来那替尼马来酸盐及晶形的制作方法

文档序号:12613165阅读:320来源:国知局
来那替尼马来酸盐及晶形的制作方法与工艺

技术领域

本发明涉及(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺(“来那替尼”)的马来酸盐,其结晶形式,制备所述盐的方法,有关的化合物,包含所述马来酸盐的药物组合物,和它们的使用方法。(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺的马来酸盐可用于治疗癌。



背景技术:

衍生自3-羟基喹啉的化合物已表现出抗肿瘤活性,这使得它们可用作治疗各种癌的化疗剂,所述癌包括但不限于,胰腺癌,黑素瘤,淋巴管癌,腮腺瘤,巴雷特食管癌,食道癌,头颈癌,卵巢癌,乳腺癌,上皮样瘤,主要器官诸如肾、膀胱、喉、胃和肺的癌症,结肠息肉和结直肠癌以及前列腺癌。衍生自3-氰基喹啉的化合物的实例在美国专利6,002,008;6,432,979和6,288,082中被公开并显示出具有抗肿瘤活性。某些3-氰基喹啉化合物的一个限制是:它们在游离碱形式下不溶于水。

特定化合物作为其盐、水合物和/或任何多晶型物的结晶形式通常是制备药物的容易性,制剂的稳定性、水溶性、储存稳定性、制剂的容易性和体内药理学的一个重要的决定因素。在某些方面诸如制备的容易性、稳定性、水溶性和/或优异药代动力学方面被认为是关键时,一种结晶形式可能优于另一种结晶形式。(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺盐的结晶形式比游离碱具有更高的水溶性,但是稳定,完成了对稳定的、结晶的、水溶性形式的并选择性抑制激酶活性并从而抑制细胞增殖和肿瘤发生的被取代的3-氰基喹啉化合物的未满足的需要。



技术实现要素:

本发明提供了(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的结晶形式,其已被分离并被表征为:无水形式,一水合物形式,以及无水形式和一水合物形式的混合物(被称为部分水合形式)。本发明还涉及使用该马来酸盐及其结晶形式的方法,以及包含它们的药物制剂。

本发明提供了无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)的分离的结晶形式,其通过差示扫描量热法(DSC)表征,表现出在约196-204℃范围内的开始温度,在该温度下发生熔化和分解。

本发明还提供了无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)的分离的结晶形式,其中该马来酸盐通过在其X-射线衍射图案中以下的2θ角(±0.20°)处的X-射线衍射(XRD)峰来表征:6.16,7.38,8.75,10.20,12.24,12.61,14.65,15.75,17.33,18.64,19.99,20.66,21.32,22.30,23.18,24.10,24.69,25.49,26.09,26.54,27.52,28.62和29.43。在单独的实施方案中,无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的分离的结晶形式表现出其中全部的X-射线衍射峰大约处于上面所公开的2θ角处的X-射线衍射图案。

本发明提供了(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐一水合物(II形)的分离的结晶形式,其在约50℃表现出失水并且特征在于基于作为一水合物的该化合物的重量的约2.5到2.7重量%的含水率。

本发明还提供了(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐一水合物(II形)的分离的结晶形式,其中该马来酸盐的特征在于在其X-射线衍射图案中以下的2θ角(±0.20°)处的XRD峰:6.53,8.43,10.16,12.19,12.47,13.01,15.17,16.76,17.95,19.86,21.11,21.88,23.22,23.78,25.69,26.17,27.06,27.58,28.26,28.73和29.77。在单独的实施方案中,(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐一水合物的分离的结晶形式表现出其中全部的X-射线衍射峰大约处于上面所公开的2θ角处的X-射线衍射图案。

本发明还提供了(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐一水合物(II形)的分离的结晶形式,其通过DSC表征时表现出在196-204℃的范围内的开始温度,在该温度下、特别是在约203.8℃的转变温度下发生熔化和分解。

本发明提供了部分水合的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(III形)的分离的结晶形式,其特征在于基于该化合物的重量的约0.8到约2.4重量%、包括约1.5%到约2.3重量%的含水率。

本发明提供了通过将(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺(游离碱)与马来酸混合并将该混合物溶解在高温的水-醇溶液中来制备马来酸盐的方法。将生成的溶液冷却,该冷却的溶液包含(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐。

本发明还提供了制备结晶一水合物形式(II形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的方法,包括以下步骤:将无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)与有机溶剂和一定量的水混合并过滤从混合物沉淀的结晶一水合物。

本发明还提供了制备结晶一水合物形式(II形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的方法,包括以下步骤:将无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)与有机溶剂混合;将包含一定量的水的溶液加入到有机溶剂中;并过滤从混合物沉淀的结晶一水合物。

本发明还提供了制备结晶一水合物形式(II形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的方法,包括以下步骤:将无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)与有机溶剂和一定量的水混合并过滤从混合物沉淀的结晶一水合物。

本发明还提供了制备结晶一水合物形式(II形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的方法,包括以下步骤:将无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)与包含一定量的水的有机溶剂混合并过滤从混合物沉淀的结晶一水合物。

本发明还提供了制备结晶一水合物形式(II形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的方法,包括以下步骤:将无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)与包含一定量的水的有机溶剂混合数天的时段并过滤从混合物沉淀的结晶一水合物。

本发明还提供了制备无水形式(I形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的方法,包括以下步骤:在大于30℃的温度下真空干燥作为一水合物的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(II形)历时约12到约48小时。

本发明还提供了包含(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐以及一种或多种由以下结构表示的有关的化合物的药物制剂:

本发明还提供了用于抑制HER-2激酶活性的药物组合物,其包含治疗有效量的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐和药学可接受的载体。该药物组合物还可包含一种或多种上面讨论的有关的化合物。该马来酸盐可为无水形式,一水合物形式,以及这些形式的组合。

本发明还提供了通过对受治疗者给予治疗有效量的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐用来预防、治疗或抑制癌的方法。受治疗者可为哺乳动物,更具体是人。该马来酸盐可在其无水形式,一水合物形式或部分水合形式下被给予。在该方法期间还可给予上面讨论的一种或多种有关的化合物。

附图说明

图1.两种结晶形式,即无水I形和一水合物II形的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的XRD扫描。

图2.I形和II形的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的动态蒸气吸附(DSV)等温线。

图3.I形和II形的差示扫描量热(DSC)曲线。

图4.I形和II形的热重分析(TGA)曲线。

图5.在I形暴露于75%的相对湿度和周围环境温度下历时22天之后,I形、II形和III形(部分水合形式)的XRD扫描。

图6.两批I形的XRD扫描。

图7.在暴露于50-60%的相对湿度和20-25℃的周围环境温度下历时24小时之前和之后,II形的XRD扫描。

图8在暴露于50-60%的相对湿度和20-25℃的周围环境温度下历时24小时之前和之后,I形的XRD扫描。

具体实施方式

(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺是Her-2(又名ErbB-2或neu)激酶的不可逆的抑制剂,所述激酶是表皮生长因子受体(EGFR)家族的一个成员。EGFR家族成员已牵涉肿瘤发生并与人类肿瘤类型的差预后有关。游离碱形式的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺的结构如下所示:

游离碱形式的化合物(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺描述于美国专利6,288,082中。将该化合物基于生药分类系统(Biopharmaceutical Classification System)被分为BCS IV类化合物(低水溶性和弱渗透性)。游离碱在水中具有低的溶解度,在约pH 7下的水溶解度为约1μg/mL。水溶解度随着pH的降低而增加,因为所述化合物发生离子化。该化合物在胃肠pH下可溶于水,并且溶出是非限速的。需要具有改善的物化性质的形式的该化合物。

本发明提供了(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺的可溶于水的酸加成盐形式。游离碱化合物能够与多种药学合适的酸形成盐。药学合适的酸包括但不限于例如,乙酸,富马酸(fumuric acid),马来酸,甲磺酸,琥珀酸,硫酸,酒石酸和对甲苯磺酸。评价了每种酸加成盐形式的物化性质,以筛选最佳的药学盐形式,如表1所示。

表1.(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺的盐形式的物化性质

*--未列举小的吸热峰和一些宽吸热峰。

在这九种盐中,马来酸盐表现出有利的物化性质。该马来酸盐是结晶并且吸湿性低。甲磺酸盐具有吸湿性并且结晶度低。甲苯磺酸盐更不具有吸引力,主要是因为甲苯磺酸盐的更高分子量和安全性考虑。尽管乙酸“盐”似乎是结晶,但是NMR显示从乙酸制备的产物实际上不是盐。从乙酸制备的产物不溶于水并且获得的碱性pH的事实证实了其主要保持了游离碱形式。

(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐是结晶,与游离碱相比具有更高的水溶解度,如表2所示。

表2.游离碱与马来酸盐的溶解度比较

*LOD=检测极限

**又名PolysorbateTM 80,从聚氧乙基山梨醇(polyoxylated sorbitol)和油酸制备的非离子性溶剂。

已从在大鼠中进行的多个临床前研究中提取的数据的基础上进行了(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺的系统暴露(SE)数据的比较。这些数据的分析指示了,在大鼠中,当在5到45mg/kg的剂量范围下给药时,给予作为马来酸盐的化合物,与给予游离碱相比,前者提供了AUC(浓度下面积)的两倍增加。作为游离碱的化合物的系统利用度相对较低(20%),并且在粪便中存在的大量的药物可归因于差的吸收。马来酸盐的提高的溶解度表明增强了化合物在大鼠中的吸收。表3表示在大鼠中观察到的血浆化合物平均AUC和Cmax数据。

表3.在大鼠中的平均(SE)化合物药代动力学

a:AUC0-∞

ND=未给药

使用0.5到4.5mg/mL的悬浮液以10mL/kg给予的马来酸盐

使用1到10mg/mL的悬浮液以10mL/kg给予的游离碱

马来酸盐一致性地并且可重现性地表现出有利的物化性质,如表4所示。

表4.马来酸盐初步试验批料的物化性质

*粒度从得自光学显微镜的捕获图像进行估计

**ND:未测定

***游离碱

游离碱形式的化合物(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺除了表现出差的水溶解度之外,还与胃中的emectic受体相互作用,导致哺乳动物腹泻。然而,(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺的马来酸盐,意想不到地减轻这种问题并且使得与哺乳动物中emectic受体的相互作用最小化。

马来酸盐通过将(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺(游离碱)与马来酸混合并将该混合物溶解在高温的水-醇溶液中来制备。将生成的溶液冷却,该冷却的溶液包含(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐。根据一个实施方案,如路线1所示,通过将马来酸与游离碱在水和正丙醇的溶液中合并来制备(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐。

路线1

游离碱与马来酸的反应在约40℃到约60℃、优选约40℃到约50℃的高温下发生。水:正丙醇的比率可改变,例如为约1:10到约1:5,并且水:正丙醇的最佳比率为约1:9。水-醇溶液可包含约5体积%到约20体积%的水和约80体积%到约95体积%的醇。醇可为正丙醇。在一个实施方案中,水-醇溶液包含约10体积%的水和约90体积%的正丙醇。溶剂溶液的体积可为约8到约25体积,包括约10约12体积。相对于每当量的游离碱使用约1.0-1.2当量的马来酸,优选相对于每当量的游离碱使用约1.03当量的马来酸。

生成的马来酸盐的溶液在冷却之前可通过过滤使其澄清。冷却步骤可持续进行直到溶液达到约45℃或更低的温度、包括达到约39℃或更低的温度、更优选达到约30℃或更低的温度为止。在一个实施方案中,在冷却到约室温、优选冷却到约23℃到约25℃之后,将溶液过滤。一般地,当温度达到37℃或更低时,马来酸盐开始从溶液结晶出来。可使溶液在室温下静置至少12小时,优选约12到约15小时,然后过滤和洗涤,以回收结晶马来酸盐产物。得到的滤饼可用相同的或不同的水-醇溶液洗涤以获得产物。可将该产物干燥以获得结晶(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐。此时,被回收和分离的马来酸盐产物一般是一水合物形式的马来酸盐的形式。

该产物可在加热下进行真空干燥,以约70%到约95%的收率、优选约80%到约95%的收率制备无水形式的马来酸盐(I形)。该产物通常具有超过约98%的纯度,一般为约99%纯。一般地,干燥过程进行约12到约48小时,以获得从一水合物形式的马来酸盐(II形)向无水形式的马来酸盐的完全转化。更短的干燥时间通常获得两种结晶形式的混合物。该干燥过程通常在大于室温的温度下进行。在一个实施方案中,马来酸盐的干燥在大于约30℃、优选约40℃到约60℃、并且在另一个实施方案在约50℃的温度下进行。

马来酸盐可溶于许多的极性溶剂中,这些极性溶剂是本领域技术人员已知的,但是,如果要求小的溶剂体积,经常使用二甲亚砜(DMSO)。可将DMSO溶液加热到约45℃到约60℃以进一步提高溶解度。当无水马来酸盐在溶液中时,可加入水,一般迅速地加入水,导致结晶,当过滤时提供了结晶一水合物形式。无水盐可溶于溶剂例如DMSO中,并可向该溶液中加入水和有机溶剂的水性溶液,所述有机溶剂例如诸如四氢呋喃(THF)、异丙醇(IPA)、正丙醇、丙酮、乙醇、甲醇和乙腈。在一个实施方案中,使用的有机溶剂是IPA,在另一个实施方案中,使用的有机溶剂是正丙醇,并且在第三个实施方案中,使用这两种有机溶剂的混合物。水性溶液的含水率可以低至5%,但可为约7.5%或更高,并且在一个实施方案中,含水率为约10%到约15%。然后使生成的溶液静置长达约24小时,并且在一个实施方案中使其静置约12小时到约24小时,以允许结晶的发生。混合物的过滤得到结晶一水合物形式的马来酸盐。为了本发明的目的,术语“有机溶剂和水”是指有机溶剂和水的溶液,所述有机溶剂诸如例如四氢呋喃(THF)、DMSO、甲醇、乙醇、异丙醇或乙腈,其中有机溶剂占溶液体积的大于50%。

本发明的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺的马来酸盐以三种不同的结晶形式被分离:无水形式(I形),一水合物形式(II形)和部分水合形式(III形),所述的部分水合形式包括I形和II形的混合物。

根据一个实施方案,通过将(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺与马来酸的反应产物进行干燥而获得作为结晶固体的无水形式的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)。干燥包括空气干燥,加热和减压干燥。在可供选择的实施方案中,通过对一水合物形式的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(II形)进行干燥而获得作为结晶固体的无水形式的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)

无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)的分离的结晶形式,其通过差示扫描量热法(DSC)表征时表现出在约196-204℃的范围内的开始温度,在该温度下发生熔化和分解。

无水马来酸盐(I形)的特征在于在其X-射线衍射图案中以下的2θ角(±0.20°)处的X-射线衍射(XRD)峰:6.16,7.38,8.75,10.20,12.24,12.61,14.65,15.75,17.33,18.64,19.99,20.66,21.32,22.30,23.18,24.10,24.69,25.49,26.09,26.54,27.52,28.62和29.43。在单独的实施方案中,无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)的分离的结晶形式表现出其中全部的X-射线衍射峰大约位于上面所公开的2θ角处的X-射线衍射图案。

根据一个实施方案,通过将无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)与有机溶剂和一定量的水混合并过滤从该混合物沉淀的结晶一水合物来制备结晶一水合物形式(II形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐。

在单独的实施方案中,通过将无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)与有机溶剂混合;将包含一定量的水的溶液加入到该有机溶剂中;并过滤从混合物沉淀的结晶一水合物来制备结晶一水合物形式(II形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐。

在另一个实施方案中,通过将无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)与包含一定量的水的有机溶剂混合数天的时段并过滤从该混合物沉淀的结晶一水合物来制备结晶一水合物形式(II形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐。数天时段适当地为约1-20天。

(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐一水合物(II形)的分离的结晶形式,通过DSC测量时在约50℃表现出失水,并且特征在于通过热解重量分析(TGA)测量时基于作为一水合物的该化合物的重量的约2.5到2.7重量%的含水率。一水合物形式的马来酸盐的含水率还通过费歇尔滴定法来测量。

作为一水合物(II形)的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的特征在于在其X-射线衍射图案中以下的2θ角(±0.20°)处的X-射线衍射(XRD)峰:6.53,8.43,10.16,12.19,12.47,13.01,15.17,16.76,17.95,19.86,21.11,21.88,23.22,23.78,25.69,26.17,27.06,27.58,28.26,28.73和29.77。在单独的实施方案中,(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐一水合物的分离的结晶形式表现出其中全部的X-射线衍射峰大约位于上面所公开的2θ角处的X-射线衍射图案。

本文使用的术语分离的是指存在的结晶(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的超过50%是I形和II形之一。在一个实施方案中,存在的结晶(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的至少70%是I形和II形之一。在第二个实施方案中,存在的马来酸盐的至少80%是I形和II形之一。在第三个实施方案中,存在的马来酸盐的至少90%是I形和II形之一。

(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的两种结晶形式表现出不同的XRD图案和峰。每种马来酸盐形式的XRD图案是该盐形式所独有的。I形和II形的XRD图案采用分析化学和X-射线晶体衍射领域的技术人员已知的技术和设备进行测定。XRD图案使用粉末样品生成并且由一组衍射峰组成,其可用2θ角、d-间距和/或相对峰强度来表示。XRD图案如图1、5、6、7和8中所示。图1、7和8中提供的X射线数据的收集参数如下所示:电压40kV;电流40.0mA;5.00-30.00度扫描范围;Bruker D8Advance设备;扫描步长0.01°;总扫描时间30分钟;使用Vantec-1检测器和Ni滤波器。图5和图6中的X射线数据如下所示被收集:电压30kV;电流15mA;3-40度扫描范围;2.00°/min;Rigaku Miniflex台式X射线衍射仪。

2θ衍射角和相应的d-间距值说明了在XRD图案中发现的峰的位置。使用布拉格方程,使用观察到的2θ角和铜Kα1波长来计算d-间距值。这些数字可由于使用不同的衍射计以及由于样品制备方法的不同而发生改变。然而,预期相对峰强度可有更多的改变。因此,应该基于所观察到的2θ角和d-间距来鉴定不同的形式,并且强度不那么重要。本领域技术人员可理解,根据本文所述而获得的I形和II形的XRD图案可包含另外的峰。另外,本领域技术人员可承认,能够观察到给定形式的所有的峰可能高度依赖于该形式的浓度水平。图1阐述了两种结晶形式即I形和II形的马来酸盐的XRD扫描。结晶无水马来酸盐形式I形显示于下方,而结晶一水合物形式II形的马来酸盐显示于上方。

通过动态蒸气吸咐(DVS)详细研究了两种结晶形式的马来酸盐的相对稳定性和吸湿性。无水形式的马来酸盐容易吸水并转化为结晶一水合物形式的马来酸盐。当干燥或相对湿度降低时,结晶一水合物形式的马来酸盐转化为无水形式的马来酸盐,如图2所示。图2是动态蒸气等温吸附曲线,其表明I形(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐在高于40%相对湿度(RH)、尤其在60%RH或更高时获得水分。图2还表明II形在20%RH和更低、尤其在10%RH和更低的条件下失水。在以下条件下进行DVS:RH被设为0%、30%、52.5%、75%和90%,样品在每个RH下暴露3个小时并历时两个完整的循环。

两种结晶形式的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐表现出不同的DSC曲线。I形和II形的马来酸盐的DSC曲线概括在图3中。I形马来酸盐表现出一个吸热峰,指示202.49℃的转变温度。II形马来酸盐表现出两个吸热峰,对应于失水的具有55℃的开始温度的宽的吸热峰和指示202.81℃的转变温度的第二个吸热峰。在溶化和分解发生的约196-204℃范围内观察到转变温度。使用具有以下参数的型号为Q1000的TA设备收集DSC数据、转变温度和热流:50mL/min吹扫气体(N2);扫描范围40到240℃,扫描速率10℃/min。纯的结晶固体具有特征性的转变温度,在该温度下所述物质改变其状态,在本发明的情况下,固体转变为液体。对于纯物质的小样品而言,在固体和液体之间的转变是如此地迅速,转变温度可被测量达到0.1℃。因为很难将固体加热到高于它们的转变温度,并且因为纯的固体倾向于在极小的温度范围内发生转变,因此经常使用转变温度来帮助进行化合物的鉴定。固体的转变温度的测量还提供了与物质纯度有关的信息。纯的结晶固体在极窄的温度范围内发生转变,而混合物在较宽的温度范围内发生转变。混合物还趋向于在低于纯固体的转变温度的温度下发生转变。

一水合物形式和无水形式的马来酸盐的TGA数据概括在图4中。II形马来酸盐的特征在于通过TGA测量时基于作为一水合物的该化合物的重量的约2.5到2.7重量%的含水率。使用型号为Q的TA设备收集TGA数据。使用在30-220℃之间的10℃/min的加热速率,并且TGA室处于40mL/min的氮气流的条件下。

观察到马来酸盐的第三种结晶形式并根据XRD的观察将其称为部分水合物(III形)。该部分水合物是I形和II形马来酸盐的混合物。部分水合的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(III形)的特征在于基于该化合物的重量的约0.8到约2.4重量%,包括约1.5%到约2.3重量%的含水率。

图5包括在将无水形式的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐暴露于75%相对湿度和20-25℃的周围环境温度下历时22天之后,该马来酸盐的无水I形、一水合物II形和部分水合物III形各自的XRD扫描图。

图6是两批I形的结晶(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的XRD扫描图。无水形式的马来酸盐在20-25℃的周围环境温度下在24小时内吸水并部分地转化为马来酸盐的一水合物形式。马来酸盐的一水合物形式在20-25℃的周围环境温度下在24小时内相对稳定。图7是在暴露于50-60%的相对湿度和20-25的周围环境温度下历时24小时之前和之后,II形的结晶(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的XRD扫描图。将马来酸盐的一水合物形式暴露于更高的温度下(>50℃)或在减压下加热,促进失水和完全转变回到无水形式的马来酸盐。

I形无水形式可容易地转化为II形一水合物形式。在20-25℃的温度和50-60%的相对湿度(RH)下I形可随着时间吸水并部分地转化为一水合物,如图8所示。图8是I形的结晶(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐在暴露于50-60%的相对湿度和20-25℃的室温下历时24小时之前(下方扫描)和之后(上方扫描)的XRD扫描。水合物峰出现在上方的扫描图中,指示该晶体在该条件下吸水。

在密闭容器和开放容器中在40℃和75%RH下评价了两种形式的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺的马来酸盐的稳定性。I形和II形二者在这些条件下保持稳定达6个月。在开放容器中,无水形式的马来酸盐迅速地吸收1摩尔的水以形成一水合物形式的马来酸盐。在密闭容器中的样品保持干燥。HPLC纯度分析指示在开放和密闭条件下降解产物在长达6个月内没有显著增加。数据概括在表5中。

表5.无水马来酸盐(I形)的固态稳定性

在不同溶剂中进行了游离碱与马来酸的反应性结晶,以测定生成哪种或哪些种结晶形式的马来酸盐。表6示出了在不同的操作条件下,在正丙醇和水的混合物中的结晶方法的结果。在所有的实验中的湿滤饼包含一水合物形式的马来酸盐,其在干燥之后转化为无水形式的马来酸盐。

表6.在水/正丙醇中的马来酸盐的反应性结晶

表7表示游离碱和马来酸在多种溶剂中的反应性结晶的结果,其在全部实验中都获得无水形式的马来酸盐。

表7.马来酸盐在多种溶剂中的反应性结晶

相当可观地溶解(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐的一种溶剂是二甲亚砜(DMSO)。在DMSO和异丙醇或叔丁基甲基醚(tBME)的混合物中进行冷却结晶、反溶剂(anti-solvent)结晶和蒸发结晶。所述方法在许多情况下导致溶质分解。反溶剂结晶和蒸发结晶不生成任何新的结晶形式,如表8和9中概括。

表8.马来酸盐形式的反溶剂结晶

表9.马来酸盐形式的蒸发结晶

根据一个实施方案,将无水I形转变为一水合物II形的一种方法这样进行,即将所述盐溶解在有机溶剂,例如,诸如,THF、异丙醇(IPA)、正丙醇、丙酮、乙醇、甲醇和乙腈以及水的溶液中,其中水以约5体积%到约20体积%体积存在,尽管水一般以约10体积%到约15体积%存在。可将该溶液加热以提高马来酸盐的溶解度;在一个实施方案,将其加热到约45℃或更高的温度,在另一个实施方案中,将其加热到约60℃。然后使溶液静置数小时的时段以允许结晶,然后过滤晶体,得到一水合物II形(参见表6)。在一个实施方案中,在过滤之前使溶液静置约12小时到约24小时。

根据单独的实施方案,I形这样被转化为II形,即,将I形在含有水的有机溶剂中再成浆料,并使该溶液在室温下静置数天,如表10中所概括的稳定性研究所示。这一转化即使在已吸收最多1%水的无水溶剂中也会发生,因为无水I形容易吸收水分,如图8所证明的那样。在一个实施方案中,使得再成的浆料(re-slurry)静置约14天。

表10.再成的浆料在室温下历时14天的结晶形式的稳定性

本发明还涉及与(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺的游离碱或马来酸盐有关的化合物、或本发明的方法。这些有关的化合物中的一种或多种可在本发明的方法中在被冷却的溶液中被发现。因为这些化合物可能不与马来酸盐分离,因此使用该马来酸盐制备的药物制剂可能含有这些化合物中的一种或多种。

制备了马来酸盐的制剂并在40℃/75%RH稳定室中储存6个月并在56℃烘箱中储存1个月。定期拉出样品用于试验。将样品以约0.5mg/mL的浓度溶于50/50体积/体积的乙腈/水中。直接使用LC/MS方法检验该溶液以鉴定在六个月的任何降解产物和杂质(下文称作有关的化合物)。通过LC/MS检测的有关的化合物的结构如表11所示。值得注意地是,与(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐有关的降解产物的量由于采用本发明的生产方法而被减少了。

表11.降解产物和工艺杂质的结构

这些有关的化合物的名称是:

2-({4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}氨基)-2-氧代乙酸;

N1-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-乙二酰胺;

6-氨基-4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-7-乙氧基-3-喹啉甲腈;

4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-7-乙氧基-6-(2-羟基-5-氧代吡咯烷基)-3-喹啉甲腈;

N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-3,4-二(二甲基氨基)丁酰胺;

N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-1-甲基-2,3-二氧代-4-哌啶甲酰胺;

N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}乙酰胺;

(E)-4-({4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}氨基)-N,N,N-三甲基-4-氧代-2-丁烯-1-铵

N1-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-N2,N2-二甲基乙二酰胺;

4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基甲酰胺;和

4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-7-乙氧基-6-[(1-甲基-2-亚吡咯烷基)氨基]-3-喹啉甲腈。

本发明的马来酸盐的结晶形式可用于通过对受治疗者给予治疗有效量的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐用来预防、治疗或抑制炎症或癌。受治疗者可为哺乳动物,更具体是人。马来酸盐可以其无水形式、一水合物形式或部分水合形式被给予。上面讨论的一种或多种有关的化合物也可在该方法期间被给予。

本发明的马来酸盐的结晶形式可用于制备用于抑制与癌治疗有关的HER-2激酶活性的药物组合物。所述制剂包括治疗有效量的(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐和药学可接受的载体。所述药物组合物可以马来酸盐的无水形式、一水合物形式或部分水合形式被给予。上面讨论的一种或多种有关的化合物也可在该方法期间被给予。

本发明的药物组合物和制剂可用于治疗以下的一种或多种:乳腺癌,卵巢癌,上皮样瘤,结肠癌,前列腺癌,肾癌,膀胱癌,喉癌,食道癌,胃癌和肺癌。根据一个实施方案,马来酸盐特别用于治疗乳腺癌和/或卵巢癌。

包含本发明的马来酸盐形式的药物组合物和制剂可经口、病灶内、腹膜内、肌肉内或静脉内注射给药;输注给药;由脂质体介导的递送;局部,经鼻,经肛门,经阴道,舌下,经尿道,经皮,鞘内,经眼或耳递送给药。本发明化合物的一种给药方式是单位剂量形式。适当的单位剂量形式包括片剂、胶囊和在小袋或小瓶中的粉剂。本发明的结晶化合物可以经口给药。这种化合物可以每天给药1-6次,更经常是每天给药1-4次。有效量是本领域技术人员已知的;有效量还根据化合物的形式、给药方式和治疗病况的严重程度而定。本领域技术人员可以常规性地进行经验性活性试验以测定化合物在生物试验中的生物活性并由此判断给予什么剂量。然而,通常,当日剂量为约0.5mg/kg到约1000mg/kg体重,并且有效剂量的量通常是约1mg/kg体重到约300mg/kg体重时,使用本发明的化合物时可以获得令人满意的结果。

本发明的马来酸盐的结晶形式可与常规的赋形剂进行配制,诸如填充剂,崩解剂,粘合剂,润滑剂,增香剂,颜色添加剂和载体。所述载体可为稀释剂,气雾剂,局部用载体,水性溶液,非水性溶液或固体。所述载体可为聚合物或牙膏。本发明的载体涵盖了任何标准的在药学上被接受的载体,诸如磷酸盐缓冲盐水溶液,乙酸盐缓冲盐水溶液,水,乳液诸如油/水乳液或三酸甘油酯乳液,各种类型的润湿剂,片剂,包衣片剂和胶囊。

如果经口或局部给药,本发明的马来酸盐的结晶形式可在不同的载体中被提供给受试者。一般地,这种载体包含赋形剂诸如淀粉、奶、糖、某些类型的粘土、明胶、硬脂酸、滑石、植物脂肪或油,树胶或二醇类。具体的载体一般基于所需的递送方法被选择使用,例如,可使用磷酸盐缓冲盐水(PBS)用于静脉内或系统递送,以及可使用植物脂肪、霜剂、油膏剂、膏剂或凝胶剂用于局部递送。

本发明的马来酸盐的结晶形式可与适当的可用于赘生物的治疗、抑制或预防的稀释剂、防腐剂、增溶剂、乳化剂、助剂和/或载体一起被递送。这种组合物是液体或经冻干或以其它方式干燥的制剂并包括各种缓冲剂内容物的稀释剂(例如,Tris-HCl,乙酸盐,磷酸盐),pH和离子强度调节剂,添加剂,诸如白蛋白或明胶以防止对表面的吸收,洗涤剂(例如,TWEENTM 20,TWEENTM 80,PLURONICTM F68,胆汁酸盐),增溶剂(例如,甘油,聚乙二醇),抗氧化剂(例如,抗坏血酸,偏亚硫酸钠),防腐剂(例如,硫柳汞,苯甲醇,对羟基苯甲酸酯类),增量剂或张力调节剂(例如,乳糖,甘露醇),聚合物如聚乙二醇的共价结合,含有金属离子的复合物,或在水凝胶或脂质体的粒状制剂内或上引入所述化合物,微乳剂、胶束、单层或多层囊泡、红细胞影泡或球芽。这种组合物将影响化合物或组合物的物理状态、溶解度、稳定性、体内释放速率和体内清除速率。组合物的选择将根据化合物的物理和化学性质的不同而异。

本发明的马来酸盐的结晶形式还可通过胶囊进行局部递送,所述胶囊允许化合物在一定的时段内发生持续释放。受控释放或持续释放组合物包括在亲脂性储库(例如,脂肪酸,蜡,油)中的制剂。

本发明的马来酸盐的结晶形式还可与其它的有益于癌患者的活性化合物例如其它的化学试剂或抗生物物质一起被剂量给药,或与放射治疗组合使用。这些活性化合物可与本发明的化合物同时或先后进行剂量给药。本发明的化合物还可被配制为在同一剂量单位内包含其它的活性化合物,例如,二者可被包含在一个小丸、药片或胶囊中。可与本发明的化合物联合使用的一些可能类型的活性化合物是有丝分裂抑制剂诸如紫杉酚和长春碱,烷化剂诸如顺铂和环磷酰胺,抗代谢物诸如5-氟尿嘧啶,氟尿嘧啶和羟基脲,DNA嵌入剂诸如阿霉素和博来霉素,拓扑异构酶抑制剂诸如依托泊苷和喜树碱,抗血管生成剂诸如血管抑素以及抗雌激素药诸如他莫昔芬。

将结合以下的具体实施例来更完全地描述本发明,这些具体实施例对本发明的范围不构成限制。本领域技术人员能够在举例说明的方法中,根据工艺参数和设备的不同,来进行步骤的重新排列,合并,修改或删除。

实施例1:制备(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐,II形

将粗品(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺游离碱(0.100kg,0.159摩尔)用USP净化水在正丙醇中的10%溶液(0.082kg,0.10L)漂洗,然后加入水:正丙醇溶液(0.74kg,0.90L)。加入马来酸(0.0191kg,0.164摩尔)并将混合物用10%水:正丙醇(0.082kg,0.10L)漂洗。将混合物迅速加热到50-60℃并保持至少15分钟,直到获得溶液为止。使热溶液经过预热到50-60℃的0.2Mm滤筒使其澄清,并在预热到45-55℃的2L多颈烧瓶中收集滤液。将滤筒用预热到45-55℃的10%水:正丙醇(0.082kg,0.10L)漂洗。将溶液在至少1小时内冷却到40℃并在该温度下保持12小时,然后在至少4小时内冷却到室温(25℃)并在该温度下保持至少2小时。将混合物在12.5cm直径的布氏漏斗上过滤5分钟,然后用预过滤的10%的水:正丙醇溶液(2x0.12kg,2x0.15L)漂洗和洗涤。将滤饼压实并保持抽吸直到滴液基本停止,历时约1小时。

实施例2:制备(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐,I形

将得自实施例1的产物(II形)干燥(50℃,10mm Hg,24h),得到94.4g(88%收率)的结晶,即无水(E)-N-{4-[3-氯-4-(2-吡啶基甲氧基)苯胺基]-3-氰基-7-乙氧基-6-喹啉基}-4-(二甲基氨基)-2-丁烯酰胺马来酸盐(I形)(88%收率),强度为80.8%(游离碱),17.4%(马来酸),总杂质1.06%,最大单一杂质0.38%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1