一种金属基体复合导线、功率电感及其制备方法

文档序号:10579102阅读:412来源:国知局
一种金属基体复合导线、功率电感及其制备方法
【专利摘要】本发明公开了一种金属基体复合导线、功率电感及其制备方法。金属基体复合导线的制备方法包括以下步骤:1)准备金属内芯;2)配置玻璃树脂混合物:将粒径为300nm~2.5μm、烧结温度为600~900℃的硼硅玻璃粉和溶剂预混合搅拌均匀,然后加入分散剂和分解温度为300~500℃的树脂搅拌混合均匀;3)将自粘性树脂溶于溶剂中配置成自粘性树脂溶液;4)将所述玻璃树脂混合物均匀涂覆在所述金属内芯的表面,然后将所述自粘性树脂溶液涂覆在所述玻璃树脂混合物的表面,在80~150℃下烘干,确保涂覆后所述金属内芯表面的树脂厚度在1~2μm;5)重复步骤4),直至涂覆的厚度达到2~10μm。本发明制得的复合导线制成电感时,电感的耐候性、绝缘耐压能力均较好,且耐高温,电气性能也较好。
【专利说明】
一种金属基体复合导线、功率电感及其制备方法
【技术领域】
[0001]本发明涉及功率电感的制备工艺,特别是涉及一种金属基体复合导线、功率电感及其制备方法。
【【背景技术】】
[0002]目前耐高温的绝缘导线一般都是采用无机氧化物包覆的形式,在导体表面形成介孔无机氧化层。一方面,如果无机氧化层包覆过于致密,由于无机氧化层的脆性,绕制过程中会造成无机包覆层的脱落。另一方面,如果无机氧化层包覆不致密,耐潮、耐候性会较差。此外,在导体表面包覆介孔无机氧化层的制造成本是非常昂贵的,而且包覆介孔无机氧化层的绝缘导线,由于存在介孔,制备成功率电感后,电感的绝缘耐压能力不会很高,一般在50V左右;耐候性方面也较差,一般盐雾试验4H后,介孔中铜线就会存在明显腐蚀。目前,也有绝缘导线表面包覆有机物材料的,但这种导线制得的功率电感同样存在绝缘耐压低的问题。而且无论是包覆无机氧化物还是包覆有机物材料的导线,目前均存在不耐高温的缺点。

【发明内容】

[0003]本发明所要解决的技术问题是:弥补上述现有技术的不足,提出一种金属基体复合导线、功率电感及其制备方法,复合导线制成的电感的耐候性、绝缘耐压能力均较好,且耐高温,电气性能也较好。
[0004]本发明的技术问题通过以下的技术方案予以解决:
[0005]—种金属基体复合导线的制备方法,包括以下步骤:I)准备金属内芯;2)配置玻璃树脂混合物:将粒径为300nm?2.5μπι、烧结温度为600?900°C的硼硅玻璃粉和溶剂预混合搅拌均匀,然后加入分散剂和分解温度为300?500°C的树脂搅拌混合均匀;其中,所述树脂为10?30%固含量的树脂溶液,所述硼硅玻璃粉与所述树脂的质量比为1:10?2:10;所述分散剂占所述玻璃树脂混合物的质量分数为0.1.?0.5%;3)将自粘性树脂溶于溶剂中配置成自粘性树脂溶液;4)将所述玻璃树脂混合物均匀涂覆在所述金属内芯的表面,然后将所述自粘性树脂溶液涂覆在所述玻璃树脂混合物的表面,在80?150 0C下烘干,确保涂覆后所述金属内芯表面的树脂厚度在I?2μηι; 5)重复步骤4),直至涂覆的厚度达到2?ΙΟμπι。
[0006]优选地,所述步骤2)中,树脂的分子量在5000?50000。
[0007]优选地,所述树脂为尼龙。
[0008]优选地,所述步骤2)中,硼娃玻璃粉的粒径在500nm?Ιμπι。
[0009]优选地,所述步骤3)中,自粘性树脂为尼龙。
[0010]优选地,所述步骤I)中,金属内芯为镀镍铜线。
[0011]—种根据如上所述的制备方法制得的金属基体复合导线。
[0012]—种功率电感的制备方法,包括以下步骤:I)根据如上所述的制备方法制备金属基体复合导线;2)将所述金属基体复合导线绕制成设定形状圈数的线圈,放入模腔中,填入磁粉,通过压力将所述线圈和所述磁粉压制成一体形成电感;3)在600?900°C的温度下烧结,使所述线圈中的自粘性树脂分解,所述线圈中的玻璃树脂混合物烧结成玻璃层;4)对电感的磁体两端露出的所述金属基体复合导线进行研磨抛光,去掉所述线圈中的玻璃层,露出内部的金属内芯;5)在电感的磁体两端露出的金属内芯上形成端电极,最终制得功率电感。
[0013]优选地,所述步骤3)中,在氧气含量为15%以内的气氛中进行烧结。
[0014]—种根据如上所述的制备方法制得的功率电感。
[0015]本发明与现有技术对比的有益效果是:
[0016]本发明的金属基体复合导线的制备方法,包含制备金属内芯,涂覆特定的玻璃树脂混合物和自粘性树脂溶液,以及烘干等步骤,使得制得的金属基体复合导线中,金属内芯的表面包覆的是玻璃树脂混合物和自粘性树脂。该复合导线用于制备功率电感时,先是复合导线与磁粉进行压制,然后进行600?900°C的烧结,烧结过程中自粘性树脂分解,玻璃树脂混合物烧结成玻璃层。由于玻璃层具有较高的耐候性和绝缘耐压能力,分别为标准盐雾8H以上和耐压100V以上,因此制得的功率电感的耐候性、绝缘耐压能力均较好。玻璃层是经600?900 °C烧结而成,因此功率电感可耐高温。而且由于制备过程中先压制,后烧结形成玻璃层,因此压制过程中可耐受较大压力,不必担心复合导线中树脂混合物,自粘性树脂的破损,因此功率电感的磁体密度可制备得较高,则磁导率和饱和磁通也均较高,从而功率电感的电气性能较好。
【【附图说明】】
[0017]图1是本发明【具体实施方式】中制得的复合导线的结构示意图;
[0018]图2是本发明【具体实施方式】的功率电感的制备方法的流程图;
[0019]图3是本发明【具体实施方式】中制得的功率电感的截面示意图;
[0020]图4是本发明【具体实施方式】中制得的功率电感的局部放大示意图。
【【具体实施方式】】
[0021 ]下面结合【具体实施方式】并对照附图对本发明做进一步详细说明。
[0022]本【具体实施方式】中提供一种金属基体复合导线的制备方法,以克服传统的绝缘导线由于可绕性差、耐候性差、成本高、不耐高温等缺点而无法应用于磁性元器件制造的难题。本【具体实施方式】的复合导线的制备方法包括以下步骤:
[0023]I)准备金属内芯。金属内芯可为采用银线、铝线、镀镍铜线,优选为镀镍铜线。铜线的成本和拉伸强度较理想,性价比最高,表面镀镍层具有空气中温度性高的特点、且耐磨性高,可在后续需要高温处理时起到保护铜线本体的作用。铜线镀镍时可采用电镀或化镀方式,镀镍层的厚度控制在铜线线径的1/10?3/10。
[0024]2)配置玻璃树脂混合物:将粒径为300nm?2.5μπι、烧结温度为600?900°C的硼硅玻璃粉和溶剂预混合搅拌均匀,然后加入分散剂和分解温度为300?500°C的树脂搅拌混合均匀;其中,所述树脂为10?30%固含量的树脂溶液,所述硼硅玻璃粉与所述树脂的质量比为1:10?2:10;所述分散剂占所述玻璃树脂混合物的质量分数为0.1.?0.5%。
[0025]该步骤中,配置的玻璃树脂混合物是后续烧结后形成玻璃层的主体成分,是影响后续工艺以及制得的产品性能的关键因素。玻璃粉为具备烧结特性的B、Si玻璃粉,与分解温度为300?500°C树脂混合后制成玻璃树脂混合物,便于后续涂覆,且可控制涂覆厚度较薄。玻璃粉粒度在300nm?2.5μπι的范围,既不会发生团聚,也能与树脂的相容性、分散效果较好,涂覆的均匀度也越高。优选地,玻璃粉选择粒度在500nm?Iym范围内的玻璃粉,这样,形成的玻璃树脂混合物中,玻璃粉在树脂中的分散性较好,涂覆时较易涂覆均匀。该配方下的混合物,在后续制备功率电感过程中进行烧结时,玻璃粉可较好地烧结形成玻璃层,树脂则分解挥发掉。
[0026]优选地,树脂的分子量在5000?50000,从而配置的树脂混合物更具可涂性,且涂层附着力高。进一步优选地,可选用分子量在5000?50000的尼龙,成本和粘结性能均较好。
[0027]3)将自粘性树脂溶于溶剂中配置成自粘性树脂溶液。自粘树脂材质为尼龙,成本较低,效果也较好。
[0028]4)将所述玻璃树脂混合物均匀涂覆在所述金属内芯的表面,然后将所述自粘性树脂溶液涂覆在所述玻璃树脂混合物的表面,在80?150 0C下烘干,确保涂覆后所述金属内芯表面的树脂厚度在I?2μπι。
[0029]5)重复步骤4),直至涂覆的厚度达到2?ΙΟμπι。
[0030]上述步骤中,涂覆的玻璃树脂混合物在后续烧结后形成玻璃层,涂覆的自粘性树脂发挥粘结固定整个涂覆层形状的作用。涂覆绝缘层时,绝缘层越薄,则金属内芯就可以选择截面积相对较大的内芯,从而电阻低,但厚度太薄,则绝缘耐压值会较低,不利于电感的绝缘耐压能力的提高,综上,选择涂覆厚度在2?ΙΟμπι可综合确保电感的电气性能和绝缘耐压能力。本【具体实施方式】中,通过多次涂覆-烘干的方式达到最终要求厚度,每次涂覆厚度控制在I?2μπι,烘干温度控制在80?150°C,玻璃树脂层导线后续通过600?900°C烧结后,在镀镍铜线表面形成致密的玻璃层,厚度2?ΙΟμπι。通过多次涂覆-烘干的方式,可有助于确保涂覆的均匀性和涂覆厚度的可控性。烧结后,形成的玻璃层具有较高的耐候性和绝缘耐压能力,分别为标准盐雾8Η以上和耐压100V以上。
[0031]上述制得金属基体复合导线的结构示意图如图1所示,金属基体复合导线包括金属内芯(铜I和镀镍层2),玻璃树脂混合物3和自粘性树脂层4。该金属基体复合导线可用于制备磁性元器件。
[0032]如图2所示,为采用金属基体制备功率电感的流程图,包括以下步骤:首先将本【具体实施方式】的复合导线绕制规定形状圈数的线圈。接着,将线圈放入模腔中,填入金属软磁粉,通过压力将磁粉和线圈压制成一体。然后,在600?900°C的高温烧结,使线圈中的自粘性树脂分解,玻璃树脂混合物烧结成玻璃层。再通过研磨将线圈漏出磁体的部分进行抛光,去掉所述线圈中的玻璃层,露出内部的金属内芯。最后,通过端银、电镀的工艺形成端电极,最终形成表面贴装的功率电感。
[0033]如图3所示,为制得的功率电感的截面示意图。电感包括由上述金属基体复合导线绕制后烧结而成的线圈100、由金属软磁粉压制而成的磁体200以及端电极300。图4所示为图3中虚线部分的局部放大示意图。复合导线绕制成线圈,复合导线中的自粘层树脂在600?900°C高温烧结过程经过碳化、氧化后分解形成气体排出。复合导线中的玻璃树脂层经过600?900°C的高温烧结形成玻璃层102,主成分为B、Si。图中101表示复合导线中的金属内芯。由于玻璃层102具有较高的耐候、绝缘特性,则线圈层间(相邻两个金属内芯101之间)具有较高的绝缘耐压。
[0034]本【具体实施方式】的功率电感克服了传统“一体成型电感”,电气性能与耐压的矛盾。“一体成型电感”的电气性能主要是由磁体200决定,同种材质下,磁体200的磁道率,饱和磁通与磁体的密度成正相关,制备过程中提升密度的方法是成型压力的提高。而传统线圈采用的是聚氨脂漆包线,不耐受较高的成型压力,挤压过程,漆膜非常容易破碎,最终导致制得的电感中线圈层间绝缘耐压低、甚至短路,制得的电感的绝缘耐压性能较低。而本【具体实施方式】中,采用玻璃树脂包覆的复合导线,制备功率电感时,先压制,后烧结,巧妙的应用了玻璃树脂层不同阶段的状态。压制时为玻璃树脂、自粘性树脂,可耐受较大压力,不必担心树脂混合物、自粘性树脂的破损,因此功率电感的磁体密度可压制制备得较高,则磁导率和饱和磁通也均较高,从而功率电感的电气性能较好。经过600?900 °C高温烧结后,玻璃树脂混合物烧结形成具有高耐候、耐压特性的玻璃层,线圈层间通过该玻璃层形成绝缘,则绝缘性能较好。电感中的线圈经过600?900°C烧结而成,则本身具有耐高温性,从而后续在制作端电极时可通过工艺简便、成本较低的点焊,烧银工艺完成,且应用时也可应用到高温环境中。综上,应用本【具体实施方式】的新型功率电感克服了传统成型密度和耐压的矛盾,具有更高电气性能,且具有更高绝缘耐压,耐高温。
[0035]优选地,烧结时,在氧气含量为15%以内的气氛中进行,这样,可避免金属基体,例如镀镍铜线等,在玻璃树脂层烧结过程被氧化,确保电感中的线圈内的金属基体部分的导电性。
[0036]以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。
【主权项】
1.一种金属基体复合导线的制备方法,其特征在于:包括以下步骤:1)准备金属内芯;2)配置玻璃树脂混合物:将粒径为300nm?2.5μπι、烧结温度为600?900°C的硼硅玻璃粉和溶剂预混合搅拌均匀,然后加入分散剂和分解温度为300?500°C的树脂搅拌混合均匀;其中,所述树脂为10?30%固含量的树脂溶液,所述硼硅玻璃粉与所述树脂的质量比为1:10?2:10;所述分散剂占所述玻璃树脂混合物的质量分数为0.1.?0.53)将自粘性树脂溶于溶剂中配置成自粘性树脂溶液;4)将所述玻璃树脂混合物均匀涂覆在所述金属内芯的表面,然后将所述自粘性树脂溶液涂覆在所述玻璃树脂混合物的表面,在80?150°C下烘干,确保涂覆后所述金属内芯表面的树脂厚度在I?2μπι;5)重复步骤4),直至涂覆的厚度达到2?1um02.根据权利要求1所述的金属基体复合导线的制备方法,其特征在于:所述步骤2)中,树脂的分子量在5000?50000。3.根据权利要求2所述的金属基体复合导线的制备方法,其特征在于:所述树脂为尼龙。4.根据权利要求1所述的金属基体复合导线的制备方法,其特征在于:所述步骤2)中,硼娃玻璃粉的粒径在500nm?Iym05.根据权利要求1所述的金属基体复合导线的制备方法,其特征在于:所述步骤3)中,自粘性树脂为尼龙。6.根据权利要求1所述的金属基体复合导线的制备方法,其特征在于:所述步骤I)中,金属内芯为镀镍铜线。7.—种根据权利要求1?5任一项所述的制备方法制得的金属基体复合导线。8.—种功率电感的制备方法,其特征在于:包括以下步骤:I)根据权利要求1所述的制备方法制备金属基体复合导线;2)将所述金属基体复合导线绕制成设定形状圈数的线圈,放入模腔中,填入磁粉,通过压力将所述线圈和所述磁粉压制成一体形成电感;3)在600?900°C的温度下烧结,使所述线圈中的自粘性树脂分解,所述线圈中的玻璃树脂混合物烧结成玻璃层;4)对电感的磁体两端露出的所述金属基体复合导线进行研磨抛光,去掉所述线圈中的玻璃层,露出内部的金属内芯;5)在电感的磁体两端露出的金属内芯上形成端电极,最终制得功率电感。9.根据权利要求7所述的功率电感的制备方法,其特征在于:所述步骤3)中,在氧气含量为15%以内的气氛中进行烧结。10.—种根据权利要求8?9任一项所述的制备方法制得的功率电感。
【文档编号】H01B13/22GK105940466SQ201680000370
【公开日】2016年9月14日
【申请日】2016年4月27日
【发明人】夏胜程, 李有云
【申请人】深圳顺络电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1