带有陶瓷基体的复合材料部件的制造方法和所得部件的制作方法

文档序号:2011151阅读:403来源:国知局
专利名称:带有陶瓷基体的复合材料部件的制造方法和所得部件的制作方法
带有陶瓷基体的复合材料部件的制造方法和所得部件 发明名称本发明涉及一种制造陶瓷基体复合材料部件的方法和由此获得的 部件。发明背景本发明涉及由陶瓷基体复合材料(CMC材料)制造的部件。CMC材料通常用于需要在氧化环境中在高温,通常120(TC和更高 温度下表现出良好机械性能的部件。CMC材料可用于航空航天领域,例如用于航空发动机中暴露在热 气流下的结构部件。CMC材料在用陶瓷基体致密化的纤维增强基底上形成。基底可以 由碳纤维或陶瓷纤维,例如难熔氧化物或氮化物或碳化物纤维(通常 碳化硅SiC)制成。在文献US 4 752 503中描述了制造CMC材料的方法。在该己知方 法中,在纤维上形成界面相涂层以优化纤维与基体之间的粘合,即具 有强到足以将该材料承受的机械应力传递给纤维增强材料的粘合,但 粘合不会太强以避免使材料易碎,强粘合促进裂纹从陶瓷基体开始穿 过纤维扩散,从而使纤维增强材料变差。界面相通常是热解碳(PyC) 或氮化硼(BN)。如Journal of Solid State Chemistry, Academic Press USA, 巻117, No. 2 (2004-2),第449-456页出版的R. Naslain等人的文章所 述,界面相因此可以由连续的独立PyC (或BN)层和SiC层构成,由 此有助于使裂纹偏斜。常用于使CMC材料的纤维增强基底致密化的方法是化学气相渗 透(CVI)。将反应气体引入炉中,其中的温度和压力条件适合促进气 体扩散到纤维增强材料的孔隙内并通过在增强纤维上沉积通过使反应 气体的成分之一分解或通过其多种成分之间发生反应产生的材料来形 成基体。
另一用陶瓷基体将多孔基底致密化的己知方法是通过液相技术致 密化。将基底用含有基体陶瓷材料的前体,例如树脂形式的前体的液 态组合物浸渍。前体通过热处理转化以产生基体陶瓷材料。在文献EP0 549 224中描述了在含有在氮化硼界面相中涂布的纤维的纤维组织上 实施的这种液相法。纤维增强基底以具有与要制造的部件的形状相对应的形状的预型 体形式制造。纤维预型体由纤维组织,特别例如单向组织、纱线、丝 束、纺织布、或二维组织、单向或多向片材、或毛毡,通过如下方法 获得缠绕、二维或三维织造、编织、起皱(draping)(将二维组织层 叠置在样板(former)上)、将二维组织层叠置并通过针刺、缝合等将 它们结合在一起。为了保持致密化过程中纤维预型体所需的形状,特别是在要制造 的部件具有复杂形状时,必须求助于支撑工具。这类工具占据大量空 间并构成CVI炉中的大量热惰性。因此,用陶瓷基体通过CVI实现的 预型体致密化在两个步骤中进行。进行第一固结步骤,其间沉积陶瓷 基体固结相以将预型体的纤维足够牢固地粘结在一起以使预型体能够 不借助工具来保持其形状。在固结后,将预型体从工具中取出并在第 二步骤中继续致密化。但是,CVI法缓慢且通过这种方法固结预型体占据相当大的时长, 在炉中存在支撑工具,由此导致上述缺点(占据空间且构成热惰性)。 此外,在固结后,需要将预型体冷却,从炉中取出以移开支撑工具, 然后重新插入炉中,再升至所需温度以继续致密化,由此包含大量的 操作。在Fusion Engineering and Design, Elsevier Science Publishers, Amsterdam, Netherlands,巻51-52 (2000),第159-163页中出版的A. Ortona等人的文章中已经提出通过下列方法制造SiC-SiC型复合材料 部件(纤维增强材料和基体均由SiC制成),该方法包括-使用CVI法,在固定在工具中的纤维预型体的SiC纤维上形成 碳界面相;-然后使用CVI法在仍然支撑在工具中的纤维预型体内形成SiC 的第一固结基体相;-使用液相法(聚合物渗透和热解),形成SiC基体相,完成预型 体的致密化。文献US 2003/0162647公开了包括由SiC纤维制成纤维预型体并进 行热处理的方法。在通过CVI形成碳界面相后,通过CVI由SiC制成 第一基体相,然后通过液相法由SiC制成第二基体相,最后通过CVI 沉积SiC以封闭第二基体相中的裂纹并形成SiC涂层。在EP 1 277 716中描述了类似方法,其中通过CVI形成碳界面相, 通过CVI形成SiC第一基体相,通过液相技术形成SiC第二基体相, 和通过CVI沉积SiC以密封该复合材料。上述文献必须在纤维上形成界面相涂层后求助于CVI法以形成 SiC第一基体相,从而具有CVI法的上述缺点。发明目的和概述本发明的目的是改善这些缺点并为此提出包含用陶瓷基体致密化 的纤维增强材料的复合材料部件的制造方法,该方法包括 使用化学气相渗透在构成纤维增强材料的纤维上形成界面相涂 层,该界面相涂层包含用于为复合材料提供脆性释放的至少一层与纤 维接触的内层,和用于与陶瓷基体粘合的外层; 将纤维预型体成型以构成复合材料部件的纤维增强材料,并将 该纤维预型体固定以保持其形状,其中纤维带有界面相涂层; 使用将纤维彼此粘合的陶瓷基体固结相,通过部分致密化使预 型体在保持其形状的同时固结,以使固结的预型体能够不借助支撑工 具独立地保持其形状,固结通过用含有陶瓷基体固结相材料的前体的 液体组合物浸渍纤维预型体并将该前体转化成陶瓷来进行;和 通过额外陶瓷基体相继续固结的预型体的致密化。本发明的特征在于通过液相技术固结纤维预型体与形成界面相的 结合,该界面相具有提供与纤维的不会太强的粘合的内层和提供与基 体的良好粘合的外层。使用液相技术的固结利用了容易并迅速实施的 用液体组合物浸渍的传统技术。尽管在由碳形成固结相时通过液相技术固结纤维预型体本身是已 知的,但申请人已经发现,该技术不能按照与作为陶瓷前体的液体组
合物相同的方式进行。对于由碳纤维制成的(或在碳中涂布的)预型 体,在陶瓷前体和纤维之间没有粘合,这导致缺乏纤维-基体粘合,从 而损害承受机械力的能力。相反,对于陶瓷纤维预型体,粘合非常强, 并且导致纤维-基体的粘合非常强,由此使材料易碎。通过形成特定界 面相克服了这种困难。有利地,通过将纤维组织成型并在制造预型体之前和可能甚至在 制造纤维组织之前在构成纤维组织的纤维上形成界面相涂层,制造纤维预型体。因而通过CVI法形成界面相涂层不要求使用任何支撑工具,如果适当,在使用液相技术时只有固结才需要这种工具。在纤维上形成的界面相涂层的厚度优选小于100纳米(nm)。由此 可以保持良好的可形变性。根据该方法的特征,界面相涂层的内层由选自热解碳PyC、氮化 硼BN、或硼掺杂碳BC的材料制成。BC的使用是优选的,因为其不 如PyC那样对氧化敏感,且其比BN容易操作。界面相涂层的外层优选由与基体固结相类似的陶瓷材料制成。纤维预型体可以用含有树脂的液体组合物浸渍,"该树脂是基体固 结相的陶瓷材料的前体。在其另一方面中,本发明还提供了可以通过上述方法获得的这种 CMC材料部件。根据本发明,包含用陶瓷基体致密化的纤维增强材料以及在增强 纤维上形成的界面相涂层的CMC材料部件的特征在于 该界面相涂层具有小于100纳米的厚度,并包含用于释放复合 材料中的脆性的与纤维接触的至少一层内层,和用于与陶瓷基体粘合 的外层;和,陶瓷基体包含,与界面相涂层接触的内部基体相,其是将内部 基体相的陶瓷材料的前体陶瓷化的产物的形式,和通过化学气相渗透 获得的沉积物形式的至少一层外部基体相。纤维增强材料的纤维可以由选自碳或陶瓷的材料制成。附图简述在参照附图阅读下列描述时可以更好地理解本发明,其中
權1显示了在本发明的实施中制造CMC材料部件时的步骤次序; 图2是带有界面相涂层的SiC纤维的显微照片。实施详述

图1的方法的第一步骤IO在于选择纤维组织,其在随后的成型后 构成要制造的CMC材料部件的纤维增强材料。该组织的纤维可以是碳纤维或陶瓷纤维。本发明的方法更特别涉 及使用陶瓷纤维,特别是基本由碳化硅SiC或一些其它耐火材料,例 如氧化物,例如氧化铝或二氧化硅构成的纤维。所用的纤维组织可以是单向(ID)组织,例如纱线、丝束、粗纱, 或双向(2D)组织,例如纺织布,单向或多向片材、针织物、编织物 或三维(3D)组织,例如三维毡、纺织布、针织物、或编织物、或通 过盘绕或悬垂ID或2D组织而形成的3D组织形式。在所有情况下, 纤维组织都是可形变组织。
在第二步骤12中,通过化学气相渗透法在纤维组织的纤维上形成 界面相涂层。所得界面相涂层包括 在纤维表面上形成的并由脆性释放材料制成的内层,该材料使 要制造的CMC材料较不易碎,即能够在CMC材料基体与纤维之间产 生不会太强的粘合的材料,以使在基体内扩散的裂纹的能量在该脆性 释放层中消散且不会扩散穿过纤维;和 由陶瓷材料在内层上制成的外层,该陶瓷材料提供了与要与其 接触的CMC材料的陶瓷基体的外相良好的粘合。
内层的材料特别选自PyC、 BN或BC,并优选为BC,因为其具有 良好的抗氧化性且易于加工。形成PyC、 BN和BC层的CVI法是公知 的。可以例如参看下列文献US 4 752 503和US 6 068 930。
选择外层的材料以与CMC材料的陶瓷基体的内相相容(即不会化 学反应)并很好地与其粘合。优选选择与陶瓷基体的内相所用的材料 相同种类的材料。因此,当陶瓷基体的内相由SiC制成时,界面相涂 层的外层同样由SiC制成。形成SiC层的CVI法是公知的。可以参看 下列文献FR 2 401 888和US 5 738 908。
在仍处于自由状态下的纤维组织上形成界面相涂层。将纤维组织在没有用工具固定的情况下置于CVI炉中,并通过改变加入炉中的气 体和任选通过调节渗透参数(例如气体的温度、压力、和穿过炉子的 渡越时间),相继制造内层和外层。应该限制界面相涂层的总厚度以使带有涂层的纤维组织不固结并保持足够的可形变性以使其能够成型以构成要制造的CMC材料部件的预型体。优选选择小于100纳米的这种厚度。界面相涂层的外层厚度可以 非常小,甚至限制在数纳米或数十纳米。在一个变体中,甚至可以在形成纤维组织之前在构成纤维组织的 纤维或纤维元件上形成界面相涂层。例如,使用纺织纤维组织时,可 以在织造之前在构成纤维组织的纱线上形成界面相涂层。也必须限制 界面相涂层在这些情况下的厚度,优选小于100纳米。在形成界面相涂层后,用使要制造的CMC材料的陶瓷基体固结的 内相的液体前体浸渍纤维组织(步骤14)。如果基体相是SiC,则液体 前体可以是树脂,例如选自聚碳硅烷、聚碳硅氮烷、或聚氢化乙烯基 硅烷。其它陶瓷的液体前体是已知的,例如作为BN前体的聚环硼氮 烷或作为Si-O-C前体的聚硅氧烷。通过穿过可能带有溶剂的液体前体浴,进行浸渍。选择浸渍纤维 组织的液体前体的量以足以留下固结基体相,即将纤维组织的纤维足 够强地粘结在一起以使该组织硬化的基体相。通常,固结基体相构成 带有界面相涂层的纤维组织的可到达孔隙的大约5体积%至8体积%。在浸渍之后,将纤维组织成型以获得具有与要制造的CMC材料部 件的形状相对应的形状的预型体或坯(步骤16)。这种成型可以通过在 心轴或在样板上缠绕或悬垂和通过使预型体保持所需形状来进行,这 必须借助支撑工具来进行。在一个变体中,可以用带有界面相涂层但没有用使基体相固结的 液体前体浸渍的纤维组织进行成型步骤。将所得预型体在构成模具的 工具中保持形状,在该模具中使用与在公知的树脂转移模制(RTM) 型方法中注射树脂类似的方法注入所需量的液体前体。使树脂形式的液体前体聚合,使纤维组织保持形状,如果必要, 在其工具中保持形状(步骤18)。在取决于所用树脂但低到可以使用由
金属制成的工具的温度下进行聚合。通过在没有工具的情况下对浸渍过的预型体施以热处理,使聚合的前体以传统方式转变成陶瓷(陶瓷化)(步骤20)。根据所用纤维的 性质,对于SiC前体,热处理通常在80(TC至150(TC进行。然后通过CVI继续固结的预型体的致密化(步骤22)。通过CVI 形成的基体可以具有与固结相相同的种类,且其可以具有不同种类。 特别地,如下列文献US 5 246 736、 US 5 965 266和US 6 291 058中 所述,可以使用Si-B-C型基体或包含Si-B-C和B4C交替相的自修复基 体制造致密化的最终相。 -这产生在通过工具保持组织形状的同时不需要通过CVI法沉积界 面相涂层或固结相涂层就可以制造的具有脆性释放的CMC材料部件。:使用由纤维纱的多层纺织布(30)构成的纤维组织,该纤维纱基 本由日本供应商Nippon Carbon以"Hi-Nicalon"为名供应的SiC构成, 纤维由聚乙烯基醇(PVA)纹孔(reaming)单丝构成。通过CVI法在 纤维上形成BCZSiC界面相涂层(BC的内层和SiC的外层)。界面相涂 层的厚度为大约50纳米,BC和SiC层具有基本相同的厚度。图2的 显微照片显示了在SiC纤维上形成的界面相涂层。通过穿过含有聚碳硅氮烷树脂——SiC的前体——在二甲苯中的 溶液的浴,浸渍带有界面相涂层的纤维组织,然后干燥,从而在纤维 上留下一定量的树脂,其构成带有界面相涂层的组织重量的大约40重 量%。在大约20(TC进行的前体聚合过程中,使浸渍过的纤维组织层在金 属工具中保持板状。借助于大约IOO(TC的热处理,不使用工具使聚合的前体转化成 SiC。所得SiC实现了预型体的良好固结,并构成固结预型体的表观体 积的大约12体积%。随后使用CVI法用Si-B-C型基体将固结的预型体致密化。在50(TC在80兆帕(MPa) 士20MPa的应力下以20赫兹(Hz) 的频率对所得CMC材料的试样进行牵引/牵引疲劳试验。试样在240小时(h)后破裂,表明CMC材料良好的热机械强度。
权利要求
1.一种包含用陶瓷基体致密化的纤维增强材料的复合材料部件的制造方法,该方法包括·使用化学气相渗透在构成纤维增强材料的纤维上形成界面相涂层,该界面相涂层包含用于为复合材料提供脆性释放的至少一层与纤维接触的内层,和用于与陶瓷基体粘合的外层;·将纤维预型体成型以构成复合材料部件的纤维增强材料,并将该纤维预型体固定以保持其形状,其中纤维带有界面相涂层;·使用将纤维彼此粘合的陶瓷基体固结相,通过部分致密化使预型体在保持其形状的同时固结,以使固结的预型体能够不借助支撑工具独立地保持其形状,固结通过用含有陶瓷基体固结相材料的前体的液体组合物浸渍纤维预型体并将该前体转化成陶瓷来进行;和·通过额外陶瓷基体相继续固结的预型体的致密化。
2. 根据权利要求1所述的方法,其中通过将纤维组织成型来制造 纤维预型体,该方法的特征在于在制造预型体之前在纤维组织的纤维 上形成界面相涂层。
3. 根据权利要求2所述的方法,其特征在于在形成纤维组织之前 在构成纤维组织的纤维上形成界面相涂层。
4. 根据权利要求1至3任一项所述的方法,其特征在于在纤维上 形成的界面相涂层的厚度小于100纳米。
5. 根据权利要求1至4任一项所述的方法,其特征在于界面相涂 层的内层由选自热解碳、氮化硼BN或硼掺杂碳BC的材料制成。
6. 根据权利要求1至5任一项所述的方法,其特征在于界面相涂 层的外层由与基体固结相类似的陶瓷材料制成。
7. 根据权利要求1至6任一项所述的方法,其特征在于固结预型 体包括用含有树脂的液体组合物浸渍,该树脂是基体固结相的陶瓷材 料的前体。
8. 根据权利要求1至7任一项所述的方法,其特征在于通过化学 气相渗透用额外陶瓷基体相进行固结的预型体的致密化。
9. 一种包含用陶瓷基体致密化的纤维增强材料以及在增强纤维上 形成的界面相涂层的陶瓷基体复合材料部件,该部件的特征在于 该界面相涂层具有小于100纳米的厚度,并包含用于释放复合 材料中的脆性的与纤维接触的至少一层内层,和用于与陶瓷基体粘合 的外层;和,陶瓷基体包含,与界面相涂层接触的内部基体相,其是将第一 基体相的陶瓷材料的前体陶瓷化的产物形式,和通过化学气相渗透获 得的沉积物形式的至少一层外部基体相。
10. 根据权利要求9所述的部件,其特征在于界面相涂层的内层由 选自热解碳、氮化硼BN或硼掺杂碳BC的材料制成。
11. 根据权利要求9或权利要求IO所述的部件,其特征在于界面 相材料的内层是硼掺杂碳BC 。
12. 根据权利要求9至11任一项所述的部件,其特征在于纤维增 强材料的纤维由选自碳或陶瓷的材料制成。
全文摘要
本发明涉及通过化学气相渗透(CVI)在构成纤维预型体的纤维上形成中间相涂层的方法,该中间相涂层包含与纤维接触的至少一层复合材料内部脆性释放层,和与陶瓷基体的外部粘合层。纤维预型体随后保持其形状,其中纤维带有中间相涂层,并通过用含有陶瓷前体的液体组合物浸渍和将前体转化成陶瓷基体增强相来增强。然后用额外的陶瓷基体相将增强的预型体致密化。不需要任何维持工具来通过CVI形成中间相涂层或在增强后通过液相法致密化。
文档编号C04B35/628GK101128405SQ200680005620
公开日2008年2月20日 申请日期2006年2月22日 优先权日2005年2月23日
发明者A·卡约, E·布永, E·菲利普, J-c·伊沙尔, R·巴加特, S·贝特朗 申请人:斯奈克玛动力部件公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1