制造玻璃管的方法和设备的制作方法

文档序号:1983694阅读:751来源:国知局
专利名称:制造玻璃管的方法和设备的制作方法
技术领域
本发明涉及一种制造玻璃管的方法和设备。更具体地说,涉及一种采用下述方式制造玻璃管的方法和设备,也就是金属锥芯(piercingplug)被压入软化的玻璃材料内,从而逐渐将玻璃材料形成为玻璃管。
背景技术
目前有一种制造石英玻璃圆柱体的方法(日本专利文献No.2798465),也就是在杆端被加热和软化同时杆围绕其自身纵向轴线转动和穿孔元件的锐边与所述杆端表面的中心部位结合的条件下,使所述杆相对于穿孔元件转动,拔出柱状石英玻璃杆一端的圆周边缘,制造石英玻璃圆柱体。根据这种方法,如图12所示,准备一根由石英制造的玻璃杆100。圆柱体模型123被焊接在玻璃杆100的出口侧端(exit sideend)表面上,当穿孔元件131被施加在玻璃杆100端表面的中心部位上同时被圆柱体模型123支撑的玻璃杆100转动的条件下,围绕穿孔元件131的一部分玻璃杆100被加热装置140加热并软化。穿孔元件131被固定在支撑杆132上。支撑杆132被固定在固定部件上,从而支撑杆132可以围绕其轴线与穿孔元件131一起转动。玻璃杆100的左端被第一送料盘111的卡盘112夹持。玻璃杆100的另一端通过圆柱体模型123被第二送料盘121的卡盘122夹持。第一和第二送料盘111、121分别被安装在进口侧底座110和离开侧底座120上,从而第一和第二送料盘111、121可以分别在底座上运动。
加热装置140被构造成具有圆柱形加热元件103a和线圈103b,加热元件103a覆盖玻璃杆100和穿孔元件131彼此毗邻的邻接部位附近,线圈103b具有适合数量的线圈匝数并被设置成围绕加热元件103a的外周。流过线圈103b的高频电流所感应的热将加热元件103a的温度提高到等于或大于玻璃杆100软化点的一个温度值,从而对与穿孔元件131邻接部位附近的玻璃杆100加热。

发明内容
本发明提供一种制造玻璃管的方法,当柱形或圆柱形玻璃材料被围绕所述玻璃材料设置成加热元件加热并软化时,当金属锥芯被压入所述玻璃材料的软化区域,从而将所述玻璃材料逐渐形成所述玻璃管时,被施加在所述玻璃管内或外周侧上的应力被控制。通过控制所述玻璃管的内或外压力,所述应力被控制。另外,所述应力被控制,从而,检测用于将金属锥芯压入所述玻璃材料软化区域的压力,将检测信号反馈,从而调整所述加热元件所产生的热量,保持压力恒定。另外,通过将所述金属锥芯加热到不小于所述玻璃材料的软化点的温度,所述应力控制被进行。
一支撑管被焊接到至少所述柱形或圆柱形玻璃材料的一端,从而在被所述支撑管支撑的同时,所述玻璃材料被逐渐形成玻璃管。
所述金属锥芯可以具有锥形端以及在所述金属锥芯中部的具有恒定外径的圆柱和柱状部位,在软化玻璃材料与被插入所述玻璃材料内的所述金属锥芯的圆柱或柱状部位接触的同时,所述玻璃材料被冷却到所述玻璃材料的断面形状可以被自身保持的温度。
利用被支撑夹具支撑的所述金属锥芯,所述玻璃材料被逐渐形成为所述玻璃管,所述支撑夹具具有锥形直径部分,也就是随着距所述金属锥芯的距离逐渐增加,所述直径部分的外径逐渐减小。
在所述柱形或圆柱形玻璃材料的端面上设置可以将金属锥芯引导到预定位置的定位凹痕,在金属锥芯邻接在所述定位凹痕上的条件上,所述玻璃材料开始被逐渐形成为玻璃管。
本发明还提供一种设置,其特征在于柱形或圆柱形玻璃材料被围绕所述玻璃材料设置成加热元件加热并软化,金属锥芯被压入所述玻璃材料的软化区域,从而可以将所述玻璃材料逐渐形成所述玻璃管;所述设备包括用于检测将金属锥芯压入所述玻璃材料的压力的压力检测装置以及控制器,在从所述压力检测装置反馈回的检测信号的基础上,所述控制器控制所述加热元件所产生的热量,从而保持压力恒定。


图1是一个解释符合本发明实施例的制造玻璃管方法的视图;图2(a)是一个说明玻璃管内周侧和外周侧上大气压力控制的视图,图2(b)是一个显示空气供应部位的视图。图2(c)是一个显示空气排放部位的视图;图3是一个解释第二实施例的主要部分的视图;图4是一个解释第三实施例的主要部分的视图;图5是一个解释第四实施例的主要部分的视图;图6是一个解释第五实施例的主要部分的视图;图7是一个显示符合第五实施例的玻璃管制造设备的主要部分的视图;图8是一个解释第六实施例的主要部分的视图;图9是一个显示符合第七实施例的具有质量流量控制器的玻璃管制造设备的主要部分的视图;图10(a)和10(b)是用于解释支撑夹具形状的视图;图11是一个介绍金属锥芯和定位凹痕之间邻接的视图,其中图11(a)显示柱状玻璃材料的情况,图11(b)显示圆柱形玻璃材料的情况;图12是一个说明普通的玻璃管制造方法的视图。
具体实施例方式
在本发明中所使用的玻璃材料具体包括根据适合的制造方法被精加工到预定尺寸的柱状玻璃杆、圆柱玻璃管等。本文所使用的术语“穿孔”不仅意味着在柱状玻璃材料上形成孔,而且还增大圆柱形玻璃材料的孔的内径。此外,可以使用高频感应炉、电阻炉等作为加热装置,由于可以被高度精确地控制,优选使用可以更快升温/降温的高频感应炉。对于将金属锥芯压入玻璃材料来说,优选地在金属锥芯被固定在加热装置上的状态下,在将玻璃材料推向金属锥芯的同时使玻璃材料转动。
在本发明中,要求控制玻璃管的内压或外压。也要求进行控制,以便保持玻璃管的内压和外压之间压力差值基本上恒定。
由于玻璃管的温度等于或大于其软化点,当玻璃管被穿孔元件穿孔后,玻璃管容易变形。因而,玻璃管的形状因其自身重量等而畸变,从而在长度方向上难以获得内、外直径的均匀。具体地说,由于玻璃材料从其周围被加热和软化,在穿孔期间,玻璃材料的外周温度设成比玻璃材料中心部位的温度高。在穿孔期间,由于与金属锥芯接触,通过穿孔所形成孔的内周部位被冷却。通常在穿孔后,由于玻璃管外周部位的温度比玻璃管内周部位的温度高,这些因素导致在玻璃管的径向上的温度分布出现大的变化。由于软化玻璃管冷却期间的温度波动,玻璃管的形状容易变形。在多种情况下,必须在穿孔后的又一工序中形成玻璃管。另一方面,由于在玻璃材料的形状稍微改变的部位,所加工的玻璃粘度变化,冷却后残余应力分配。从而在重新加热时,容易出现裂纹。
在本发明中,要求检测将金属锥芯恒速压入玻璃材料内的压力,将检测到的压力信号反馈,从而控制加热元件所产生的热量,以便保持压力恒定。在此情况下,玻璃制造设备包括被设置成围绕柱状或圆柱形玻璃材料的加热元件、金属锥芯、压力检测装置以及控制器。利用加热装置加热玻璃管并使之软化,利用压力检测装置检测将金属锥芯压入玻璃材料内的压力。根据从压力检测装置所反馈的压力信号,控制器控制加热元件所产生的热量,以便保持压力恒定,将金属锥芯压入玻璃材料的软化区域,从而逐渐地将玻璃材料形成玻璃管。可以使用诸如测力传感器的负载传感器检测将金属锥芯压入玻璃材料内的压力。另外,可以根据所耗用的电能检测压力,以便驱动装置驱动金属锥芯或玻璃材料。
在上述玻璃管制造方法和设备中,由于可以根据将金属锥芯压入玻璃材料内的压力判断玻璃材料的软化状态,当压力小时,加热元件所产生的热量可以被减少,以便降低玻璃材料的温度,从而,遏制软化。或者,当压力大时,加热元件所产生的热量可以被增加,以便增加玻璃材料的温度,从而增强软化。因而,在玻璃管制造方法中,可以在适合软化状态和均匀的粘度下,对玻璃材料进行穿孔。因而,被施加在玻璃管的内周侧上的应力可以被控制,具有恒定值。因而,易于解决由于冷却所产生的残余应力的影响在重新加热时容易出现裂纹的问题,或在处理后由于尺寸精度恶化引起由玻璃管制造的光纤纵向特征恶化的问题。
在本发明中,希望将金属锥芯加热到温度等于或大于玻璃材料的软化点。作为一种用于加热金属锥芯的方法,当例如在感应加热炉内被加热的玻璃材料要被主要包含石墨的金属锥芯穿孔时,被设置成围绕玻璃材料的加热元件的厚度可以被减少,从而感应热也可以被施加到金属锥芯上。另一种方案是,用于感应加热炉的高频电流的频率可以被减少到10kHz或更低,从而感应热可以被施加到金属锥芯上。另一种方案是,被设置成围绕玻璃材料和穿孔元件的至少一个加热元件的电阻值可以被设定为任意值,从而感应热可以被施加到金属锥芯上。另一种方案是,被设置成围绕玻璃材料的部分加热元件可以被形成为具有允许磁通量直接作用在金属锥芯上这样的形状(例如具有间隙的形状),从而在金属锥芯上引起感应热。另一种方案是,感应热可以被分配,从而电阻热可以被直接施加在穿孔元件上。
最好,穿孔元件包括石墨并被表面涂层,从而至少金属锥芯与玻璃材料接触的部分包括碳化硅、热解碳和金属碳化物中的任一种。最好包含在金属锥芯内的石墨包括1ppm或更少的杂质离子。
支承管可以被焊接到柱状或圆柱形玻璃材料的一端上,从而,在被支承管支撑的同时,玻璃材料可以被逐渐形成为玻璃管。
如果直接夹持玻璃材料,存在这样的可能性,被夹持部位的表面可能被划痕或污染,或被夹持部位的孔的直径不能被扩大。也就是存在这样的可能性,被夹持部分不能变成无缺陷产品。然而,当夹持支承管时,该缺陷可以被消除。虽然支承管可以仅被焊接到一端,支承管最好被焊接到相反两端的每一端上。当玻璃材料的孔径被扩大时,玻璃材料的粘度是103Pa·s~102Pa·s。最好支承管的粘度被选择在相同的范围内,从而在支承管自身不变形时,金属锥芯可以被压入玻璃材料内。
当支承管的内径被选择为基本上与玻璃材料的扩孔后的玻璃管的内径相等时,如果支承管和玻璃材料彼此焊接,同时彼此同心,当金属锥芯被压入玻璃材料内时,支撑管被用于对金属锥芯进行导向。采用这种方式,金属锥芯的中心轴线可以轻易地被制造成与玻璃材料的中心轴线同心,从而可以轻易地降低偏心。这里所使用和术语“偏心”意味着在垂直于玻璃管的轴线断面内一个表示玻璃管外周的中心和玻璃管内周中心之间距离与玻璃管外径之间比值的数值。
根据需要,可以改变金属锥芯的形状。可以使用这样的金属锥芯,也就是具有锥形端部以及在所述金属锥芯中部具有恒定外径的圆柱或柱状部件,在软化玻璃材料与所述圆柱或柱状部位接触的同时,如果所述玻璃材料被冷却到所述玻璃材料的断面形状(由金属锥芯形成的玻璃管)可以被自身维持的温度,也就是不大于1500℃最好不大于1000℃,当金属锥芯穿过玻璃材料时,阻止在玻璃材料上被形成的孔倒塌或成非圆形。所述金属锥芯上的圆柱或柱状部位的长度根据玻璃材料的冷却程度确定。
金属锥芯最好被诸如支撑杆等的支撑夹具支撑。所述支撑夹具最好具有锥形直径部分,也就是随着距所述金属锥芯的距离逐渐增加,所述直径部分的外径逐渐减小。由于设置具有锥形直径部分的支撑夹具,作用在金属锥芯上的阻力可以完全被所述支撑夹具吸收,可以使力分散,从而阻止力作用在支撑夹具的中心部位上。因而,当玻璃材料的孔的直径被扩大时,由于支撑夹具的挠曲,可以阻止所述孔偏心。
在包括支撑夹具75的轴线的断面内,倾斜直径部分76可以具有被成形为如图10(a)所示直线那样的侧表面或如图10(b)所示那样曲线的侧表面。锥形直径部分76相对于与该支撑夹具轴线平行的直线m的夹角θ可以优选地在0.1~10度的范围内被选择,该范围包括两个端值。在图10(a)中,锥形直径部分76有直线的侧表面,该侧表面的直线和直线m之间的夹角θ最好在上述范围内被选择。当用图10(b)所示的锥形直径部分76有曲线侧表面时,连接直径减小部分的起始端P和视图中直线减小部分端点Q点的直线与直线m之间的夹角θ最好在上述范围内被选择。
支撑夹具75可以被固定在金属锥芯35的两端中的每一端上。
最好在柱形或圆柱形玻璃材料的端面上设置可以将金属锥芯引导到预定位置的定位凹痕,直径扩大元件可以邻接在所述定位凹痕上,从而开始扩大所述玻璃材料上的孔。
例如如图11(a)所示,在柱状玻璃材料3a的出口侧端面上设置定位凹痕81a。另外,如图11(b)所示,在圆柱形玻璃材料3b的出口侧端面上设置定位凹痕81b。玻璃材料3a(3b)的出口侧端面被焊接到支撑管21上。在被支撑杆32支撑的同时,金属锥芯31邻接玻璃材料3a(3b)。金属锥芯31首先邻接定位凹痕81a(81b),从而限制沿垂直于玻璃材料3a(3b)轴线方向的滑动。因而当玻璃材料3a(3b)被穿孔时,阻止在直径上被加工或扩大的孔偏心。最好定位凹痕81a(81b)设成使金属锥芯31可以被定位凹痕81a(81b)导向,以使金属锥芯31的轴线与玻璃材料3a(3b)的轴线同心。
图11(a)所示的定位凹痕81(a)被形成为锥形,锥形顶点位于所述凹痕的底部。玻璃材料3a的穿孔方向Y1被设定为玻璃材料3a的中心轴线方向。定位凹痕81(a)的底部与金属锥芯31的顶点邻接。定位凹痕的开口角度β被选择成比金属锥芯的垂直角α大,由于当定位凹痕81(a)引导时,金属锥芯31并不邻接定位凹痕的开口端圆82,如图11(a)所示,不管玻璃材料3a的出口侧端面的表面条件,金属锥芯的轴线X1可以轻易地与穿孔方向Y1重合。除了定位凹痕81b被形成为截锥体形状之外,图11(b)所示的定位凹痕81(b)可以采用与图11(a)相同的方式对金属锥芯进行导向。
定位凹痕可以被成形为象圆柱形,但是最好选择锥形。所述锥形示例包括截锥体、截多棱锥、球形表面的一部分或展平的球形表面、通过弯曲的母线旋转获得的曲面等。
(第一实施例)第一实施例作为这样一个实施例被介绍,其中玻璃管的内或外压力被控制,从而,当金属锥芯被压入玻璃材料内时,控制被施加在玻璃杆内和外周侧上的应力。
如图1所示,在该实施例中所使用的玻璃管制造设置1具有用于加热玻璃杆3的加热炉40、被设置在加热炉40入口侧上的入口侧底座10、被设置在加热炉40出口上的出口侧底座20。
由玻璃制成的模型管4(支承管)与要被穿入孔的玻璃杆3的一端相连。
能够以所希望的速度在图中左右滑动的第一送料盘11设在入口侧底座10上,第一送料盘11被构造成使得玻璃杆3的穿孔终止端侧可以被第一卡盘12夹持,玻璃杆3可以围绕其纵向轴线转动。
可以采用与第一送料盘11相同的方式在图中左右滑动的第二送料盘21被设置在出口侧底座20上。第二送料盘21的移动速度被适当控制以便与第一送料盘11的移动速度相符。第二送料盘21被构造成使得从而与玻璃杆3的穿孔开始端相连的模型管4的一端可以被第二卡盘22夹持,并且玻璃杆3可以围绕其纵向轴线转动。第二送料盘21的转动可以被控制以便与第一送料盘11的转动同步,或与第一送料盘11的转动不同。
用于固定支撑杆32的固定元件35被设置在出口侧底座20上。支撑杆32被固定在金属锥芯31上并被固定在固定元件35上。支撑杆32具有这样的中心轴线,也就是支撑杆32与金属锥芯31同心。支撑杆32被支撑,从而,支撑杆32的中心轴线与玻璃杆3的中心轴线同心。
金属锥芯31由在玻璃杆3的软化温度下使用但是不能与玻璃杆3化学反应的材料制成。最好金属锥芯31由石墨制成。石墨在可以使玻璃软化的高温下具有良好的稳定性并具有极高的导电性。
虽然包含在普通石墨中杂质数量大约是400ppm,在该实施例中。希望使用高纯度的石墨制造金属锥芯。进一步希望石墨中所述杂质的含量不超过1ppm。因而当金属锥芯31被压入玻璃杆3内时,从金属锥芯31转移到玻璃杆3内的杂质数量可以被减少。
进一步希望金属锥芯31被涂层,从而,至少与玻璃接触的金属锥芯31的部分包含碳化硅(SiC)、热解碳(PyC)和金属碳化物中的任一种。顺便说一句,例如碳化铌(NbC)、碳化钽(TaC)、碳化钛(TiC)和碳化锆(ZrC)可以优选为上述金属碳化物。
作为表面涂层方法,例如上述碳化硅等的涂层可以被形成在金属锥芯31的表面上,从而,可以阻止在高温下氧化,同时改善强度和耐磨性。
此外,表面涂层可以保持金属锥芯31的表面非常纯,阻止杂质从金属锥芯31的内部转移到玻璃杆3内。使用具有高表面硬度的石墨材料也有效地改善了强度和耐磨性。
在该实施例中,加热炉40是高频感应加热类型的炉,当交流电通过线圈42时,加热元件41产生热。加热元件41由石墨制成,其是圆柱形状。玻璃杆3和金属锥芯31之间的邻接部位附近被覆盖。加热元件41产生热量,以便温度等于或高于玻璃的软化点,从而加热玻璃杆3并使其软化。
顺便提一下,当高纯度玻璃材料由VAD方法等生产时,软化点大约是1700℃。
下文介绍用于在形成玻璃管时控制玻璃管的内或外压力的结构。
如图2(a)所示,与玻璃杆3被加热的空间47相通的供气孔45和排气孔46被形成在加热炉40上。供气孔45与图2(b)所示的空气供应部分50相连。排气孔46与图2(c)所示的空气排出部分55相连。最好使用真空泵等进行强制抽吸。
空气供应部分50从用于供应所希望种类气体的气体供应部分51通过质量流量控制器(下文简称为MFC)52向供给管53供应气体。供给管53被连接到空气供给孔45,从而将所希望的气体供应到空间47(沿箭头A1所示方向)。最好所供应的气体对所形成的玻璃管6的质量没有不良影响。例如,可以使用诸如氮、氩等惰性气体。
空气排出部分55将空气47内的气体从与空气排出孔46相连的空气排出管56排出(沿箭头B1所示方向)。压力表57、MFC58和机械阻尼器60沿气流方向按顺序被设置在空气排出部分55内。
压力表57监视从空间47排到空气排出管56的气体压力。被压力表57测量到的压力基本上等于空间47的内压。根据所要求的通过导入管59被导入的过剩的空气数量,MFC58适合地控制从空间47排出到机械阻尼器60的气体流动速度。也就是在机械阻尼器60内流动的气体流动速度是从空间47被排出的气体数量和从MFC58被导入的过剩的空气数量之和。在机械阻尼器60内的流动速度被设定成使得可以获得事先被设定的所希望的空气排出数量。机械阻尼器60具有安全阀61,以便阻止上游侧不正常地受压。
具有上述结构的空气供应部分50的空气排出部分55进一步被构造成使得MFC52和58以及压力表57可以被单独一个控制系统控制。基于压力表57测量到的压力,可以控制MFC52和58,从而控制被供应到空间47的气体数量和从空间47被排出的气体数量,因而可以将空间47的压力控制在所希望的数值。
形成空间47的密封部位43和44分别被设置在加热炉40的入口侧和出口侧。每个密封部位43(44)是一种非接触类型并被构造成使得非常小的间隙被设置在玻璃杆3(被穿孔后的玻璃管6)和密封部位43(44)之间。向玻璃杆3或玻璃管6喷射气体,从而加热炉40和玻璃杆3或玻璃管6之间的间隙被气体密封。为了稳定空间47的大气压力,最好进行控制,从而与感应加热炉40的外部空间的大气压力相比,空间47的大气压力变成正压。
如图2(a)所示,盖23被附着在由第二卡盘22所夹持的模型管4的端部。盖23被构造成被气密地固定在金属锥芯的支撑杆32上,从而盖23不能相对于支撑杆32转动,但是可以相对于模型管4在盖23和模型管4之间通过O型环24的气密状态下转动。
与玻璃管6的孔5相通的空气供给孔25和空气排出孔26被形成在盖23上。空气供给孔25和空气排出孔26分别被连接到结构上与图2(b)所示的空气供给部分50和空气排出部分55的空气供给部分和空气排出部分上。从而流速被控制到一预定值的气体从空气供给孔25被供应到孔5内(沿箭头A2所示方向),而流速被控制到一预定值的气体通过空气排出孔26从孔5内被排出(沿箭头B2所示方向)。
因而,采用与上述空间47相同的方式,孔5的内压可以被控制到一所希望的数值。孔5的内压可以是正压或负压(包括真空)。
在图2(a)所示空气供给部分和空气排出部分被操作的条件下,生产本实施例的玻璃管,利用加热元件41对被送进加热炉40内的玻璃杆3进行加热并使之软化,金属锥芯31被压入玻璃杆3的软化区域内,对玻璃杆3进行穿孔,逐渐形成玻璃管6。
采用这种方式,当金属锥芯31被压入玻璃杆3内时,玻璃管6的内压和外压可以被控制,以分别控制施加在玻璃管6内周侧和外周侧上的应力。因而,刚刚穿孔后,内压和外压作用在玻璃管6上,从而保持玻璃管6的形状。因而可以准确地保持所要求的玻璃管6的内径和外径。
玻璃管6的内压和外压可以被优选地控制成使得内压和外压之间的差值被保持为基本恒定。具体地说,当进行控制,内压和外压之间的大气压力差值不超过13.3Pa,可以轻易地获得在纵向上具有均匀形状的玻璃管6。
用于控制空间47大气压力的控制系统和用于控制孔5大气压力的控制系统可以独立地根据各自被设定的值进行操作,或可以彼此互联地进行操作,从而进行控制,调整内压和外压之间的大气压力差值。
(第二实施例)下文将第二实施例作为这样一种实施例进行介绍,其中当金属锥芯被压入玻璃杆时,通过感应加热将金属锥芯加热到温度等于或大于玻璃杆的软化点,控制作用在玻璃管内周侧和外周侧上的每个应力。
在该实施例中所使用的玻璃管制造设备在结构上基本上与图1所示的玻璃管制造设备相同。下文将结合图3介绍该实施例的主要部分。
如图3所示,在该实施例中所使用的加热炉40被这样形成,从而加热元件14a的厚度t小于普通加热元件的厚度。
在感应加热时,在元件内所产生的感应电流密度在该元件的线圈侧表面最高,所述感应电流密度从线圈侧表面向该元件内侧下降(被称作趋肤效应)。也就是在普通感应加热炉内,仅在加热炉的加热元件内产生感应电流,但是位于加热元件内侧的金属锥芯内不产生感应电流。
在本实施例中,比普通加热元件薄的加热元件41a的使用使得在位于加热元件41a内侧的金属锥芯31内产生感应电流成为可能,从而金属锥芯31被强制感应加热。
根据加热元件的电阻值和相对磁导率以及被施加到线圈上的交流电流频率,确定感应加热的趋肤效应。当在加热元件的线圈侧表面的电流密度被认为是1时,通常电流密度被衰减到36.7%处的距离被定义为电流的穿透深度δ。
穿透深度δ(厘米)可以由等式(1)表示δ=5.030(ρ/μf)(等式1)其中ρ(Ωcm)是加热元件的电阻值,μ是加热元件的相对磁导率,f是交流电流频率。
如等式1所示,感应电流穿入加热元件的深度增加,随着交流电流频率下降,随着加热元件的电阻值增加,所述深度增加。
在普通的感应加热炉内,被施加到线圈内的交流电流频率大约是40kHz。然而在该实施例中,使用大约10kHz或更低的频率。因而感应电流的穿透深度可以被增加,从而感应电流不仅在加热元件41a内产生,而且在金属锥芯31内产生感应电流,从而强制感应加热金属锥芯31。
加热元件41a和金属锥芯31中的至少一个可以被形成为具有所要求的电阻值,从而可以轻易地在穿孔元件31内产生感应电流。当例如加热元件41a由多孔石墨制成时,加热元件41a的电阻值变得很高,因而感应电流的穿透深度增加,从而可以轻易地在金属锥芯31内产生感应电流。
如上所述,在该实施例中,最好有选择地使用减少加热元件41a的厚度t的方法、降低交流电流频率的方法和设定加热元件41a或金属锥芯31的电阻值的方法中的一种或多种方法,从而加热元件41a和金属锥芯31被加热的温度等于或高于玻璃的软化点。例如当减少交流电流频率和减小加热元件41a的厚度t时,金属锥芯31可以被有效地感应加热。
此时,利用非接触式辐射温度计或被直接设置在金属锥芯31上的热电偶测量金属锥芯31的温度。设定加热元件41a的厚度t和被施加在线圈42上的交流电功率,从而当玻璃管6被形成时,玻璃管6的内周侧温度基本上与玻璃管6外周侧的温度相同。
因而,当穿孔后,玻璃管6从软化温度冷却时,由玻璃管6的内周侧与外周侧之间的温度差值引起的内应力差值可以被减少,从而保持玻璃管6的形状不变形。
此外,与普通情况不同,玻璃管6不被金属锥芯冷却,因而,加热效率被改进,从而,使通过线圈42的交流电的电能可以被有效地使用。
(第三实施例)下文介绍第三实施例,采用与第二实施例相同的方式,该实施例将金属锥芯感应加热的温度等于或高于玻璃材料的软化点。
如图4所示,在该实施例中所使用的加热炉40b被这样形成,从而沿玻璃杆3的穿孔方向,加热元件被分成两个元件41b。当金属锥芯31被设置在形成在加热元件41b之间的间隙内时,可使线圈42所产生的磁通量可以被直接作用在金属锥芯31上,因而,金属锥芯31可以被专门感应加热到温度等于或高于所述软化点。
因而,当形成玻璃管6时,玻璃管6内周侧的温度可以基本上等于玻璃管6外周侧的温度,从而与第二实施例采用相同的方式,避免玻璃管6的形状变形。
(第四实施例)下文介绍第四实施例,其中使用电阻加热方法将金属锥芯加热到温度等于或高于玻璃材料的软化点。
如图5所示,该实施例所使用的加热炉具有与第一实施例中所述加热炉40相同的加热玻璃杆3的结构。另一方面,用于使电流通过金属锥芯31的电源与金属锥芯31相连。由于金属锥芯31由上述主要包含碳的材料制成,当电流通过金属锥芯31时,由于电阻加热,焦耳热可以被产生。
这种结构使控制加热炉40的加热元件41以及金属锥芯31中的每个的温度加热成为可能,从而当形成玻璃管6时,玻璃管6内周侧的温度可以基本上等于玻璃管6外周侧的温度。因而,当冷却玻璃管6时,被施加在玻璃管6内周侧和外侧上的应力可以被控制,从而,阻止玻璃管6变形。
(第五实施例)该实施例作为这样一种实施例被介绍,其中金属锥芯被压入玻璃材料内的压力被检测,压力检测信号被反馈回,从而控制加热元件所产生的热量,以保持压力恒定。
图6显示了符合该实施例的玻璃管制造设备1,其中使用高频感应炉作为加热炉40,其是一种使玻璃材料软化和加工的加热装置。加热炉40与控制器7 1相连(箭头G表示携带玻璃杆3的方向)。
如图7所示,测力传感器33作为压力检测装置被安装在被固定在金属锥芯31后端的支撑杆32以及固定台35之间。测力传感器33与控制器71相连。作为抓住作为玻璃材料的玻璃杆3的移动装置的第一送料盘11在入口侧底座10上移动,以便将玻璃材料输送到加热元件41内。作为一种使第一送料盘11移动的机械,一种滚珠丝杠被设置在入口侧底座10上,一球状螺母被形成在第一送料盘11上,从而与该球状螺母螺纹啮合的滚珠丝杠被电动机等转动,从而使第一送料盘11在入口侧底座10上移动。支撑辊48可以被设置在中间位置,以便使玻璃杆3的姿态稳定。每个支撑辊48的位置可以在图中的上下方向和左右方向被调整(这也适用于第六实施例)。
下文将介绍使用上述玻璃管制造设备1的玻璃管制造方法。
当玻璃杆3的端部在加热炉40内被软化时,第一送料盘11向加热炉40移动,以恒速输送玻璃杆3。此时如图7所示,玻璃杆3的端部被向外压(向外周侧)并被金属锥芯31扩大,从而孔5被设置在玻璃杆3的端部。
随着玻璃杆3被携带,诸如N2、Ar等惰性气体沿玻璃杆3的移动方向被供应到加热炉40内(箭头G所示方向)。
通过支撑杆32使用测力传感器33对使玻璃杆3移动并作用在金属锥芯31上的压力进行检测,并将检测结果反馈给控制器71。
当所反馈的压力小于预定压力值,控制器71判断玻璃杆过于软化,减少加热元件41所产生的热量,从而降低加热炉40的温度。另一方面,当所反馈的压力大于预定压力值,控制器71判断玻璃杆3尚未软化,增加加热元件41所产生的热量,从而增加加热炉40的温度。
(第六实施例)图8显示了符合第六实施例的玻璃管制造设备1。在制造设备1中,第一送料盘11被电动机62推进。诸如电流、电压等被供应给电动机62的数值被控制器71检测。此时,当第一送料盘11以恒速将玻璃杆3输送进加热炉40内,被检测电流或电压值小于预定值时,控制器71判断玻璃杆3过分软化,则降低加热炉40的温度(箭头G表示玻璃杆3的移动方向)。
另一方面,当被检测电流或电压值大于预定值时,控制器71判断玻璃杆3尚未软化,则增加加热炉40的温度。采用上述方式,基于第一送料盘11的驱动电动机62的被检测的电流或电压值,玻璃杆3的软化状态可以被检测。因而根据所检测的电流或电压值,通过控制器71,可以执行用于增加或减少加热炉40温度的反馈控制,从而被输送到加热炉40内的玻璃杆3的软化状态可以总是保持恒定。
(第七实施例)如图9所示,符合第七实施例的玻璃管制造设备1具有质量流控制器73。套筒管(muffle tube)72被设置在制造设备1的加热炉31内。玻璃管在套筒管72内被制造。惰性气体(也就是氦等具有高导热性)通过质量流控制器73沿玻璃杆3移动方向(箭头G的方向)被导入套筒管72内,利用与支撑杆32相连的侧力传感器33、和用于驱动第一送料盘11等的电动机62的电流或电压值等,判断套筒管72内玻璃杆3的软化状态。当加热元件41附近的套筒管72的温度需要被稍微增加或降低以便将玻璃杆3的软化状态保持在所希望的状态时,控制被导入套筒管72内惰性气体的流动速率,从而可以控制温度。当与所希望状态相比,玻璃杆3稍微软化时,质量流控制器73被控制,从而增加惰性气体的流速,以便稍微降低套筒管72内的环境温度。当需要稍微增加温度时,利用质量流控制器73,惰性气体和流速被降低,从而有可能稍微增加环境温度。
根据上述第五~第七实施例,由于玻璃杆总是在恒定粘度被穿孔,施加在玻璃管内周上的应力可以被控制,从而阻止残余应力和尺寸的变化。因而,能够避免由下述原因引起的在重新加热时容易出现裂纹的问题,也就是冷却后的残余应力分布或由于加工处理后的尺寸精度变差引起纤维成形后纵向特性的变化。当将玻璃材料输送到加热炉内时,被供应到加热炉和玻璃材料之间的惰性气体数量可以被同时控制,从而在控制的响应和精度方面获得改善。
符合本发明的玻璃管制造设备和方法并不局限于上述实施例,可以进行适合地修改。例如,当设置电动机、球状螺母、滚珠丝杠等用于驱动第一送料盘11,可以设置用于检测被供应给电动机的电流或电压的检测装置,从而,根据所耗用的电能,可以判断压力。
在本发明中,第一~第七实施例可以被组合。当例如第一和第二实施例被组合时,玻璃管的内压和外压以及玻璃管的温度被同时控制,可以更有效地阻止玻璃管的形状变形。
虽然上述实施例是在玻璃杆作为柱状玻璃材料的情况下被说明,符合本发明的制造玻璃管方法也可以被应用在作为圆柱形玻璃材料的玻璃管孔的内径被扩大的情况下。
(工业实用性)利用本发明的制造玻璃管的方法和设备,由于可以阻止玻璃管在刚穿孔后变形,可以获得高质量的玻璃管。可以解决在重新加热时由于冷却后的残余应力分布引起的容易出现裂纹的问题。
符合本发明的被制造的玻璃管最好被用作光纤材料。为了用符合本发明的被制造的玻璃管生产光纤,玻璃管充满形成在玻璃管内表面上的玻璃层,从而获得作为固体产品的且中心部位具有高折射率的光纤预制棒。或者,芯杆被插入玻璃管内,从而获得作为固体产品的光纤预制棒,由此获得的光纤预制棒被用于制造光纤。
权利要求
1.一种制造玻璃管的方法,其中当柱形或圆柱形玻璃材料被围绕所述玻璃材料设置成的加热元件加热并软化,金属锥芯被压入所述玻璃材料的软化区域,从而将所述玻璃材料逐渐形成所述玻璃管时,被施加在所述玻璃管内或外周侧上的应力被控制。
2.如权利要求1所述玻璃管的制造方法,其特征在于通过控制所述玻璃管的内或外压力,所述应力被控制。
3.如权利要求2所述玻璃管的制造方法,其特征在于所述应力被控制成使得所述玻璃管的内压力和外压力之间的压力差值被保持基本上恒定。
4.如权利要求1所述玻璃管的制造方法,其特征在于检测用于将金属锥芯压入所述玻璃材料软化区域的压力,将检测信号反馈,从而调整所述加热元件所产生的热量,保持压力恒定。
5.如权利要求1-4之一所述玻璃管的制造方法,其特征在于通过将所述金属锥芯加热到不小于所述玻璃材料的软化点的温度,所述应力控制被进行。
6.如权利要求1所述玻璃管的制造方法,其特征在于所述金属锥芯被表面涂层,从而,至少所述金属锥芯与所述玻璃材料接触的那部分包含碳化硅、热解碳和金属碳化物中的任一种。
7.如权利要求1-6之一所述玻璃管的制造方法,其特征在于支撑管被焊接到至少所述柱形或圆柱形玻璃材料的一端,从而在被所述支撑管支撑的同时,所述玻璃材料被逐渐形成玻璃管。
8.如权利要求1-7之一所述玻璃管的制造方法,其特征在于所述金属锥芯具有锥形端以及在所述金属锥芯中部的具有恒定外径的圆柱或柱状部位,在软化玻璃材料与被插入所述玻璃材料内的所述金属锥芯的圆柱或柱状部位接触的同时,所述玻璃材料被冷却到所述玻璃材料的断面形状可以被自身维持的温度。
9.如权利要求1-8之一所述玻璃管的制造方法,其特征在于利用被支撑夹具支撑的所述金属锥芯,所述玻璃材料被逐渐形成为所述玻璃管,所述支撑夹具具有锥形直径部分,随着距所述金属锥芯的距离逐渐增加,所述直径部分的外径逐渐减小。
10.如权利要求1-9之一所述玻璃管的制造方法,其特征在于在所述柱形或圆柱形玻璃材料的端面上设置可以将金属锥芯引导到预定位置的定位凹痕,在金属锥芯邻接在所述定位凹痕上的条件下,所述玻璃材料开始被逐渐形成为玻璃管。
11.一种制造玻璃管的设备,其中柱形或圆柱形玻璃材料被围绕所述玻璃材料设置成的加热元件加热并软化,金属锥芯被压入所述玻璃材料的软化区域,从而将所述玻璃材料逐渐形成所述玻璃管;所述设备包括用于检测将金属锥芯压入所述玻璃材料的压力的压力检测装置以及控制器,在从所述压力检测装置反馈回的检测信号的基础上,所述控制器控制所述加热元件所产生的热量,从而保持压力恒定。
全文摘要
当玻璃材料(3)被围绕玻璃材料(3)设置成加热元件(41)加热并软化,金属锥芯(31)被压入玻璃材料(3)的软化区域,从而将玻璃材料(3)逐渐形成玻璃管(6)时,被施加在玻璃管(6)内或外周侧上的应力被控制。例如通过控制玻璃管(6)的内或外压力,所述应力被控制。因而,阻止玻璃管(6)在刚穿孔后变形,从而可以获得高质量的玻璃管(6)。也可以解决由冷却后的残余应力所引起的在重新加热时容易出现的裂纹。
文档编号C03B23/049GK1564789SQ0380123
公开日2005年1月12日 申请日期2003年1月29日 优先权日2002年1月30日
发明者守屋知巳, 大西正志, 相马一之, 平野正晃, 梁田英二, 榎本正 申请人:住友电气工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1