缩量≤0.8%。固体含量愈高,收缩率愈低。
在一特别具体实施例中,实施所有步骤时是用高纯度材料,型材的外来原子含量(尤其金属)≤300ppmw,但以≤100ppmw较佳,尤以≤10ppmw更佳及≤1ppmw最佳。
如此制得的型材是一无定形的、开孔型的、接近最终尺寸的任何尺寸及形状的SiO2型材。
如此制得型材密度的各向异性比现有技术制得的型材低。
此类型材的特征是包括的SiO2微粒为至少64vol%(尤以至少70vol%更佳),其孔体积(借助于水银测孔仪测得)为1毫升/克至0.01毫升/克,但以0.9毫升/克至0.1毫升/克较佳,尤以0.4毫升/克至0.1毫升/克最佳,且所含微孔的孔径为1至10微米,尤以3至6微米更佳,此类微孔耐受烧结的温度高达1000℃,或所有微孔具有一双模态孔径分布其一,最大孔径为0.01至0.05微米,尤以0.018至0.0022微米更佳;其二,最大孔径为1至5微米,尤以1.8至2.2微米更佳。
本发明的型材亦可含有具一双模态孔径分布的微孔其一,最大孔径为0.01至0.05微米,尤以0.018至0.022微米更佳;其二,最大孔径为1至5微米,尤以1.8至2.2微米更佳,但经适当加热,在1000℃温度下孔径分布变成一单模态孔径分布,且在此温度下孔径为2.2微米至5.5微米,尤以3.5至4.5微米更佳,而且该型材内部的比表面积为100平方米/克至0.1平方米/克,尤以50平方米/克至0.1平方米/克更佳。
本发明型材的体积耐受烧结而不变的温度最好高达1000℃。
分散液中使用较大微粒将在型材内形成较大微孔,且分散液中的狭窄粒径分布将在型材内造成狭窄的孔径分布。
添加少量(约1至4wt%)纳米尺寸微粒,对型材内低微米区孔径的单模态孔径分布影响不大。
添加较多(约5至50wt%)的纳米尺寸微粒,将在型材内造成一双模态孔径分布,其中不仅含有前述的微孔,而且含有低纳米范围内的微孔。
型材的总固体含量总是不变。
本发明型材的密度为1.4克/立方厘米至1.8克/立方厘米。
在高达1000℃温度下,上述具有一单模态孔径分布的型材可耐受烧结至少24小时。再者,此类型材可耐热且其热膨胀系数甚低。
本发明型材的弯曲强度以0.1牛顿/平方毫米至20牛顿/平方毫米为佳,但以0.5至10牛顿/平方毫米较佳,尤以0.8至10牛顿/平方毫米最佳。所以,如现有技术已知,此类型材的弯曲强度比具有单模态粒径分布的坯体高。再者,藉热处理可增加弯曲强度。
由于其特殊性能,前述型材可具有多种用途,例如作为过滤材料、绝热材料、防热挡板、催化剂载体材料以及作为玻璃纤维、光纤维、光学玻璃或各类石英产品的“预制件”。
在另一特定具体实施例中,此类多孔性型材可用许多种不同的分子、材料及物质加以完全或部分地处理。其中以具有催化活性的分子、材料及物质为佳。例如,如美国专利US 5655046中所述,本领域熟练人员已知的所有分子均可能采用。
在另一特定具体实施例中,开孔坯体内的微孔是在较高纳米至较低微米范围内,尤以0至10微米范围内更佳。如此则可能实施快速真空烧结,因为此类条件均在努德森(Knudsen)范围之外。
在另一特定具体实施例中,在较高纳米至较低微米范围内(尤以在上至20纳米及1至10微米的范围内更佳)开孔坯体的微孔具有一双模态分布。
在一特定具体实施例中,如此制得的型材可另外再实施烧结。此处可能使用本领域熟练人员已知的所有方法,例如真空烧结、区间烧结、电弧烧结、等离子体或激光烧结、感应烧结或气环境或气流动体内烧结。其中,以真空烧结或气流动体内烧结为佳。尤以在10至5毫巴或10至3毫巴压力下的真空烧结最佳。
烧结所需温度为1400℃至1700℃,尤以1500℃至1650℃更佳。
在烧结过程中可藉本领域熟练人员已知的任何方法使型材自由竖立、平卧或将其加以悬吊或支撑。于一耐烧结模具内实施烧结亦属可能。此处所用模具以由不致造成烧结中型材后污染的材料所制模具为佳。尤以石墨和/或碳化硅和/或氮化硅制模具更佳。例如,如德国专利DE2218766中所述,若待烧结型材是坩埚,于包括石墨的心轴上实施烧结亦属可能。
再者,为达到烧结中型材的后纯化作用和/或充以特别原子或分子,型材亦可在氦或四氟化硅的特别环境中实施烧结作用。例如,如美国专利US 4979971中所述,此处亦可使用本领于域已知的所有方法。
再者,例如,亦可使用知欧洲专利EP 199787中所述的方法实施后纯化作用。
适于后纯化作用的物质是容易与杂质形成挥发性化合物(例如金属卤化物)者为佳。此类适合的物质是活性高的气体,如Cl2或HCl,以及容易分解的材料,例如亚硫酰二氯。其中,以在超过分解温度的情况下使用亚硫酰二氯为佳。
如此可以得到100%无定形(无方英石)、透明、不透气、密度至少为2.15克/立方厘米(尤以2.2克/立方厘米更佳)的烧结透明石英型材。
在一特别具体实施例中,该烧结透明石英型材不含气体且其OH基的浓度以≤1个ppm为佳。
在一特别具体实施例中,所有步骤内均采用高纯度材料,经烧结的型材含有外来原子(尤其金属原子)的浓度≤300个百万分之一重量份(ppmw),但以≤100ppmw较佳,尤以≤10ppmw更佳及≤1ppmw最佳。
原则上,如此制得的透明石英型材可以用于透明石英的所有应用场合。适合的应用场合是各种类型的石英产品、玻璃纤维、光学纤维及光学玻璃。
一种特别适合的应用场合是用以抽拉硅单晶体的高纯度透明石英坩埚。
在另一特别具体实施倒中,可用能赋予各个型材另外特性的分子、材料及物质处理此类分散液和/或多孔型型材和/或经烧结的透明石英体。
例如,如美国专利US 4033780及US 4047966中所述,掺入硅微粒和/或氧化铝和/或氧化钛,并减少SiOH基的数目及减少水含量,将改变烧结型材的光学性能。再者,硅微粒会减少烧结型材的氧含量。
此外,在烧结过程中或在烧结型材施以热应力过程中,形状的稳定性可加以增高或受到影响。在另一特别具体实施例中,利用可促进或影响方英石形成的化合物,将分散液和/或多孔性型材加以全部或部分处理。例如,如欧洲专利EP 0753605、美国专利US 5053359或英国专利GB 1428788中所述,亦可能使用本领域熟练人员已知的所有化合物以促进和/或影响方英石的形成。其中,以Ba(OH)2和/或铝化合物较佳。
再者,如美国专利US 4018615中所述,将结晶SiO2微粒加入分散液和/或多孔性型材可形成全部或部分方英石。此类结晶微粒应具有以上所详述无定形微粒的粒径。
烧结一型材所制成的型材,其内侧和/或外侧有一方英石层或整个由方英石组成。尤其若经烧结的型材是用以抽拉硅单晶体的坩埚时,此类坩埚特别适用于晶体抽拉,因为此类坩埚的热稳定性较高,且对硅熔融体的污染程度较低。如此在晶体抽拉时可获致较高产率。
如德国专利DE 19710672中所述,在抽拉单晶体过程中,若抽位坩埚内含有铝或含铝物质,亦可减少杂质的迁移。将适当微粒或溶解的物质加入分散液和/或多孔性型材可达到此目的。
下面利用实施例及对比例对本发明加以说明。
实施例1将170克二次蒸馏水置入一600毫升塑胶杯内。利用一商购螺旋搅拌器首先将45克烟石英(德古萨公司出品的AerosilOx50、BET比表面积50平方米/克)搅入,历时15分钟。随后添加845克熔融石英(德山公司出品的ExcelicaSE-15、平均粒径15微米),最初快速及最后分作小份添加,数分钟内予以分散。在此过程中,搅拌器的转速由初始的400转/分钟逐渐增至2000转/分钟。
待固体完全分散之后,将分散液施以略微减压(0.8巴)10分钟以除去任何包涵的气泡。
如此制得的分散液含有890克固体,相当于固体含量83.96wt%(其中94.94%是熔融石英及5.06%是烟石英)。
将部分分散液倒入两个聚四氟乙烯以及上方开口的矩形模具内(5厘米×15厘米×2厘米)。4小时之后,拆卸这些模具,将两个型材取出并在200℃温度下于一烘干炉内加以烘干。该烘干型材的密度为1.62克/立方厘米。
借助于水银测孔仪测得孔体积为0.20毫升/克,内部比表面积30平方米/克。
于一高度真空(10-5毫巴)环境内,以2℃/分钟的加热速率加热至1620℃将一个型材加以烧结,并保持在该温度下1分钟。
如此制得的烧结型材的密度为2.2克/立方厘米,且包括100%无定形的、透明的、不透气的透明石英,该石英不夹带气体,且OH基含量低于1(借助于透射红外线光谱法定量测定)。
与多孔性型材相较,可量度的体收缩为26.37%,相当于线缩率10%。
于一高度真空(10-5毫巴)环境内,以2℃/分钟的加热速率将第二个型材加热至1620℃。在温度达400℃、600℃、800℃、1000℃、1200℃、1400℃及1600℃时,总是将该型材的密度加以测定。如此测得的型材密度随烧结温度变化如表1所示。
表1型材密度随烧结温度的变化
图1所示是在200℃温度下烘干型材的扫瞄电子显微镜照片。
此外,在200℃、600℃、1000℃、1200℃及1400℃温度下所完成的型材孔径分布总是用水银测孔计测定。其孔径分布如图2所示。
此外,在前述温度下此类试样的孔体积及内部微孔的比表面积也进行了测定。所得结果如表2所示。
表2孔体积及内部微孔比表面积(用水银测孔计测定)
实施例2a至ca)(对比例)将170克二次蒸馏水置入一600毫升塑胶杯内。在藉肋于商购螺旋桨式搅拌器不停搅拌的情况下,将890克熔融石英(德山公司出品的ExcelicaSE-15,平均粒径15微米)加入,最初快速及最后分作小份添加,并于数分钟内加以分散。
b)将170克二次蒸馏水置入一600毫升塑胶杯内,利用一商购螺旋桨型搅拌器,首先将45克烟石英(德古萨公司出品的AerosilOx50、BET比表面积50平方米/克)搅入,历时15分钟。随后将845克熔融石英(德山公司出品的ExcelicaSE-15,平均粒径15微米)加入,最初快速及最后分作小份添加,并于数分钟内加以分散。
c)将170克二次蒸馏水置入一600毫升塑胶杯内。利用一商购螺旋桨型搅摔器,首先将90克烟石英(德古萨公司出品的AerosilOx50、BET比表面积50平方米/克)搅入,历时15分钟。随后将800克熔融石英(德山公司出品的ExcelicaSE-15,平均粒径15微米)加入,最初快速及最后分作小份添加,并于数分钟内加以分散。
在所有三种变通方法中,搅拌器的转速由初始的400转/分钟逐渐增至2000转/分钟。
待固体经完全分散之后,将所有这三种分散液施以略微减压(0.8巴),历时10分钟,以移除任何包涵的气泡。
如此制得的分散液含有890克固体,相当于固体含量83.96wt%。其中烟石英所占的比例在分散液a)中为0wt%,在b)中为5.06wt%及在c)中为10.12wt%。
将每种此类分散液倒入10个聚四氟乙烯制及上方开口的矩形模具内(5厘米×15厘米×2厘米)。4小时之后,拆卸这些模具,将此类型材取出,并在200℃温度下于一烘干炉内加以烘干。烘干后,总是在800℃及1100℃温度下将若干试样作进一步热处理1小时。
随后借助于3-点弯曲试验测定弯曲强度。
表3弯曲强度(牛顿/平方毫米)随纳米尺寸无定形SiO2微粒及热处理(1小时)的变化
由表3可看出,双模态粒径分布导致弯曲强度的增加。若将表3内型材的强度与日本专利JP 5-294610(试样是在300℃温度下烘干)中所报告的强度相比,现有技术(在分散液相当酸度值约6.5的情况下)所得的强度为0.01牛顿/平方毫米,而利用本发明方法(实施例2b、2c)所得的强度高达0.8牛顿/平方毫米,相当于高出80倍。
对比例1利用欧洲专利EP 653381中的方法,于一球磨机内将二氧化硅研磨为粒径>0.45微米至<50微米,其中约60%的主要部分是1微米至10微米。如同实施例1,试图制造一固体含量≥80wt%的分散液,该分散液在固体含量为79wt%时突然变成固体。拟将该物料送入模具中已不可能。
对比例2利用欧洲专利EP 318100中的方法,试图将BET比表面积为50平方米/克的热解石英加以分散。如同实施例1,于试图制造一固体含量≥80wt%的分散液时,该分散液在固体含量只为42wt%时即变成一固体。拟将该块料送入模具中巳不可能。即使利用氟化铵作为流化剂,分散液内仅能得到48wt%的固体含量。拟将所得块料送入模具中亦不可能。
权利要求
1.一种无定形的、接近最终尺寸的、开孔的SiO2型材,其特征在于,其包括至少64vol%的SiO2微粒,孔体积为1毫升/克至0.01毫升/克(用水银测孔计测定),其孔径为1至10微米的微孔可耐受的烧结温度高达1000℃,或其微孔具有最大孔径为0.01至0.05微米及最大孔径为1至5微米的双模态孔径分布。
2.如权利要求1的无定形的、接近最终尺寸的、开孔的SiO2型材,其特征在于,该型材的微孔具有最大孔径为0.01至0.05微米及最大孔径为1至5微米的双模态孔径分布,且其孔径分布随加热而改变,在1000℃温度下将出现单模态孔径分布,此温度下孔径为2.2至5.5微米,所得型材的内表面为100平方米/克至0.1平方米/克。
全文摘要
本发明涉及高固体含量的SiO
文档编号C04B35/14GK1736861SQ20051009928
公开日2006年2月22日 申请日期2000年9月7日 优先权日1999年9月9日
发明者弗里茨·施韦特费格, 约翰·魏斯, 彼得·里特, 阿基姆·莫尔特, 沃尔夫冈·施韦雷恩, 福尔克尔·弗赖, 汉斯-彼得·舍尔姆 申请人:瓦克化学有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1