SiAlON陶瓷及其制造方法

文档序号:2011157阅读:796来源:国知局

专利名称::SiAlON陶瓷及其制造方法SiAlON陶资及其制造方法发明背景本发明涉及一种陶瓷材料及其制造方法,该陶乾材料包含硅铝氧氮化物(SiAlON)和稀土成分。SiAlON材料具有许多应用,例如用于各种金属切削应用中的刀头(cuttinginsert)和用于各种磨损应用的磨损件(例如,用于泵的柱塞杆、球头柱塞坯(blank)、井下泵的单向阀坯、衬套、喷砂嘴以及其它磨损和冲击应用)。公开SiAlON材料的代表性专利有Yeckley的美国专利No.4563433和Yeckley的美国专利No.4711644以及YecWey的美国专利No.6693054。一篇讨论SiAlON材料的文章是Izhevskiy等的"ProgressinSiAlONceramics",JournaloftheEuropeanCeramicSociety20(2000),第2275-2295页。SiAlON材料可含有a'(alphaprime)相和卩'(betaprime)相,以及一种或多种其它相,例如玻璃态相和/或结晶相。a'SiAlON相可具有化学式MxSiu,+n)Alm+nOnN^,其中M是U、Ca、Y、Mg或者其它镧系元素,并且其中x的理论最大值是2,n值范围在大于0和小于或等于2.0之间,且m值范围在大于或等于0.9和小于或等于3.5之间。p'SiAlON相可具有化学式Si6_zAlzOzN8.z,其中0<z^4.2。上述Yeckley的美国专利No.6693054公开了一种含a'SiAlON相和p'SiAlON相的SiAlON材料。这种陶瓷材料中添加有镱,因而a'SiAlON相的化学式为YbxSio+n)AlmOnN16m。在某些情况下,具有存在的玻璃态相或者结晶相。此外,Yeckley的美国专利No.6693054公开了一种用不含或者含有少量(即下限等于0重量%且上限等于约1.6重量%的量)p氮化硅的氮化硅起始粉体制造含镱的a-pSiAlON的方法。SiAlON材料可包含a'SiAlON相和p'SiAlON相,以及进一步含有分散在整个SiAlON基体中的碳化硅颗粒。Mehrotra等的美国专利No.4826791中公开了这样的SiAlON材料。Mehrotra等的美国专利No.5370716公开了一种包含p'SiAlON相的高Z-SiAlON材料。这种p'SiAlON相的化学式为Si6.zAlzOzN8_z,其中l<z<3。Chen等的美国专利No.5908798公开了一种具有相对高比例(即大于存在的任何其它相)的a'SiAlON的SiAlON陶瓷。Chen等的这个'798专利列出了下列添加剂Li、Mg、Ca、Y、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu或者它们的混合物。更优选的添加剂是Nd、Yb、Sm、Y、Li或者它们的混合物。Chen等的这个'798专利中的每个实施例似乎都只使用了列表中指定的添加剂中的一种。Chen等的这个'798专利似乎使用了包含约93重量%的p氮化硅和约7重量%的a氮化硅的起始氮化硅粉体。Chen等似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)p氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。Hwang等的美国专利No.5413972公开了一种基本上不含玻璃的a-pSiAlON陶瓷材料,该材料包括在a-SiAlON相中作为阳离子元素M的添加剂,且该材料的化学式为Mx(Si,Al)12(0,N)16,其中0<x<2。这些添加剂是Sr、Ca、Mg、Li、Na、Ce、Y、Nd、Sm、Gd、Dy、Er和Yb。具体的实施例使用钇(Y)和锶(Sr)并将它们以氧化物形式加入到起始粉体混合物中。氮化硅起始粉体由UBE工业公司以名称SNE-10提供。Tien等的专利声称SNE-10的卩/(a+p)比例小于5%。本申请人认为来自UBE工业公司的SNE-10氮化硅粉体包含约2重量。/。的P氮化硅,且余量包括a氮化硅和不可避免的杂质。Hwang等的这个'972专利似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)|5氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。Tien等的美国专利No.6124225公开了一种具有高比例的a'SiAlON的SiAlON陶瓷材料。Tien等列出了下列添加剂:Nd、Sm、Gd、Dy、Yb和Y以及它们的混合物,并且Gd是优选的添加剂。在一个优选实施方案中,起始氮化硅粉体含有约95重量%的a氮化珪。Tien等的这个'225专利似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)p氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶资。Yamada等的美国专利No.5200374公开了一种a-卩SiAlON陶资材料。Yamada等的这个'374专利列出了如下的许多添加剂Ho、Er、Tm、Yb或者Lu,其中的实施例似乎只用了一种添加剂。起始粉体似乎包括a-SiAlON粉体和性质类似于UBE工业公司的SNE-10粉体的氮化硅粉体,其中申请人认为UBE-10氮化硅粉体含有约2重量%的P氮化硅,余量包括a氮化硅和不可避免的杂质。Yamada等的这个'374专利似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)p氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。UBE工业公司的日本专利公开No.5-43333列出了Ho、Er、Tm、Yb和Lu作为SiAlON陶瓷材料的添加剂。实施例似乎只用了一种添加剂。这个日本专利公开似乎没有提到由包括含至少2重量%并且可能更大含量的P氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶资。Shen等的标题为"ReactionsOccurringinPostHeat画Treateda/pSialons:OntheThermalStabilityofa-SiAlON,,的文章(JournaloftheEuropeanCeramicSociety16(1996)第873-883页)列出了单独使用的如下元素Nd、Sm、Dy和Yb。在该文章中指定起始氮化硅粉体是UBESN-EIO。在Shen等的文章中似乎没有关于由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)p氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷的任何教导。Wang等的标题为"PreparationofR-a'p'-Sialons(R=Sm,Gd,Dy,YandYb)byPressurelessSintering"的文章(JournaloftheEuropeanCeramicSociety13(1994)第461-465页)列出了如下元素Sm、Gd、Dy、Y和Yb。实施例似乎表明这些元素是单独使用的,没有彼此结合使用。该类型的氮化硅起始粉体似乎是不为所知的,因为其是实验室用的并含有1.5%的氧。在Wang等的文章中,似乎没有关于由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)卩氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶资的任何教导。Nordberg等的标题为"StabilityandOxidationPropertiesofRE-a陽SialonCeramics(RE-Y、Nd、Sm、Yb),,的文章(JAmericanCeramicSociety86第1461-70页(1998))公开可以使用添加剂形成a-SiAlON。实施例似乎只4吏用了一种稀土元素(例如,Nd、Sm、或者Yb)。该文章描述以UBE、SN-E10为起始氮化硅粉体。似乎没有关于由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)p氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷的任何教导。Tanase等的美国专利No.4547470公开了在SiAlON中单独使用钇或单独使用铒作为添加剂,并且公开了与SiAlON结合使用碳氮化锆形式的锆。起始氮化硅粉体含有90体积%的a氮化硅。Tanase等的这个'470专利似乎没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)p氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。Hitachi金属有限公司的日本专利No.2988966公开了一种a-pSiAlON,其包括选自Y、Er和Yb中的元素。只有一个实施例使用了两种元素(Er和Yb)。起始氮化硅粉体具有等于93%的a转化率,因而其等同于含有7重量%的p氮化硅的粉体。日本专利公开4002664A(基于英文摘要)公开了一种SiAlON陶瓷,该陶瓷可利用与Hf或者Zr—起使用的如下元素Ho、Er、Tm、Yb或者Lu。该日本文献没有提到由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量%的量)p氮化硅的氮化硅起始粉体的起始粉体混合物制成的SiAlON陶瓷。尽管现有的SiAlON陶瓷体(例如刀头)表现出可以接受的性能(例如,硬度、韧性、抗热震性),然而仍希望提供具有刀头用途的改良SiAlON材料,其表现出改良的金属切削性能,包括硬度、杨氏模量、韧性、热导率以及抗热震性。对SiAlON磨损件也是如此,因为尽管现有的SiAlON磨损件具有可以接受的性能(例如,硬度、杨氏模量、韧性、热导率以及抗热震性),然而仍希望提供改良的SiAION材料,该材料能用作表现出改良性能的磨损件。在这点上,当烧结粉体混合物以制造SiAION材料时,在a'SiAlON晶粒和卩'SiAlON晶粒之间的晶界中会形成结晶相。晶界中结晶相含量的增加会导致SiAION材料断裂韧性下降。因此,希望提供在晶界中形成的(一种或多种)结晶相的量最少的SiAlON材料。添加剂形成液相时的温度会影响SiAION体的致密化。为了改善SiAION体的致密化,使用在相对较低的温度下形成液相的添加剂是有利的。同样的,使用在烧结时和在整个烧结循环内形成并保持晶粒间液相的(一种或多种)添加剂(即形成非结合液相的添加剂)对a'SiAlON相的形成是有利的。在这种情况下,该形成非结合液相的添加剂基本上不会成为a'SiAlON相的一部分,即在a'SiAlON相中基本上不存在可检测量的形成非结合液相的添加剂。更具体地,这意味着该情况下a'SiAlON相的晶粒是足够大的(即,直径在大于或者等于约2微米的量级),通过使用能量色散谦-扫描电子显微镜(EDS/SEM)技术,在a'SiAlON相的晶粒中检测不到这些形成非结合液相的添加剂的存在。在a'SiAlON相中不存在任何可检测量的形成非结合液相的添加剂的结果是液相将在整个烧结循环内得以保持。通过在烧结循环期间保持液相,形成的a'SiAlON相的量增加。本申请人认为提供具有增加的a'SiAlON相含量的SiAION陶瓷体是所希望的。表现出较高硬度的SiAION陶瓷材料具有用在特定应用中作为刀头和磨损件的优点。一般地,具有较细颗粒尺寸的SiAION陶瓷材料导致较高的硬度。因此,希望提供具有较细的晶粒尺寸从而具有较高硬度的SiAlON陶资材料。发明简述在一种形式中,本发明是一种由起始粉体混合物制成的SiAlON陶瓷体,该起始粉体混合物包括氮化硅粉体和向该SiAlON陶资体提供铝、氧、氮、和至少两种选定稀土元素的一种或多种粉体,其中所述选定稀土元素选自下面三组稀土元素的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。该SiAlON陶资体包括含a'SiAlON相和p'SiAlON相的两相复合物,其中a'SiAlON相含有一种或多种选定的稀土元素(不包括La和Ce)。氮化硅粉体占起始粉体混合物的至少约70重量%,其中氮化硅粉体中P-氮化硅含量的下限等于氮化硅粉体的0重量V。且上限等于约1.6重量%。在另一种形式中,本发明是一种由起始粉体混合物制成的SiAlON陶瓷体,该起始粉体混合物包括氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、和至少两种选定稀土元素的一种或多种粉体,其中所述稀土元素选自下面三组稀土元素的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。该SiAlON陶瓷体包括含a'SiAlON相和p'SiAlON相的两相复合物。a'SiAlON相含有一种或多种选定的稀土元素(不包括La和Ce)。该陶瓷体具有落在图7中的点A、B、C和D限定的四边形(trapezoid)界定的区域内的组成。氮化珪粉体占起始粉体混合物的至少约70重量%。氮化硅粉体中P-氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。在又一种形式中,本发明是一种制造包括含a'SiAlON相和P'SiAlON相的两相复合物的SiAlON陶瓷体的方法,该方法包括步骤提供起始粉体,该起始粉体包含至少约70重量%的氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、和至少两种选定稀土元素的一种或多种粉体,其中所述稀土元素选自下面三组稀土元素的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu;和固结所述起始粉体混合物以形成包括含a'SiAlON相和卩'SiAlON相的两相复合物的陶瓷体,且a'SiAlON相含有一种或多种选定的稀土元素(不包括La和Ce),且该陶瓷体具有落在图7中的点A、B、C和D限定的四边形界定的区域内的组成。再一种形式中,本发明是一种由起始粉体混合物制成的SiAlON陶瓷体,该起始粉体混合物包括氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、形成液相的元素、和至少一种选定稀土元素的一种或多种粉体。在一种选定稀土元素的情况下,所述选定稀土元素选自任何下面的组中,其中第I组包括Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。在多种选定稀土元素的情况下,所述稀土元素选自下面三组稀土元素的至少两组中,其中第IA组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。该SiAlON陶瓷体包括含a'SiAlON相和p'SiAlON相的两相复合物,其中a'SiAlON相含有一种或多种选定的稀土元素(不包括La和Ce)。氮化硅粉体占起始粉体混合物的至少约70重量%,氮化硅粉体中P-氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。附图简述下面是附图的简述,其构成本专利申请的一部分图l是第一个具体实施方案的无涂层陶瓷刀头的等轴视图;图2是第二个具体实施方案的陶瓷刀头的等轴视图,其中该刀头具有涂层并且该涂层的一部分被除去以露出基材;图3是显示只含镱作为稀土添加剂的SiAlON材料(下文描述的比较例ab7(39)7)的显微组织的光学显微照片,其中工艺包括带式烧结-热等静压(HIP)技术,并且该光学显微照片的标尺是30微米;图4是显示含镱和镧作为稀土添加剂的SiAlON材料(下文所描述的組成2650C(组成标识ab7(37)7))的显微组织的光学显微照片,其中制造该陶瓷的工艺包括下文所描述的带式烧结-热等静压技术,并且该光学显微照片的标尺是30微米;图5是显示含镱和镧的SiAlON材料(下文所描述的组成2650C(组成标识ab7(37)7))的显微组织的光学显微照片,其中制造该陶瓷的工艺包括下文所描述的分批烧结-热等静压技术,并且该光学显微照片的标尺是30微米;图6是对于用字母W、X、Y和Z表示的四种组成,描绘起始粉体混合物中的镱含量(按重量百分比)与两相复合物(即,a'SiAlON相和卩'SiAlON相)中的a'SiAlON相含量(按重量百分比)之间的关系的坐标图;以及图7是描绘陶瓷体中的铝当量百分比与氧当量百分比之间的关系的坐标图,其中由点A、B、C和D限定的区域显示了目标组成区域。发明详述SiAlON陶瓷材料已经在多种金属切削应用中用作刀头。SiAlON陶瓷材料还已经在多种磨损应用中用作磨损件,并在多种沖击应用中用作沖击件。本发明的SiAlON陶瓷材料可以用作刀头、磨损件、冲击件以及其中希望坚硬致密的陶瓷材料性能的任何其它制品。本发明涉及陶瓷材料,以及制造这种陶瓷材料的方法,其中具体的陶瓷是硅铝氧氮化物(SiAlON)陶瓷材料。更具体地,本发明涉及这样的SiAlON材料该材料在起始粉体混合物中包含在烧结期间不会进入到a-SiAlON结构中的形成非结合液相的添加剂(该添加剂可以是选定的稀土元素(例如镧或铈)),以及至少一种将进入a-SiAlON结构中的稀土元素。在烧结该粉体混合物时,形成非结合液相的添加剂和这种稀土添加剂各自形成液相。在烧结过程期间,基本上没有有效部分(即,基本上没有可检测量)的形成非结合液相的添加剂构成a'SiAlON相(或者P'SiAlON相)的一部分,因此该液相在整个烧结过程期间得以保持。更具体地,如其化学式所示,p'SiAlON相不含任何(一种或多种)形成非结合液相的添加剂。对于a'SiAlON相,在a'SiAlON相中基本上不存在可检测量的(一种或多种)形成非结合液相的添加剂,这意味着使用EDS/SEM技术对直径大于或者等于约2微米的a'SiAlON相的晶粒进行分析检测不到任何(一种或多种)形成非结合液相的添加剂的存在。液相的存在促进(即增加)a'SiAlON相的形成,其中a'SiAlON相包括其中的这种稀土元素,即进入a-SiAlON结构中的稀土元素。这些添加剂可包含如下文所述的许多化合物或者元素(包括选定的稀土元素)。构成a'SiAlON相一部分的具体稀土元素也在下文进行讨论。对于含a'SiAlON相和卩'SiAlON相的SiAlON陶瓷材料,在本发明的该方面,起始粉体混合物含有至少两种选定的稀土元素。该选定稀土元素选自下面三组稀土元素中的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。a'SiAlON相的化学式为(RE)xSi12.(m+l0Alm+nOnN16-n,其中RE是上述的至少一种选定稀土元素(不包括La和Ce)的成分(contribution)。在本发明的这个方面,申请人:倾向认为这些稀土元素之一(例如镧或者铈,其可被认为是形成非结合液相的稀土元素)在烧结过程期间和整个烧结过程中形成液相。形成液相的稀土元素不会构成a'SiAlON相的一部分,因而在a'SiAlON相中基本上不存在可检测量的形成非结合液相的稀土元素。通过x射线衍射技术,a'SiAlON相中的x值在等于约0.10的下限和等于约0.45的上限之间。m的值等于x值的三倍。a'SiAlON相通常包含等轴晶粒。尽管上面的讨论提到了两种稀土元素,然而应当清楚的是起始粉体混合物中可以包括三种或更多种稀土元素来制造SiAlON陶瓷体。对于含有a'SiAlON相和P'SiAlON相的SiAlON陶瓷材料,在本发明的该方面,该SiAlON陶瓷材料含有并非稀土元素的形成非结合液相的添加剂,和至少一种稀土元素(且可能为两种或者更多种稀土元素),a'相的化学式为(RE)xSi^m+n)AUnOJ^",其中RE是a'SiAlON相中(一种或多种)稀土元素的成分。根据下面的参数选择该(一种或多种)稀土元素(a)在一种选定稀土元素的情况下,该选定稀土元素选自任何下面的组中,其中第I组包括Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu;(b)在多种选定稀土元素的情况下,这些稀土元素选自下面三組稀土元素中的至少两组中,其中第IA组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。本申请人希望x、m和n的值保持与上文所述基本相同。对于这种陶瓷,a'SiAlON相通常具有等轴晶粒。对于这些陶资体中的任意一种,P'SiAlON相的化学式为Si"AlzOL2的优选值的范围在大于.3和小于1.5之间,其中不同的金属切削应用具有不同的"z"值优选范围。例如,对于将本发明用作切具以机加工铸铁的应用,z的优选值的范围在大于.3和小于.6之间。作为另一个例子,对于将本发明用作切具以机加工高温合金(如Inconel718)的应用,z的优选值的范围在大于.7和小于1.5之间。P'SiAlON相通常包含伸长的晶粒。起始粉体混合物包括的氮化硅起始粉体不含或者含有少量(即下限等于0重量且上限等于约l.6重量%的量)的P氮化硅是重要的。最优选使用P氮化硅含量基本为0重量%的氮化硅起始粉体。这里所讨论的SiAlON陶瓷材料还含有一种或多种另外的相,包括晶粒间相。该晶粒间相可包含玻璃态相,且有时还可能存在晶粒间结晶相。玻璃态相一般是含有稀土元素、硅、氧、铝和氮的非晶态相。参照附图,图1说明了一种RNG-T型刀头,总体上表示为20。刀头20具有通常为圆柱形的侧表面(flanksurface)22和一对通常为圆形的彼此相对的前刀面(rakesurface)24。侧表面22与前刀面24相交构成圆形切削刃26。切削刃26具有斜面(bevel)。刀头20包含本发明的SiAlON陶瓷材料。对于构成刀头20的SiAlON陶瓷材料,这种SiAlON陶资材料是作为本发明主题的陶瓷类型。显然,本发明的SiAlON陶资具有不同方面,并且该陶瓷材料可以是这些方面中的任何一种。此外,尽管本申请人:不希望被优选应用限制,然而这种陶资刀头的一种优选应用是用于铸铁级工件材料的高速车削(例如,等于或者大于约1500英尺每分钟的速度)。图2说明了刀头的第二个具体实施方案,该刀头总体上表示为30。刀头30具有基材32和涂层34。刀头30通常具有圆筒形的侧表面36和一对彼此相对的通常为圆形的前刀面38。侧表面36与前刀面38相交形成圆形切削刃40。每个切削刃40具有斜面。基材32包含本发明的SiAlON材料。基材32的材料可以与无涂层的刀头20的材料相同。制造图2中的陶瓷基材的工艺与用于制造图1中的陶瓷材料的工艺基本相同。在这点上,压制的粉体混合物一般要么被分批烧结要么被带式烧结。烧结后的基材任选地进行热等静压(HIP)处理。也可以使用压力烧结工艺来使陶瓷材料致密化。下面给出某些工艺的细节。该涂层可以包括通过已知技术施用的一层或多层的涂层体系,该已知技术包括化学气相淀积(CVD)和物理气相淀积(PVD)。涂层材料可以包括CVD施用的氧化铝,施用厚度为l-10微米,或者更优选施用厚度为3-5微米。例如,涂层材料可以包括PVD施用的钛铝氮化物。涂层材料可以包括多层涂层体系,其中优选与基材相邻的层包含氧化铝。如果钛铝氮化物涂层具有富铝的组成则其是优选的。下面描述本发明的一些实施例。下面讨论的实施例包括含镱和镧的SiAlON陶瓷材料。镱是本文所述第III组稀土元素中的一种,而镧是本文所述的第I组稀土元素中的一种。尽管这些实施例含有镱和镧,然而本申请人并不意图通过这些实施例的组成来限制本发明的范围。在a'-p'SiAlON陶瓷体的制造中,一个有利的特征是控制(或者至少进行一些控制)所得陶瓷体的组成和结晶相含量的能力。例如,本申请人认为陶资中的a'SiAlON相的含量会影响陶瓷的性能,特别是可以使该陶瓷非常好地用作无涂层陶瓷刀头或者用作带涂层陶资刀头基材以及良好磨损件的那些性能。下面描述本申请人对为何可以(至少在某些程度上)控制这种SiAlON陶瓷体中的a'SiAlON含量的理解。然而,本申请人并不意图通过关于本申请人理解的下述讨论进行限制。本申请人还认为,在烧结时和烧结过程中形成硅酸盐液相但不构成a'SiAlON相的一部分的其它添加剂(即非结合的添加剂)还应当提供与镧添加产生的结果一致的有利结果。在这点上,典型的非结合添加剂包括BaO、MgO、SrO和Sc203(这些非结合添加剂是良好的致密化添加剂,并且它们不会进入a-SiAlON相),其中这些添加剂的加入量的范围是从等于起始粉体混合物的约0.1重量%的下限到等于起始粉体混合物的约1.0重量%的上限。在本发明的这个方面,起始粉体混合物包括在烧结时形成硅酸盐液相的添加剂,其中该添加剂不形成a'SiAlON相的一部分,即形成非结合液相的添加剂。液相的持续存在促进了a'SiAlON相的形成,从而产生具有增加的a'SiAlON相含量的SiAlON陶瓷。尽管本申请人不希望被据认为在本发明中起作用的下述理论所限制,然而本申请人认为通过上面所选择的参数而获得优点的原因在于,选自不同的笫I、11和/或III组(如上所述)中的所述两种或者更多种稀土元素不会形成固溶体。这些组中的元素的离子半径随这些稀土元素的系列而降低,并且当这些稀土元素的离子半径之间的差异变得更大时,这些元素不进入相同晶体结构的趋势增加。这意味着在致密化和从烧结温度冷却期间,由于选自第I、II和/或III组中的稀土元素试图在晶粒间区域中结晶,因而结晶速率减慢。本申请人还认为,改良的性能得到提高的原因在于,SiAlON陶瓷材料是由包括不含或者含少量(即下限等于0重量%且上限等于约1.6重量。/。的量)P氮化硅的氮化硅起始粉体的起始粉体混合物制成的。在这点上,尽管本申请人不希望被任何具体的理论所限制,但本申请人认为P氮化硅颗粒是p'SiAlON晶粒成核和生长的晶种。当P氮化硅颗粒的数目增加时,p'SiAlON晶粒彼此的碰撞更早(sooner),由此限制了高纵横比的p'SiAlON晶粒的形成。另外,当p氮化硅颗粒的数目增加时,a'SiAlON晶粒的含量下降。在起始粉体混合物中使用较少的P氮化硅颗粒,会导致在烧结期间卩'SiAlON晶粒生长到a'SiAlON基体中的成核位置的数目有限。这导致卩'SiAlON晶粒具有较高的纵横比,这引起a'SiAlON相基体的韧化。在Yeckley的美国专利No.6693054中也可以看到这种解释,该专利被转让给本专利申请的受让人。如下所述,这些实施例的起始氮化硅粉体不包含任何p氮化硅。然而,这些实施例使用不含任何p氮化硅的氮化硅起始粉体的事实并不意图限制本发明的范围。如这里所述,氮化硅粉体中的p氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。现在来看具体的实施例,表1给出了批次2651A到2651D和批次2650C到2650D的起始粉体组成(按全部起始粉体混合物的重量百分比)。每一批次的起始粉体混合物包含的氮化硅粉体中,起始氮化硅粉体中的|5-氮化硅粉体含量是0重量%,且余量(除杂质以外)包含a-氮化硅。表l对于批次2651A-2651D和2650C-2650D起始粉体混合物中起始粉体的组成(按重量百分比计)糸匕次/组成标识氮化硅[UBESNE-03氮化铝[StarckA级J氧化铝CcraloxHPA-0.5氧化镱(镱氧化物)Molycorp氧化镧(镧氧化物)Molycorpl2651A/abl3(37)1480.805.205.806.971.012651B/abl3(37)1480.805.205.805,742.032651C/ab24(32)ll71.0210.2512.705.260.772651D/ab24(32)ll71.1710.2512.704.341.542650C/ab7(37)988.554.002.304.510.642650D/ab7(37)988.554.002.303.871.28起始粉体简述如下。氮化硅粉体由UBE工业公司制造,并以SNE03名称销售。这种氮化硅粉体不含任何P氮化硅,但是相反地,其包含大约100%的a氮化硅(除杂质以外)。氮化铝起始粉体由HermanC.StarckofNewYork,NewYork(美国)以名称GradeA提供。氧化铝起始粉体由SasolNorthAmerica公司,CeraloxDivisionofTucson,Arizona(美国)以名称HPA國0.5(其中包含有意加入的0.5重量%的氧化镁)提供。氧化镱起始粉体和氧化镧起始粉体由MolycorpCorporationofMountainPass,California(美国)提供。对于制造该陶瓷材料的方法,对于表1中给出的上述批次中的每一批次,使用a'SiAlON-p'SiAlON媒质将起始粉体混合物与异丙醇一起研磨约8小时到约16小时的时间以形成浆料。在研磨完成后,将浆料倒出经过400目的滤网,然后真空干燥形成干燥粉体。然后用流化床工艺将干燥粉体干粉研磨(fitzmilled)和粒化(pellitized)。在流化过程期间加入松香和Carbowax400作为粘合剂。然后将粒化的材料(干燥粉体和粘合剂材料)干压成密度在约2到约2.15g/cn^之间的生坯体。然后通过最大温度约875°C的空气烧尽循环除去该粘合剂。然后以下迷许多方式之一对坯体进行烧结;也就是说,坯体要么进行带式烧结要么进行分批烧结。对于分批烧结,工艺包括将坯体放在石墨盒中。将坯体埋在80重量%氮化硅-20重量%氮化硼的粉体混合物中。在等于1825。C的温度下于一种氮气氛中烧结坯体,持续时间等于60分钟。对于带式烧结工艺,将坯体装入尺寸为4英寸x8英寸xl.:i5英寸的BN(氮化硼)烧箱(sagger)中。对于RNG43和CNGA433型刀头,每个盒中有三层坯体且每层有55个坯体。将BN烧箱叠成两个高并放到连续烧结炉的输送带上。该炉具有4个独立控制的加热区,其中每个加热区长12英寸。加热的升温速率是每分钟约1S0。C。将加热区保持在下述的温度下第一加热区处在等于约1550。C的温度下,第二加热区处在等于约1650。C的温度下,第三加热区保持在等于约1765。C的温度下,且第四加热区保持在等于约1765。C的温度下。坯体在每个加热区内停留约30分钟。所得到的物体即是带式烧结的陶瓷体。除这些实施例中使用的炉具有4个加热区之外,该炉与标题为HIGHTEMPERATUREBELTFURNACEAPPARATUSANDMETHODOFUSINGTHESAME的Miller,Jr.的美国专利No.5648042中所述的炉一致。对于一般的带式烧结,Wittmer等的"EconomicComparisonofContinuousandBatchSinteringofSiliconNitride",AmericanCeramicSocietyBulletin,第72巻,第6期(1993年),第129-137页;Wittmer等的"ComparisonofContinuousSinteringtoBatchSinteringofSi3N4,,,CeramicBulletin,第70巻,第9期(1991年),第1519-1527页;以及Wittmer等的"ContinuousSinteringofSi3N4inaControlledAtmosphereBeltFurnace"中公开了带式炉在烧结坯体中的应用。国际申请日为1999年6月23日的关于CERAMICANDPROCESSFORTHECONTINUOUSSINTERINGTHEREOF的已公开PCT专利申请No.PCT/US99/14231公开了在带式炉中的陶瓷连续烧结,其中烧结产品包括a'SiAlON相和卩'SiAlON相。现在将描述下表中指出的具体工艺。工艺E572和工艺E573每个都包括按上述参数的分批烧结工艺;即,将坯体放在石墨盒中,其中将坯体埋在80重量%氮化硅-20重量%氮化硼的粉体混合物中。然后,在等于1825。C的温度下在一种氮气氛中烧结坯体,持续时间等于60分钟。工艺BSWK1004包括按上文所述的带式烧结工艺;即,该炉具有4个温区,其中这些温区具有如下温度第一加热区处在等于约1550。C的温度下,第二加热区处在等于约1650。C的温度下,第三加热区保持在等于约1765。C的温度下,且第四加热区保持在等于约1765。C的温度下。坯体在每个加热区中停留约30分钟。工艺Kz533、工艺Kz534和工艺Kz535每个都包括热等静压(HIP)循环,其包括在等于约10000磅每平方英寸(psi)到约20000psi之间的气压下,在等于1800。C的温度下进行压制30分钟。这些HIP循环在烧结后进行,因此可以对烧结的基材进行这些HIP循环,其中该基材可以是分批烧结的或者带式烧结的。现在来看这些实施例的特定组成的性能,下表2给出了表1中列出的SiAlON组成的密度(其中对于大多数实施例)。表2给出了两个密度测量结果。然而在某些情况下,只给出一个密度测量结果,并且用短横线表示缺少的第二个测量结果。密度以克每立方厘米(g/cm3)为单位给出。按照与实施例一致命名的工艺对表2中列出的每个实施例进行处理。表2<table>tableseeoriginaldocumentpage22</column></row><table>表3给出了在表1中给出的SiAlON组成中存在的相。表3还给出了用来制造该SiAlON陶瓷体的具体工艺。按下文所述来确定下表3中给出的相。对每种结晶相(即Yb4SiA108N结晶相和SiAl50结晶相)所给出的值是特定结晶相的峰与主峰(即P'SiAlON相的峰)比较的相对峰强度。对于a'-SiAlON相的重量百分比的确定,按如下关系计算a'-SiAlON相的重量百分比ot'-SiAlON的重量百分比=(1.72Ia'-SLAION÷(1.72Ia'-SIAION)+Ibetla'-SiAlON+0.23ISi+0.48ISiC))xl00%相似地,betla'-SiAlON相的重量百分比按如下关系进行计算P'國SiAlON的重量百分比=(Ip'-SiA,ON+(1.72I,-SiAION+IrsiA10N+0.23ISi+0.48ISiC))xl00%对于上述关系,存在下述Ia'-siA隨=a'-SiAlON的(201)反射的实测x射线衍射Ip'-siA10N-卩'-SiAlON的(200)反射的实测x射线衍射强度Isi-硅金属的(111)反射的实测x射线衍射强度Isic-碳化硅(6h)的(015)反射的实测x射线衍射强度这种方法采纳自下述文章中所述的方法Z.Mencik,M.A.Short和R.C.Peters的"QuantitativePhaseAnalysisofSyntheticSiliconNitridebyX-rayDiffraction",AdvancesinX-rayAnalysis,第23巻,1979年,第375-379页。使用在45KV和40MA下操作的Bragg-Brentano聚焦光学衍射仪测量这些衍射x射线的强度。入射x射线光学系统包括1/2度发散狹缝和l-度抗散射狹缝。接收光学系统包括0.15mm的接收狭缝;曲面石墨单色仪和密封式检测器。以步进模式从10度到90度的2e采集衍射数据,并使用计算方法进行分析。首先通过拟合多项式背景函数对采集到的衍射数据进行修正。使用线形拟合技术对背景修正过的数据进行分析,以确定所述衍射反射的峰位置和强度。对于Yb4SiA108N结晶相和SiAlsO结晶相的相对强度的确定,Yb4SiA108N结晶相和SiAl50结晶相的相对强度的计算如下Yb4SiA108N相的相对强度=SiAlsO相的相对强度-IsiAI50+I最高对于如上关系,存在下述Iyb4SiAio8N=Yb4SiA108N的(211)反射的实测x射线衍射强度ISiA150=SiAlsO的(201)反射的实测x射线衍射强度I最s-检测到的最高峰(一般是P'-SiAlON)的实测x射线强度该衍射配置与用于确定a'-SiAlON和p'-SiAlON的重量百分比的衍射配置相同。在那些含有镧的组成中,镧被包含在非晶态相之中。在那些含有铈的组成中,铈被包含在非晶态相之中。表3批次2651A-2651D和2650C-2650D中的SiAlON组成中存在的相<table>tableseeoriginaldocumentpage24</column></row><table>表4给出表1中列出的SiAlON组成中存在的相和物理性能。表4给出了a'SiAION相(按两相复合物即a'SiAION相和p'SiAlON相的重量百分比),晶间相Yb4SiA108N相的相对强度(R.I.)和晶间相SiAl502N5的相对强度(R丄)。根据上面所述的技术确定a'SiAION的含量。根据上面所述的技术确定每种结晶相的相对强度(R丄)。表4还在标题"烧结HIP"下给出了用来制造SiAlON陶瓷体所使用的工艺。对于物理性能的测量,使用18.5千克的载荷测量维氏硬度(Hvn),并以GPa给出。利用Palmqvist压痕技术在抛光表面上并使用18.5kg的载荷在维氏压痕仪上测量断裂韧性(KIC),依据Evans和Charles的文章"FractureToughnessDeterminationbyIndentation",J,AmericanCeramicSociety,第59巻,第7-8期,第371-372页。表4<table>tableseeoriginaldocumentpage25</column></row><table>图3是显示现有技术的只含有镱作为添加剂的SiAlON陶瓷材料(ab8378)的显微组织的光学显微照片。起始粉体混合物的组成如下88.25重量%的氮化硅(0重量%的氮化硅粉体包含P氮化硅)、4.0重量%的氮化铝、2.6重量%的氧化铝、以及5.15的氧化镱。将该起始粉体混合物研磨并压制成生坯体,根据下面的参数对该生坯体进行带式烧结和热等静压。对于带式烧结,存在保持在如下温度的4个加热区第一加热区处在等于约1550。C的温度下,第二加热区处在等于约1650。C的温度下,第三加热区保持在等于约1765。C的温度下,且第四加热区保持在等于约1765。C的温度下。坯体在每个加热区中停留约30分钟。在等于约10000磅每平方英寸(psi)和约20000psi之间的气压下,在等于1800。C的温度下对带式烧结过的陶瓷体进行热等静压持续30分钟。对于图3所示的陶资体的显微组织,暗色晶粒是p'SiAlON相的晶粒,中等灰色的晶粒是a'SiAION相的晶粒,而明亮的相是晶粒间相。应注意的是暗色晶粒具有一定的纵横比。图4是显示包含上述实施例2650C(组成标识ab7(37)9)的本发明SiAlON陶瓷材料的显微组织的光学显微照片。在图4中,暗色晶粒是P'SiAlON相的晶粒,中等灰色的晶粒是a'SiAlON相的晶粒,明亮的相是晶粒间相。该陶瓷体由上述带式烧结工艺和上述热等静压工艺制造。图4所示的显微组织揭示了该a'SiAlON相的晶粒尺寸小于图3陶瓷体中的a'SiAlON相的晶粒尺寸。图5是显示包含上述实施例2650C的本发明SiAlON陶瓷材料的显微組织的光学显微照片。在图5中,暗色晶粒是p'SiAlON相的晶粒,中等灰色的晶粒是a'SiAlON相的晶粒,明亮的相是晶粒间相。该陶瓷体由上述分批烧结工艺和上述热等静压工艺制造。图5所示的显微组织揭示了该a'SiAlON相的晶粒尺寸小于图4陶瓷体中的a'SiAlON相的晶粒尺寸。总的来说,这些光学显微照片的审核表明,较细晶粒的显微组织对于磨损应用是优选的,并且与不具有细晶粒显微组织的材料相比,其可望表现出更高的强度。本申请人认为起始氮化硅粉体中的P氮化硅的量会影响刚烧结状态的显微组织中存在的a'SiA10N相的量。上面提到的Yeckley的美国专利No.6693054中对这方面进行了更详细的描述。更具体地,当起始氮化硅粉体中的(J氮化硅量增加时,刚烧结状态的显微组织中的a'SiAlON相的量减少。本申请人进一步认为当氮化硅起始粉体不含或者含有少量(即下限等于0重量%且上限等于约1.6重量%的量)的p氮化硅时,可获得具有较高韧性的SiAlON陶资体。对于批次2651A-2651D和2650C-2650D中的每一批,起始氮化硅粉体混合物中的P氮化硅的含量都为0重量%,而起始氮化硅粉体中的a氮化硅的含量是约100重量%(注意可能存在一些杂质)。可以按两种方式之一来控制起始粉体混合物中的p氮化硅的量。一种方式是将预定量的两种或者更多种氮化硅粉体混合,其中每种粉体的a和p含量是已知的,由此得到已知p含量的氮化硅粉体。另一种方式是取100%的a氮化硅粉体,然后向其加入选定量的100%的p氮化硅粉体,由此得到已知p含量的氮化硅粉体。后一种方式有利于控制P氮化硅组分的颗粒尺寸。对于如上文所述的起始氮化硅粉体中的p氮化硅含量的影响,尽管本申请人不希望受被任何具体的理论所限制,然而本申请人认为p氮化硅颗粒是p'SiAlON晶粒成核和生长的晶种。当p氮化硅颗粒的数目增加时,卩'SiAlON晶粒彼此的碰撞更早,由此限制了高纵横比的P'SiAlON晶粒的形成。另外,当P氮化硅颗粒的数目增加时,a'SiAlON晶粒的含量减少。在起始粉体混合物中使用较少的P氮化硅颗粒,会导致在烧结期间P'SiAlON晶粒生长到a'SiAlON基体中的成核位置的数量有限。这导致卩'SiAlON晶粒具有较高的纵横比,这引起a'SiAION相基体的軔化。本申请人认为镧(优选的以氧化镧的形式加入)形成液相,并且还不会变为a'SiAlON相的一部分。换而言之,化学式为(RE)xSi12-(m+n)Alm+nOnN16-n的a'SiAlON基本上不含任何可检测量的镧,其中RE是稀土成分(其可以是不包括La和Ce的一种或者多种稀土的作用项),因此该化学式中的RE基本上不包括镧。由于镧不会形成a'SiAlON相(或者至少在a'SiAlON相中基本上不存在可检测量的镧),因此在烧结温度下和烧结过程期间存在液相,因为a'SiAlON相(或者卩'SiAlON相)不会消耗液相中包含的镧。本申请人认为在烧结过程的早期,液相的存在可促进a'SiAlON相的形成,其中其它稀土元素(优选以其氧化物的形式加入到起始粉体混合物中)成为a'SiAlON相的一部分(即一种或者多种其它的稀土元素构成上述化学式中的RE)。本申请人认为使用铈也可引起液相形成,其中铈不会成为a'SiAlON相的一部分。图6是表现a'SiAlON相的含量(按重量百分比)与不同组成的起始粉体混合物中的氧化镱(即,镱氧化物)添加量之间的函数关系的坐标图。以字母W、X、Y和Z表示这些组成。下表5给出了起始粉体混合物的组成和组成标识,以及按重量百分比计的a'SiAlON相的含量。表5图6中的实施例W到Z的起始粉体混合物的组成重量百分比1和a'SiAlON相的含量<table>tableseeoriginaldocumentpage28</column></row><table>从上面的表5可以清楚,实施例Y和Z(以三角形表示)只含有镱(在起始粉体混合物中以氧化镱的形式)作为唯一的稀土元素。实施例W和X(以圓形表示)含有镱和镧(在起始粉体混合物中以氧化镱和氧化镧的形式)。进一步来看图6所示的陶瓷体,可以看到镧作为稀土元素的存在,与镱一起,会影响陶瓷体中的a'SiAlON相的含量。如图6中W、X和Z点所代表的組成的比较所示,尽管组成标识(即abx(y)z冲的"x"、"y"和"z,,的值是相同的,然而镧的存在导致包含更大a'SiAlON相含量的陶瓷。此外,图6中W点到Z点所代表的陶瓷中的镱含量的比较表明,即使镱含量较低(即比较5.74重量%处的W点与6.20重量%处的Y点),然而当镧存在时,a'SiAlON相的含量仍较高。即使镱的含量较大(即比较6.97重量%处的X点和6.20重量%处的Y点),然而当镧存在时,a'SiAlON相的含量仍较大。参照图7,氮化硅、氧化铝、铝氧化物、氧化硅之间可形成的所有凝聚相都可以表示在相互作用盐图上(参见L.J.Gauckler和G.Petzow,RepresentationofMulticomponentSiliconNitrideBasedSystems,NitrogenCeramics,NordoffInternational,1977年,第41-60页)。当稀土被包括作为致密化添加剂时,该四元图描绘了形成的相。该四元图中的单位是当量。使用下式由克-原子来计算当量4-Si/(4.Si+3.Al+3*RE)=Si当量(Si当量)。如下对Al和RE进行当量计算3Al/(4.Si+3.Al+3.RE)=Al当量(Al当量),和3'RE/(4'Si+3.Al+3'RE)=RE当量(RE当量)。氮当量按3.N/(2.0+3.N)计算,如下对氧进行当量计算2*0/(2-0+3'N)。这里所述实施例中的起始粉体组成按重量百分比给出。从起始粉体混合物的组分的重量百分比计算克-原子。该计算假定氮化硅因表面氧化而含有2.2重量%的氧化硅,且氮化铝因表面氧化而含有2.55重量%的氧化铝。本专利中的组成名称由这些当量计算出。組成标识由abx(y)z构成,其中"ab"指含有a'SiAlON相和P'SiAlON相的陶瓷材料。在组成标识中,x是从氮化硅角到基面上的该组成点之间的距离。所有组成均含有稀土,因而组成都在基面上方。基面上的点位置的第一个坐标由l-(RE当量'COS(60)+Si当量)确定。基面上的点位置的第二个坐标是O**。用毕达哥拉斯定理确定距离"x"。将结果乘以100并四舍五入为最接近的一个。在点D的情形中,命名为L的线代表了点D的距离"x"(组成标识abx(y)z中)。数值"y,,是与氮化硅-AlN轴之间的最近角度,由arcsin(O当量/x)确定。在点D的情形中,角M是与氮化硅-A1N轴的角。最后一个数值z是高于基面的高度且代表稀土的含量。该高度由RE当量SIN(60)1000计算。PSiA10N相线与氮化硅-AlN轴构成33度的角(见角P)。这意味着具有的"y,,值大于33度的組成在pSiAlON相线的氧一侧,并且具有的"y"值小于33度的组成在卩'SiAlON相和a'SiAlON相之间的氮一侧'通过用组成标识(即abx(y)z)来表示组成,可以看到在x和y值的固定值下,当稀土含量的增加时,陶资体中a'SiAlON相的含量(按重量百分比)会发生变化。组成标识是可用来限定本发明目标组成区域的一种方式。组成区域是四元图内的体积。前两个数限定了基面上的面积。矢量上的线段限定了组成区域的每个边界(界线)。上边界(线Q)落在与氮化硅-A1N轴成37度角(R)的矢量上。下角(点A)在长度等于7的地方,且上角(点B)等于23。下边界(线S)与氮化硅-A1N轴所成的角(T)等于25度,并且具有与上边界(线Q)相同的长度。由于这些SiAlON含有稀土,因此组成位于基面上方。高于该基面的高度的范围是7到16。点B和C通过边界(线V)连接。通过图7中的边界(Q、S、U、V)界定并由点A、B、C和D限定的区域显示了目标的组成空间。这个区域是在基面上的投影,从而由于实际组成含有(一种或多种)稀土成分,因此这些实际组成位于该基面上方。显然,本发明提供了一种陶瓷材料,且具体为SiAlON材料,该材料表现出改良的性能,因此这种材料适合用作金属切削应用中的刀头,以及用作磨损件(例如用于泵的柱塞杆、球头柱塞坯、井下泵的单向阀坯、衬套、喷砂嘴以及其它磨损和沖击应用)。通过引用将这里提到的专利、专利申请以及其它文献并入本文。考虑这里所公开的本发明实施的说明书,本发明的其它实施方案对本领域的技术人员将是显而易见的。说明书和实施例应当仅被认为是说明性的,本发明的真正主旨和范围由下面的权利要求书给出。权利要求1.一种由起始粉体混合物制成的SiAlON陶瓷体,所述起始粉体混合物包括氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、和至少两种选定稀土元素的一种或多种粉体,其中所述选定稀土元素选自下面三组稀土元素的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu,并且该SiAlON陶瓷体包括含有α′SiAlON相和β′SiAlON相的两相复合物,且α′SiAlON相中含有一种或多种选定的稀土元素,不包括La和Ce;并且氮化硅粉体占起始粉体混合物的至少约70重量%,氮化硅粉体中β-氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。2.权利要求1的SiAlON陶瓷体,其中维氏硬度(l8.5kg载荷)大于或者等于约17GPa,且断裂韧性(KICEvans&Charles)大于或者等于约6.8MPa'm1/2。3.权利要求1的SiAlON陶瓷体,其中维氏硬度(18.5kg载荷)大于或者等于约18.5GPa,且断裂韧性(K1CEvans&Charles)大于或者等于约6.8MPa'm1/2。4.权利要求1的SiAlON陶瓷体,其中a'SiAlON相的存在量大于或者等于两相复合物的约35重量%,维氏硬度(l8.5kg的载荷)大于或者等于约18GPa,且断裂韧性(KicEvans&Charles)大于或者等于约6.8MPam1/2。5.权利要求1的SiAlON陶瓷体,其中a'SiAlON相的存在量大于或者等于两相复合物的约50重量%。6.权利要求1的SiAlON陶瓷体,其中氮化硅起始粉体占起始粉体混合物的至少约80重量%,a'SiAlON相的存在量大于或者等于两相复合物的约25重量。/。,维氏硬度(18.5kg的载荷)大于或者等于约17GPa,且断裂韧性(KICEvans&Charles)大于或者等于约6.8MPa.m12。7.权利要求1的SiAlON陶资体,其中氮化硅起始粉体占起始粉体混合物的至少约85重量%,a'SiAlON相的存在量大于或者等于两相复合物的约35重量%,维氏硬度(18.5kg的载荷)大于或者等于约18GPa,且断裂韧性(KICEvans&Charles)大于或者等于约6.8MPam12。8.权利要求1的SiAlON陶瓷体,其中氮化硅起始粉体含有约0重量°/。的P氮化硅。9.权利要求1的SiAlON陶瓷体,其中a'SiAlON相的存在量大于或者等于两相复合物的约25重量%,维氏硬度(18.5kg载荷)大于或者等于约16.5GPa,且断裂韧性(KICEvans&Charles)大于或者等于约5.4MPa*m1/2。10.权利要求1的SiAlON陶瓷体,其中维氏硬度(18.5kg载荷)大于或者等于约16.0GPa,且断裂韧性(KICEvans&Charles)大于或者等于约4.4MPa*m1/2。11.权利要求1的SiAlON陶瓷体,其中起始粉体混合物中的选定稀土元素包括镱和镧,并且a'SiAlON相含有镱,其中a'SiAlON相中没有可检测量的镧。12.权利要求1的SiAlON陶瓷体,其进一步在SiAlON陶资体上包括含有一个或者多个涂层的涂层体系。13.权利要求17的SiAlON陶瓷体,其中涂层体系包括由化学气相淀积施用的氧化铝涂层。14.权利要求17的SiA10N陶瓷体,其中涂层体系包括由物理气相淀积施用的钛铝氮化物涂层。15.权利要求1的SiAlON陶瓷体,其中该陶瓷体具有的组成落在由图7中点A、B、C和D限定的四边形所界定的区域内。16.权利要求1的SiAlON陶瓷体,其中陶瓷体所具有的组成落在由图7中点E、F、G和H限定的矩形所界定的区域内。17.权利要求1的SiAlON陶瓷体,其中该陶瓷体包括具有前刀面、侧表面、和前刀面与侧表面接合处的切削刃的刀头。18.—种由起始粉体混合物制成的SiAlON陶瓷体,所述起始粉体混合物包括氮化硅粉体和向该SiAlON陶瓷体提供铝、氧、氮、和至少两种选定稀土元素的一种或多种粉体,其中所述稀土元素选自下面三组稀土元素的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu;这种SiAlON陶瓷体包括含有a'SiAlON相和卩'SiAlON相的两相复合物,且a'SiAlON相中含有一种或多种选定的稀土元素,不包括La和Ce;该陶瓷体具有落在图7中的点A、B、C和D限定的四边形所限定的区域内的组成;氮化硅粉体占起始粉体混合物的至少约70重量%,氮化硅粉体中P-氮化硅的含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。19.权利要求18的SiA10N陶瓷体,其中起始粉体混合物中的氮化硅粉体中含有基本上0重量%的p氮化硅。20.权利要求18的SiAlON陶瓷体,其中该陶瓷体包括具有前刀面、侧表面、和前刀面与侧表面接合处的切削刃的刀头。21.—种制造包括含a'SiAlON相和p'SiAlON相的两相复合物的SiAlON陶资体的方法,该方法包括步骤提供起始粉体,该起始粉体包括至少约70重量%的氮化硅粉体和向SiAlON陶瓷体提供铝、氧、氮、和至少两种选定稀土元素的一种或多种粉体,其中所述稀土元素选自下面三组稀土元素中的至少两组中,其中第I组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu;和固结该起始粉体混合物以形成包括含a'SiAlON相和P'SiAlON相的两相复合物的陶瓷体,并且该a'SiAlON相含有一种或多种所述的选定稀土元素,不包括La和Ce,并且该陶瓷体具有落在图7中的点A、B、C和D限定的四边形所界定的区域内的组成。22.权利要求21的方法,其中固结步骤包括烧结步骤。23.权利要求22的方法,其中固结步骤进一步包括在烧结步骤之后的热等静压步骤。24.权利要求21的方法,其中起始粉体混合物中的氮化硅粉体含有基本上0重量%的p氮化硅。25.—种由起始粉体混合物制成的SiAlON陶资体,所述起始粉体混合物包括氮化硅粉体和向该SiAlON陶乾体提供铝、氧、氮、形成液相的元素、以及至少一种选定稀土元素的一种或多种粉体,其中在一种选定稀土元素的情况下,所述选定稀土元素选自任何下面的組中,其中第I组包括Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu。在多种选定稀土元素的情况下,所迷选定稀土元素选自下面三组中的至少两组中,其中第IA组包括La、Ce、Pr、Nd、Pm、Sm和Eu,且第II组包括Gd、Tb、Dy和Ho,且第III组包括Er、Tm、Yb和Lu;且该SiAlON陶资体包括含有a'SiAION相和p'SiAION相的两相复合物,且该a'SiAlON相含有一种或多种所选定的稀土元素,不包括La和Ce;并且氮化硅粉体占起始粉体混合物的至少约70重量%,氮化硅粉体中P-氮化硅含量的下限等于氮化硅粉体的0重量%且上限等于约1.6重量%。26.权利要求25的SiA10N陶瓷体,其中形成液相的元素选自包含Ba、Mg、Sr和Sc中的一种或者多种的组中。27.权利要求25的SiAlON陶瓷体,其中该陶瓷体所具有的组成落在由图7中点A、B、C和D限定的四边形所界定的区域内。28.权利要求25的SiAlON陶瓷体,其中起始粉体混合物中的氮化硅粉体含有基本为0重量%的p氮化硅。全文摘要α′-β′SiAlON陶瓷体(20,30)及其制造方法,该陶瓷体由包括氮化硅粉体的起始粉体混合物制成,该氮化硅粉体中的β-氮化硅含量的范围是下限等于氮化硅粉体的0重量且上限等于约1.6重量%。该粉体混合物还包括向SiAlON陶瓷体提供铝、氧、氮和两种选定稀土元素的一种或多种粉体,其中所述选定稀土元素选自三个特定稀土元素组的至少两组中。文档编号C04B35/00GK101133001SQ200680006428公开日2008年2月27日申请日期2006年2月3日优先权日2005年2月9日发明者R·L·耶克利申请人:钴碳化钨硬质合金公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1