沥青碳纤维和垫的制作方法

文档序号:1759794阅读:309来源:国知局
专利名称:沥青碳纤维和垫的制作方法
由沥青进行纤维的离心纺丝在本技术领域中是已知的可以参考几种用的方法、设备的类型及沥青的种类。在某些情况下,采用先有技术将会产生粗径纤维或力学性能较差的纤维。其余的情况将会导致产量低或导致具有非确定微观结构的纤维。
本发明的目的是在高产量下生产具有确定微观结构的细旦沥青碳纤维,这种沥青碳纤维特别适于作为聚合物基复合材料中的增强材料,以及用于提高复合材料的导热和导电性。


图1是用于制备本发明产品的纺丝和铺层设备的示意图。
图2是图1所示纺丝转筒的剖面图,取包括驱动轴轴心剖面。
图3是用以进行沥青纤维纺丝的另一个实施方案的转筒喷嘴的放大视图。
图4是观测本发明产品的纤维截面而得到的清晰纤维截面的扫描电子显微照片。此图是由实施例1的产品得到的。
图5是根据本发明生产的自粘合垫的扫描电子显微照片,这种自粘合垫与实施例1所生产的相类似。
图6a到图6c是本发明产品的有代表性的纤维断面的扫描电子显微照片,它们由实施例3获得。
本发明提供了一种由中间相沥青离心纺成的碳纤维随机排列的垫,所述纤维的横截面宽度大多数小于12微米,其截面显示出由薄层组成的层状微观结构,该薄层以等斜关系排布并且通常沿平行于截面轴向的方向排列,该薄层可延伸到纤维截面的边缘。构成垫的纤维可相互粘结。本发明还涉及这种纤维和垫的制备方法以及用这种纤维、垫或其碎片增强的复合材料的制备方法。
根据本发明,可用一种经济的方式由中间相沥青离心纺丝制成具有均匀层状微观结构的细旦碳纤维。一般地讲,碳纤维的截面宽度约小于12微米,通常为约2~12微米。这种纤维的实际旦数取决于其密度及实际纤维的尺寸,在高石墨结构(密度>2.0g/cc)的情况下,在数值上大于1.0旦/单丝(dpf)。纤维的宽度是可变的,并可在已知放大倍数的扫描电子显微照片上测定。纤维长度也是可变的,并且其长度最好大于约10毫米。该纤维可以有“丝头”,即其端部直径或宽度大于纤维的其它部分或“平均”直径或宽度。由于“丝头”不会增加大多数终应用的价值,所以最好将这些“丝头”减少到最低程度。测量纤维尺寸、特别是测量宽度时,“丝头”应忽略不计。纺丝力、纺丝温度、沥青的性质、纺丝设备以及骤冷条件都会影响“丝头”的尺寸和形状。
“中间相沥青”是指或是由石油或是由煤焦油得到的碳质沥青,其中间相含量至少约为40%,这可用光学应用的偏光显微镜检测法测定。中间相沥青在本技术领域中是众所周知的,并且特别在美国专利4,005,183(Singer)和美国专利4,208,267(Diefendorf和Riggs)进行了介绍。由各向同性沥青离心纺丝制成的纤维通常不存在确定的微观结构、不易稳定化,并且其力学性能常常较差。相反,当以5000倍或更高的放大倍数观察本发明纤维断面时,本发明纤维的断面显示出很容易观察到的清晰的层状或分层的微观结构,特别是该纤维经高于约2000℃的温度处理后。该薄层通常沿平行截面轴(通常为长轴)的方向排列,并且延伸到截面的边缘。据信这种微观结构是高度结构有序和完善的证明,并且进一步这种高度有序的结构提高了这种纤维的导热和导电性能。
制备本发明产品所用的方法基本上为,在大于重力200倍(即大于“200g′s”)的离心力作用下,使中间相沥青于高温通过喷嘴进行离心纺丝。初生纤维通常以垫的形式收集,纤维在垫中随机排列,垫的面密度为15到600克/平方米(“g/m2”)。为了避免在接续的氧化稳定步骤中产生热斑”,面密度最好不要超过600g/m2。据信使用中间相沥青是关键。同时也认为,为了使熔融沥青的剪切取向的平面膜延伸流动,沥青在没有周围的限制下,例如经过喷嘴,纺丝也是重要的。沥青通过限制或成形的喷丝孔(如孔)而进行的常规离心纺丝通常使吐出量受到限制,产生较粗的纤维,并且当使用高中间相沥青时,常常由于堵塞而限制了纺丝连续性。这种纺丝也不会产生层状的纤维微观结构。例如,使用中间相沥青,用常规的离心纺丝方法(GB2,095,222A)纺丝会产生“无规镶嵌”的微观结构。
上述术语“喷嘴”是指当熔融的沥青离开纺丝设备时,一种没有限制、约束或用其它方法使熔融沥青成形的刀口或开口。为了生产细旦纤维,中间相沥青经过喷嘴的离心纺丝需在较高的纺丝温度和离心力下进行。
已经发现,实用的离心力至少应为200g′s,最好大于1000g′s,可高达15,000g′s。如果在纺丝过程中离心力或温度过低,则只能产生颗粒而不是纤维。沥青的性质和纺丝设备的具体结构决定最佳纺丝条件。纺丝所采用的转筒温度至少应比沥青熔点高100℃。已经发现,实用的纺丝温度至少应为375℃,最好在450~525℃的范围内。由于温度过高会导致形成焦炭,应避免之。具有约为100%中间相含量的沥青一般比低中间相含量的沥青的纺丝温度要高。通常,纺丝温度超过沥青熔点的程度决定沥青的熔体粘度。
本发明的纤维利于以垫的形式制备。本发明打算最终用于增强材料所生产的垫,其面密度应介于15~600g/m2。为了制造这种垫,将沥青纤维离心纺丝进入收集区,然后最好直接送到移动的多孔输送带上。纤维在垫中随机排列,即没有一定的样式。可用沥青在输送带上的沉积速度(沥青吐出率)或者最好调节输送带的速度、或者采用其它收集装置改变垫的密度或基重。
在纺丝和以垫的形式收集纤维后,初生纤维的垫要进行稳定化处理。令人惊奇的是,进行这个步骤的速度要比常规所纺的沥青碳纤维所需的速度快得多。本发明允许使用较低的稳定化温度和较短的稳定化时间。如果需要,可采用诸如更高温度的稳定化条件,使垫内初生纤维在其接触或交叉点产生自粘合。通常在250~380℃的温度下于空气中,通过加热足以能达到后期予碳化而不熔化的一段时间进行稳定化处理。垫中纤维保持彼此分离而后可分开的情况取决于稳定化温度。在较高的稳定化温度下,将发生自粘合。采用横向限制装置有助于自粘合,例如把垫放于筛网之间,施加最小的压力以抵消收缩力。由自粘合而生成的均匀三维纤维网,碳化后可产生适用于渗透的结构。自粘合垫可破碎成纤维状碎片(直线形纤维和“X”、“Y”形等异形粘合的碎片的混合物),并可用作增强材料。适当稳定化处理的垫可便于后加工。例如,为防止分层,可对垫叠层和针刺,然后按常规方法加工。
稳定化处理后,该纤维或垫在800~1500℃、最好是800~1000℃的温度下于惰性气体(氮气、氩气等)中,进行脱挥发份或“予碳化”处理。这个步骤是以控制的方法除去纤维在稳定化过程中所吸收的氧气。脱挥发份的垫可用微波辐射碳化。通常,根据公认的技术方法将该纤维或垫碳化或碳化和石墨化,例如,在大约1600~3000℃的温度下,使纤维在惰性气体中持续至少1分钟。这就是前面所指的显示层状结构的碳化或碳化和石墨化的纤维。该垫可用已知方法进行表面处理,以增强最终使用的复合材料中的纤维与基质的粘合性。该垫中的纤维可使用粘合剂相互粘合,而且这种粘合的垫可以叠层并又可相互粘合。如果需要,这种纤维或垫可与其它纤维(如玻璃纤维、芳族聚酰胺纤维等)或其垫混合,以提供“混合物”垫、混合层状制品等。
参见图1,固体沥青由进料装置2加入(计量)纺丝转筒1,在所示的一个实施方案中,进料装置2是一螺杆进料器。纺丝转筒1固定在驱动轴3上,而驱动装置4使驱动轴3高速旋转。加热装置5环绕在纺丝转筒1上,在该实施方案中,加热装置5是一电感应线圈。通过加热装置5使沥青在转筒1内熔化,而熔融的沥青经离心纺丝制成纤维,纤维以箭头6所示的轨迹进入收集装置7,收集装置为一环绕转筒1安装的圆锥形容器,其顶部垂直地位于转筒的下面并与出口道相连接。锥形容器的最大直径至少应大于转筒直径的5到12倍。除了允许气体(空气或氮气)进入的开口外,该容器在其顶部而且也通过上述开口并环绕转筒被环形盖起来(盖未示出),引入的气体既可为加热气体也可为未加热气体循环网状输送带8位于与真空源9相连的出口管的通道处。在输送带8上以随机垫10的形式收集纤维时,通过垫10的气体控制纤维的沉积。
垫内的纤维的长度比较短。已发现降低进料速率或吐出量可增加纤维长度。可用外部加热装置(例如感应线圈)调节沥青温度,从而改变其粒度。
已经成功地使用了直径约为3吋的转筒。如果需要,可调节纺丝设备中的骤冷气体以加速或减缓刚刚离开转筒的熔融沥青的固化。
参见图2。转筒1连接到驱动轴3上。连接轴12支承挡板13。挡板13用来防止由于骤冷介质逆流而使沥青冷却。转筒1具有上腔室15,它由腹板17与下腔室16分开,该腹板17具有在圆周上等间距分布的沥青供料孔18。下腔室的内壁19与垂线(即驱动轴3的轴线)形成一斜角,通常为10°,以确保熔融沥青由孔18沿着壁19均匀流到纺丝喷嘴14。在操作中,将固体沥青加入上腔室15,在此处将其熔化并经孔18流到下腔室16,然后沿着壁19流到纺丝喷嘴14,在此处,离心力将熔融的沥青以纤维的形式纺丝离开喷嘴14进入图1所示的收集装置7中。该纤维用进入收集装置7内的气体骤冷然后直接送到图1的网状输送带8上。在纺丝喷嘴处施加到熔融沥青上的离心力是转筒1的直径和转筒转速的函数。
参见图3,表示了挡板13和转筒1的弧形纺丝喷嘴的放大视图。据信这一弧形特点是避免纺丝喷嘴附近积累沥青以及其后的沥青降解,否则对纺丝连续性有不利的影响。
图4表示根据上述讨论的纺丝喷嘴离心纺丝制成的沥青纤维的横截断面。用剃刀片把该纤维剖开(断开),斜向剖开更能显示出其微观结构的特征,然后以5000倍的放大倍数摄取扫描电子显微照片。
层状结构非常明显。整个纤维的剖面为椭圆形,其薄层通常与椭圆的长轴相平行并且延伸到纤维的边缘。薄层的相互间隔似乎并不规则,但分组内的薄层趋向于相互“平行”,通常以等斜线(即仿形)的关系排列。图4所示的纤维是在实施例1中于2215℃下制备的。
参见图5用显微照相(SEM,5000X)显示出实施例1的自粘合垫。可观察到纤维在其交叉处和侧向相接处光滑粘结的结构。
参见图6a到6c,表示了本发明纤维的横截断面以下列放大倍数拍摄的另一些显微照片图6a为7000倍;6b为9000倍;6c为10,000倍。纤维样品由后面的实施例3获得。图6a-6c的每一张图都显示出了与图4有关的详细描述的层状微观结构。也很明显,其微观结构的特征不如图4中的规则。据信这种偏离常常是由于在纺丝过程中熔融的沥青的剪切流动平面受到瞬间干挠所造成的。另外据信,图6a所示的“扇形”结构更能代表本发明产品的特征。要注意的是,像这一类摄取的断点(例如张力试验后的断点)照片不具备代表性,因为其断裂常常是由空隙、粒子或其它不正常的不均匀性而引起的。切痕有时也会干挠其截面。
下面的实施例更具有说明性实施例1沥青是由“LakeCharles热焦油”(Conoco有限公司)即来自粗柴油热裂化的重油残渣制备的,通过热裂化和氮气喷射处理产生软化点为279℃、熔点为300℃的85%中间相沥青。这种沥青在感应加热转筒壁温为475℃的条件下,由图2所示的转筒进行离心纺丝。所采用的转筒直径为3.2吋,其锥度为10度,并且以10,000rpm旋转产生4600g′s的离心力。粉状沥青流到转筒的流速为0.3磅/小时。腹板17具有12个供料孔18,每个孔的直径为1/4″。纤维用室温的空气骤冷,气流将该纤维输送到丝网上形成二维随机垫,垫的面密度为80克/平方米。
在一独立的操作步骤中,把上述垫切割成2″×4″样品并放于细丝网之间。然后,将这个组合件放在于空气中预先加热到并维持在380℃的垂直加压的板之间。在2分钟为一操作周期的头0.5分钟使压板间隔定为1″,其余的1.5分钟使其间隔为3/8″,在此步骤中,既进行了稳定化处理又进行了自粘合。压板仅提供了垫的稳定化处理过程中的热而不对垫施加压力。然后将该垫在氮气中加热到850℃进行脱挥发份处理,接着在氩气中于2215℃进行石墨化处理。垫内纤维的平均宽度为6.1微米。用剃刀片切断纤维,暴露出如图4所示的横截断面。
实施例2在另一个实施方案中,沥青是由PoncaCity沉析油(Conoco有限公司)(也称作油浆或澄清油)即来自粗柴油催化裂化的残渣制备的,通过热裂化和氮气喷射处理产生软化点为265℃、熔点为297℃的99%中间相沥青。将该沥青用实施例1的设备进行离心纺丝,其转筒温度为486℃,转速为18,000rpm从而产生15,000g′s的离心力。该沥青的流速为5磅/小时。转筒的盘边如图3所示。在移动的输送带上收集该纤维以形成面密度为80克/平方米的垫。单根纤维略呈锥形,其平均宽度为11.2微米,平均长度为4厘米。
在一独立处理步骤中,为了使纤维稳定化,垫中纤维在空气中于240℃下作用10分钟,然后于300℃下作用10钟。将该纤维在氩气中从室温加热到2600℃,然后在2600℃维持3分钟,进行予碳化和石墨化处理。用这种纤维与环氧树酯〔含有20%环氧树脂RD-2(Ciba Geigy)型减粘剂的Hercules3501-6〕制成层压制品(复合材料)。纤维占上述层压制品的33%(体积)。把厚度为0.054吋的层压制品切割成长为6吋,宽为0.5吋的样品。将这些试样在跨高比为60的条件下进行三点弯曲试验,并发现其抗弯模量为3.18×106psi。
实施例3在另一个实施方案中,将实施例2的原料沉析油随着氮气喷射进行热裂化,产生软化点为293℃、熔点为328℃的100%中间相沥青。采用实施例1的设备,其转筒温度为525℃,转速为10,000rpm(4600g′s),沥青流速为0.5磅/小时。在由细丝网支撑的干酪布上收集该纤维,以生产面密度为150克/平方米的垫。该纤维的平均宽度为7.4微米。许多纤维的长度超过5厘米。
在一独立操作的步骤中,纤维垫在烘箱中与空气作用,该烘箱以4℃/分钟的速度,由室温程序升温到340℃。当达到340℃时,关掉加热器,使烘箱冷却。冷却速度大致与加热速度相同。这一处理使纤维难熔,以便进行接续的碳化处理。再将该纤维垫放入马弗炉中并在氮气保护下加热到850℃,除去挥发性沥青组分并开始碳化处理。接着,将该纤维垫在氩气中加热到2166℃进行碳化处理。将单丝由该垫拉出并以1″夹持长度进行拉伸试验。其平均抗张强度为228kpsi,平均抗张模量为33.7mpsi。这些特性可使该纤维用作为树脂、聚合物、金属或陶瓷基质的增强材料,以提供有效的予浸渍体,层状制品和其它形式的复合材料。用剃刀片切割垫制成用于在SEM中观测的样品。大多数纤维显示出特征的层状结构;图6a至6c表示了具有代表性的纤维。
权利要求
1.一种碳纤维随机排列的垫,所述纤维截面宽度多数低于12微米,并且其断面存在着由薄层构成的层状微观结构,该薄层以等斜关系排布并且通常沿平行于纤维截面的轴向排列,该薄层延伸到纤维截面的边缘。
2.根据权利要求1的垫,其中所述纤维相互粘合。
3.用权利要求1或2的垫或其碎片增强的复合材料。
4.由中间相沥青的离心纺丝制成的权利要求1的垫,该垫经过氧化稳定和碳化处理。
5.一种制备随机排列的碳纤维垫的方法,包括离心纺丝熔融的中间相沥青,所述沥青在200~15000g的离心力下于375~525℃经过转筒喷嘴进行纺丝并进入一腔室,在该腔室内骤冷所纺的纤维并将该纤维直接送到收集装置上,以形成随机排列的沥青碳纤维垫,氧化稳定处理该垫中的纤维,然后碳化处理垫中的纤维。
6.根据权利要求5的方法,其中该沥青在至少1000g的离心力下进行纺丝。
7.根据权利要求5的方法,其中垫内的纤维在氧化稳定处理过程中自粘合。
8.用权利要求4的方法制备的垫。
全文摘要
中间相沥青经喷嘴进行所述的离心纺丝,通过稳定化和有石墨化或没有石墨化的碳化处理得到具有层状微观结构的碳纤维。
文档编号D01D5/18GK1031734SQ8810636
公开日1989年3月15日 申请日期1988年9月2日 优先权日1987年9月2日
发明者罗伯特·盖伊·帕里什 申请人:纳幕尔杜邦公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1