显示装置和电子设备的制作方法

文档序号:16369777发布日期:2018-12-22 08:38阅读:146来源:国知局
显示装置和电子设备的制作方法

本公开涉及显示装置和电子设备。

背景技术

近年来,随着显示装置的分辩率改善,构成显示装置的像素的显示元件和驱动显示元件的驱动晶体管变得越来越微细化。

此处,场效应晶体管的阈值电压变化与沟道宽度和沟道长度的降低成反比增加。因此,随着显示装置的分辩率改善,驱动晶体管的特征变化增大,以及显示图像的均匀性降低。

例如,以下专利文献1公开了利用阈值电压可控的驱动晶体管驱动显示元件的技术,以抑制显示图像由于晶体管的特征变化导致的显示不均匀性。

另外,由于构成显示装置的像素的显示元件变得更微细化,驱动显示元件所需的电流的量减小。因此,通过降低驱动晶体管的栅极电压,降低驱动晶体管的导通电流(on-current)来实现适用于驱动显示元件的电流的量。

现有技术文献

专利文献

专利文献1:特开2012-255874号公报



技术实现要素:

技术问题

然而,在降低栅极电压的情况下,用接近阈值电压的栅极电压控制驱动晶体管。在这种情况下,针对每个驱动晶体管存在的阈值电压的变化对导通电流(on-current)具有较大影响;因此,驱动晶体管之间的导通电流变化增大,以及显示图像的均匀性降低。

因此,要求改善由于显示元件和驱动晶体管更微细化导致的显示图像的均匀性的下降。

因此,本公开提出了能够显示具有高分辨率和较高均匀性的显示图像的新的、改善的显示装置,和包括显示装置的电子设备。

问题的解决方案

根据本公开,提供了包括以下各项的显示装置:驱动晶体管,其包括设置在半导体基板中的第一导电型活性区域、设置为横断活性区域的开口、设置在包括开口内部的活性区域上的栅极绝缘膜、填充开口的栅电极和设置在活性区域的两侧上夹着开口的第二半导体型扩散区域;和配置为由驱动晶体管驱动的有机电致发光元件。

另外,根据本公开,提供了包括含有以下各项的显示单元的电子设备:驱动晶体管,驱动晶体管包括设置在半导体基板中的第一导电型活性区域、设置为横断活性区域的开口、设置在包括开口内部的活性区域上的栅极绝缘膜、填充开口的栅电极和设置在活性区域的两侧上夹着开口的第二导电型扩散区域;和配置为由驱动晶体管驱动的有机电致发光元件。

根据本公开,可以在没有驱动晶体管所占用面积增加的情况下,将沟道(channel,通道)长度制造为更长;因此,导通电流的绝对值可以下降。因此,驱动晶体管之间的阈值电压变化可以对导通电流具有较小的影响,其可以改善显示图像的均匀性。

发明的效果

根据上述的本公开,可以提供显示具有高分辨率和较高的均匀性的显示图像的显示装置,和包括显示装置的电子设备。

应注意上述效果不必须是限制性的。通过或代替以上效果,可以实现本说明书中所描述的任何一种效果或可以由本说明书领会其他效果。

附图说明

[图1]是用于描述构成应用根据本公开的技术的显示装置的一个像素的回路的回路图。

[图2]是应用根据本公开的技术的显示装置的一个像素的沿厚度方向的截面图。

[图3]是用于描述用于根据本公开的第一实施方式的显示装置的驱动晶体管和选择晶体管的平面结构的说明性图。

[图4]是图3的沿着截线a的截面图。

[图5]是图3的沿着截线b的截面图。

[图6]是图3的沿着截线c的截面图。

[图7]是用于描述用于根据本公开的第二实施方式的显示装置的驱动晶体管和选择晶体管的平面结构的说明性图。

[图8]是图7的沿着截线d的截面图。

[图9]是用于描述根据实施方式的生产晶体管的方法的步骤的截面图。

[图10]是用于描述根据实施方式的生产晶体管的方法的步骤的截面图。

[图11]是用于描述根据实施方式的生产晶体管的方法的步骤的截面图。

[图12]是用于描述根据实施方式的生产晶体管的方法的步骤的截面图。

[图13]是用于描述根据实施方式的生产晶体管的方法的步骤的截面图。

[图14]是用于描述根据实施方式的生产晶体管的方法的步骤的截面图。

[图15]是示出了导通电流变化相对于设置在驱动晶体管中的开口的数量和深度的关系的图。

具体实施方式

在下文中,将参照附图详细描述本公开的优选的实施方式。注意在本书说明和附图中,用相同的参考数字表示具有基本相同的功能和结构的结构元件,且省略了这些结构元件的重复说明。

注意将按以下顺序进行描述。

1.第一实施方式

1.1.显示装置的示意性构造

1.2.晶体管的构造

2.第二实施方式

2.1.晶体管的构造

2.2.生产晶体管的方法

2.3.晶体管的效果

3.结论

<1.第一实施方式>

(1.1.显示装置的示意性构造)

首先,参考图1和2描述应用了根据本公开的技术的显示装置的示意性构造。图1是用于描述构成应用根据本公开的技术的显示装置1的一个像素的回路的回路图。

如图1所示,构成显示装置1的一个像素的回路包括有机电致发光元件oled、驱动晶体管dtr、容量元件c和选择晶体管str。

有机电致发光元件oled是例如自发光的发光元件,其中堆叠了阳极、有机发光层和阴极。有机电致发光元件oled的阳极经由驱动晶体管dtr连接至电源线pl,以及有机电致发光元件oled的阴极连接到具有接地电位的地面线。即,有机电致发光元件oled用作显示装置1的一个像素。

具体地,包括有机电致发光元件oled的一个像素用作例如发射单颜色诸如红色、绿色或蓝色的光的子像素。另外,一个显示像素由发射红光的像素、发射绿光的像素和发射蓝光的像素组成,以及多个显示像素在矩阵中排列;因此配置能够显示相应于输入信号的图像的显示面板。

驱动晶体管dtr是例如场效应晶体管。驱动晶体管dtr的源极和漏极中的一个连接到电源线pl,以及源极和漏极中的另一个连接到有机电致发光元件oled的阳极。另外,驱动晶体管dtr的栅极连接到选择晶体管str的源极和漏极中的一个。驱动晶体管dtr串联连接至有机电致发光元件oled,并根据选择晶体管str施加的栅极电压的大小控制在有机电致发光元件oled中流动的电流,从而驱动有机电致发光元件oled。

选择晶体管str是例如场效应晶体管。选择晶体管str的源极和漏极中的一个连接到驱动晶体管dtr的栅极,以及源极和漏极中的另一个连接到信号线dl。另外,选择晶体管str的栅极连接到扫描线sl。选择晶体管str取样信号线dl的电压,然后将该电压施加于驱动晶体管dtr的栅极,从而控制施加于驱动晶体管dtr的栅极的信号电压。

容量元件c是例如电容器。容量元件c的一端连接到驱动晶体管dtr的栅极,以及容量元件c的另一端连接到电源线pl。容量元件c将驱动晶体管dtr的栅极和源极之间的电压保持在预定电压。

现在,将参考图2描述应用了根据本公开的技术的显示装置1的一个像素的堆叠结构。图2是应用根据本公开的技术的显示装置1的一个像素的沿厚度方向的截面图。

如图2所示,显示装置1的一个像素包括半导体基板30、选择晶体管str、驱动晶体管dtr、绝缘层40、包含配线51的多层配线层50、阳极61、有机发光层62、阴极63、保护层70和滤色器80。

半导体基板30可以是例如单晶、多晶或无定形硅(si)基板。包括半导体诸如硅的基板促进微细图案化;因此,可以更容易地形成微细化的驱动晶体管dtr和微细化的选择晶体管str。

驱动晶体管dtr和选择晶体管str设置在半导体基板30上。驱动晶体管dtr和选择晶体管str各自可以是例如包括设置在半导体基板30中的沟道区和源极/漏极区和设置在沟道区上的栅电极(它们之间具有栅极绝缘膜)的金属-氧化物-半导体场效应晶体管(mosfet)。

绝缘层40设置在半导体基板30上,并嵌入驱动晶体管dtr、选择晶体管str等。绝缘层40包括例如具有绝缘性的氮氧化硅等,并使嵌入的驱动晶体管dtr、选择晶体管str等彼此电绝缘。

多层配线层50设置在绝缘层40上,并将绝缘层40中的驱动晶体管dtr电连接至有机电致发光元件oled的阳极61。多层配线层50在层中包括含有铜(cu)或铝(al)的配线51,并包含具有绝缘性的氮氧化硅等。注意在多层配线层50内的多个层中走线的配线51将设置在半导体基板30上的各个元件彼此电连接。

将阳极61、有机发光层62和阴极63设置为顺续堆叠在多层配线层50上,并形成有机电致发光元件oled。

阳极61包括例如金属诸如铝(al)、铝合金、铂(pt)、金(au)、铬(cr)或钨(w),并用作光反射电极。

有机发光层62主要包括蒸发性有机材料,并通过应用在阳极61和阴极63之间的电场发光。具体地,在有机发光层62中,通过施加电场,阳极61注入空穴,以及阴极63注入电子。注入的空穴和电子在有机发光层62中重组来形成激发子,以及激发子的能量可以引起有机发光层62中的发光材料产生荧光或磷光。

阴极63包括例如铟锌氧化物、镁(mg)、银(ag)或这些的合金,并用作透过电极。另外,阴极63可以包括多层膜,例如第一层和第二层的多层膜,第一层包含钙(ca)、钡(ba)、锂(li)、铯(cs)、铟(in)、镁(mg)或银(ag),第二层包含镁(mg)、银(ag)或这些的合金。

保护层70设置在阴极63上,保护有机电致发光元件oled不受外部环境影响,以及特别防止水分和氧气进入有机发光层62。保护层70可以包含例如具有高光透过性质和低渗透性的材料,诸如硅氧化物(siox)、硅氮化物(sinx)、铝氧化物(alox)或钛氧化物(tiox)。

滤色器80设置在保护层70上,并将有机电致发光元件oled中产生的光划分为用于每个像素的颜色。例如,滤色器80可以是选择性透过相应于红光、绿光或蓝光的可见光波带的光的树脂层。

参考图1和图2所描述的显示装置1的分辩率越来越改善,且例如,开发了其中像素间距是10μm或更小以及分辩率超过2500像素每英寸(ppi)的显示装置。

假设有机电致发光元件oled的发光效率是0.5cd/a以及一个像素的最大亮度是1000nit(cd/m2),在具有这种高分辨的显示装置1的一个像素中流动的电流密度是2000a/m2。因此,假设一个像素包括三种颜色红色、绿色和蓝色(r、g和b)的子像素的有机电致发光元件oled,以及像素间距是10μm,在一个有机电致发光元件oled中流动的电流的最大值是2000a/m2×(10μm×10μm÷3)≈67na。

在另一方面,假设驱动晶体管dtr是设置在硅基板上的mosfet以及栅极绝缘膜具有20nm的膜厚度,则每单位面积的栅极容量cox是0.173μf/cm2,以及沟道迁移率μeff是60cm2/v·s。此处,当通过所谓的渐变沟道近似值评估饱和的导通电流ion时,假设沟道长度l和沟道宽度w两者是1μm,则阈值电压vth是1v,以及使用10v的栅极电压vg,ion可以由以下式1评估为约4.2×10-4a。

[数1]

ion=μeff×w÷l×cox×(vg-vth)2÷2...式1

因此,如以上计算的,在分辨率越来越改善的显示装置1中,驱动晶体管dtr的饱和导通电流采取高于在有机电致发光元件oled中流动的电流的最大值的量级的值。

因此,在用栅极电压控制驱动晶体管dtr的导通电流的级别以与在有机电致发光元件oled中流动的电流级别匹配的情况下,用使得vg-vth是100mv或更低的栅极电压控制驱动晶体管dtr。在这种情况下,即使vg恒定,驱动晶体管dtr之间的阈值电压vth的变化导致vg-vth的值波动较大。因此,有机电致发光元件oled之间的电流的变化量增加,这使得显示图像的像素之间的亮度不均匀。

此处,为了通过栅极电压之外的装置降低驱动晶体管dtr的导通电流,例如,可以使驱动晶体管dtr的沟道长度更长。然而,使沟道长度更长增加驱动晶体管dtr占用的面积,增加一个像素占用的面积,这导致显示装置1的分辨率降低。

另外,可以通过利用具有低于硅的沟道迁移率的半导体材料来降低驱动晶体管dtr的导通电流;然而,这难以利用,因为除硅之外没有发现就沟道迁移率和容易微细图案化而言适当的半导体材料。

通过对以上情况进行广泛研究,根据本公开的技术的发明人达到了根据本公开的技术。在根据本公开的技术中,提供了横断(crossing,横穿,穿过)设置在半导体基板中的活性区域的开口,以及在半导体基板内形成三维沟道,这使得在不增加驱动晶体管占用的区域的情况下有效沟道长度更长。特别在驱动有机电致发光元件更微细化来具有较小量电流的情况下,可以通过利用设置在硅半导体基板等上具有高载流子迁移率的驱动晶体管更适当地利用根据本公开的技术。

下文中更详细地描述根据本公开的技术,以上描述了其主要的点。

(1.2.晶体管的构造)

现在,参考图3至图6描述根据本公开的第一实施方式的用于显示装置的晶体管的构造。图3是用于描述用于根据本公开的实施方式的显示装置的驱动晶体管10和选择晶体管20的平面结构的说明性图。另外,图4是图3的沿着截线a的截面图,图5是图3的沿着截线b的截面图,以及图6是图3的沿着截线c的截面图。

注意在以下描述中,“第一导电型”表达“p型”和“n型”中的一种,以及“第二导电型”表达不同于“第一导电型”的“p型”和“n型”中的另一种。

如图3所示,根据本实施方式的显示装置包括驱动发光元件诸如有机电致发光元件的驱动晶体管10和控制施加于驱动晶体管10的栅电极的信号电压的选择晶体管20。

驱动晶体管10是例如p-沟道或n-沟道mosfet,并设置在半导体基板100的第一导电型活性区域115上。具体地,将栅电极140设置在活性区域115上,其中栅极绝缘膜介于其间,以及将第二导电型源极/漏极区设置在活性区域115的两侧上夹着栅电极140;因此,配置驱动晶体管10。

与驱动晶体管10类似,选择晶体管20是p-沟道或n-沟道mosfet,并设置在半导体基板100的第一导电型活性区域215上。具体地,将栅电极240设置在活性区域215上,其中栅极绝缘膜介于其间,以及将第二导电型源极/漏极区设置在活性区域215的两侧上夹着栅电极240;因此,配置驱动晶体管10。

注意将具有绝缘性的元件隔离层设置在活性区域115和215周围的半导体基板100中。元件隔离层使驱动晶体管10和选择晶体管20电绝缘。应注意驱动晶体管10和选择晶体管20可以是相同导电类型沟道的mosfet,或可以是不同导电类型沟道的mosfet。

在根据本实施方式的驱动晶体管10中,将横断活性区域115的开口150设置在栅电极140下的半导体基板100中。另外,用栅极绝缘膜和栅电极140填充设置在半导体基板100中的开口150。因此,在驱动晶体管10中,沟道是沿着开口150三维形成在半导体基板100内,这可以使驱动晶体管10的有效沟道长度更长,同时占用面积相同。在另一方面,在选择晶体管20中,不将开口等设置在栅电极240下的半导体基板100中。即,可以作为常用结构的mosfet设置选择晶体管20。

(驱动晶体管的构造)

具体地,如图4和图5所示,驱动晶体管10包括半导体基板100、设置在半导体基板100中的开口150、设置在包括开口150内部的活性区域115上的栅极绝缘膜130、填充开口150的栅电极140、设置在活性区域115两侧上夹着(across,越过)开口150的源极/漏极区120、和设置在栅电极140的侧面的侧壁绝缘膜160。另外,将元件隔离层110设置在活性区域115周围,其中设置了驱动晶体管10。

半导体基板100是包括任意各种半导体的基板,诸如第iv族半导体、第ii-vi族半导体和第iii-v族半导体。半导体基板100可以是例如包括单晶、多晶或无定形硅(si)的基板。在半导体基板100是包括单晶、多晶或无定形硅(si)的基板的情况下,可以容易形成微细的驱动晶体管10。另外,半导体基板100掺杂有第一导电型杂质(例如p型杂质诸如硼(b));因此,提供了活性区域115。

元件隔离层110是包含绝缘材料的层,并设置在活性区域115周围的半导体基板100中。元件隔离层110使活性区域115与其他活性区域电绝缘,从而使驱动晶体管10与其他元件电绝缘。

例如,元件隔离层110可以包括绝缘氧化物,诸如硅氧化物(siox)。具体地,可以通过利用浅的沟渠隔离(sti)方法,通过经由蚀刻等除去期望区域中的半导体基板100的一部分,然后用硅氧化物(siox)填充蚀刻形成的开口来形成元件隔离层110。可以例如将元件隔离层110设置到等于或大于0.35μm且等于或小于2μm的深度。

将开口150设置在半导体基板100中来横断活性区域115。可以通过干蚀刻、湿蚀刻等将开口150设置到例如等于或大于0.3μm且等于或小于1.5μm的深度。在开口150的深度是0.3μm或更高的情况下,可以明显抑制导通电流变化。另外,在开口150的深度大于1.5μm,同时形成元件隔离层110(比开口150形成地更深)难度增加的情况下,抑制导通电流变化的效果的增加量降低,这不是优选的。

然而,设置开口150的区域的深度可以比设置元件隔离层110的深度浅。这是因为在将开口150设置在深于元件隔离层110的区域中的情况下,沿着开口150形成的沟道形成在比元件隔离层110更深的区域,这可以导致元件隔离层110上的元件之间漏电。

注意可以将开口150设置为横断活性区域115,直到元件隔离层110的一部分与活性区域115接触。在这时候,形成在元件隔离层110中的开口150在深度上比形成在活性区域115中的开口150的浅。这是由于构成活性区域115的半导体材料和构成元件隔离层110的绝缘材料之间的蚀刻加工难易等的差异。

栅极绝缘膜130是包含绝缘材料的薄膜,并设置在包含开口150内部的活性区域115上。具体地,栅极绝缘膜130设置在沿着开口150形成的不均匀形状的半导体基板100的活性区域115上。栅极绝缘膜130可以包括例如具有绝缘性的氮氧化物,诸如硅氧化物(siox)或硅氮化物(sinx),或可以包含铪氧化物(hfox)等,这是高介电材料。另外,栅极绝缘膜130可以是包含单层上述绝缘材料的膜,或可以是包含组合了上述绝缘材料的多层的膜。

栅电极140设置在栅极绝缘膜130上来填充开口150。可以设置栅电极140来填充开口150,并进一步在半导体基板100的表面上方突出。例如,栅电极140可以包括多晶硅等,或可以包括具有低于多晶硅的电阻值的金属。另外,栅电极140可以包括金属层和包含多晶硅的层的多个层的堆叠结构。

侧壁绝缘膜160是设置在栅电极140的侧面上、从半导体基板100的表面突出的绝缘膜的侧壁。具体地,可以通过在包括栅电极140的区域形成绝缘膜,然后垂直各向同性进行蚀刻来形成侧壁绝缘膜160。例如,侧壁绝缘膜160可以包括单层或多层具有绝缘性的氮氧化物,诸如硅氧化物(siox)或硅氮化物(sinx)。

在侧壁绝缘膜160形成在驱动晶体管10中的情况下,可以同时形成驱动晶体管10和选择晶体管20,这可以改善形成显示装置1的像素回路的效率。注意可以省略侧壁绝缘膜160,因为它们不会对驱动晶体管10具有特别影响。

源极/漏极区120是设置在活性区域115两侧上夹着开口150的第二导电型区域。例如通过用第二导电型杂质(例如n型杂质诸如磷(p)或砷(as))掺杂活性区域115的预定区域来设置源极/漏极区120。注意将源极/漏极区120连接到用作电极的各个接触销。因此,源极/漏极区120各自用作驱动晶体管10的源极或漏极。

在具有上述结构的驱动晶体管10中,经由源极/漏极区120之间的开口150下的区域三维形成沟道;因此,与不设置开口150的情况相比,可以使沟道长度更长。

因此,在驱动晶体管10中,通过使沟道长度更长,可以降低饱和的导通电流的量并使其更接近有机电致发光元件所需的电流量。因此,可以用远离阈值电压的栅极电压控制驱动晶体管10的导通/截止,这可以抑制由于驱动晶体管10之间的阈值电压变化导致的导通电流变化。这使得可以抑制在像素之间的有机电致发光元件中流动的电流的量的变化,这可以改善在显示装置中显示的显示图像的均匀性。

(选择晶体管的构造)

另外,如图6所示,选择晶体管20包括半导体基板100、设置在活性区域215上的栅极绝缘膜230、设置在栅极绝缘膜230上的栅电极240、设置在活性区域215的两侧上夹着栅电极240的源极/漏极区220以及设置在栅电极140的侧面的侧壁绝缘膜260。另外,将元件隔离层110设置在活性区域215周围,其中设置了选择晶体管20。

在驱动晶体管10的构造中描述了半导体基板100和元件隔离层110;因此,此处省略了描述。

栅极绝缘膜230是包含绝缘材料的薄膜,并设置在半导体基板100的活性区域215上。栅极绝缘膜230可以包括例如具有绝缘性的氮氧化物,诸如硅氧化物(siox)或硅氮化物(sinx),或可以包含铪氧化物(hfox)等,这是高介电常数材料。另外,栅极绝缘膜230可以是包含单层上述绝缘材料的膜,或可以是包含组合了上述绝缘材料的多层的膜。

栅电极240设置在栅极绝缘膜230上。例如,栅电极240可以包括多晶硅等,或可以包括具有低于多晶硅的电阻值的金属。另外,栅电极240可以包括金属层和包含多晶硅的层的多个层的堆叠结构。

侧壁绝缘膜260是设置在栅电极240的侧面上的绝缘膜的侧壁。例如,侧壁绝缘膜260可以包括单层或多层具有绝缘性的氮氧化物,诸如硅氧化物(siox)或硅氮化物(sinx)。

当用杂质掺杂半导体基板100时,侧壁绝缘膜260用作阻断杂质进入半导体基板100的隔壁。即,在接近栅电极240的源极/漏极区220中,通过在形成侧壁绝缘膜260前后的变化条件进行掺杂,可以以自身排列方式形成掺杂为具有第二导电型并具有较低浓度的轻微掺杂的漏极(ldd)区域。

源极/漏极区220是设置在活性区域215两侧夹着栅电极240的第二导电型区域。例如通过用第二导电型杂质(例如n型杂质诸如磷(p)或砷(as))掺杂活性区域215的预定区域来设置源极/漏极区220。注意将源极/漏极区220连接到用作电极的各个接触销。因此,源极/漏极区220各自用作选择晶体管20的源极或漏极。

另外,在接近栅电极240的源极/漏极区220中,可以如上所述设置具有低于源极/漏极区220的浓度的第二导电型ldd区域。ldd区域可以缓解电场从源极/漏极区220至沟道的波动,从而抑制热载流子生成。

即,在没有在半导体基板100中设置开口的情况下,将选择晶体管20设置作为普通的场效应晶体管。在降低选择晶体管20的导通电流的情况下,至驱动晶体管10的信号强度降低,使得驱动晶体管10的导通/截止速度降低。因此,与驱动晶体管10不同,将选择晶体管20设置为通用结构的场效应晶体管。

<2.第二实施方式>

(2.1.晶体管的构造)

现在,参考图7至图15描述根据本公开的第二实施方式的用于显示装置的驱动晶体管的构造。图7是用于描述用于根据本实施方式的显示装置的驱动晶体管11和选择晶体管20的平面结构的说明性图。图8是图7的沿着截线d的截面图。

如图7和图8所示,根据本实施方式的显示装置包括驱动发光元件诸如有机电致发光元件的驱动晶体管11和控制施加于驱动晶体管11的栅电极的信号电压的选择晶体管20。这些中,选择晶体管20具有与第一实施方式类似的结构;因此,此处省略了描述。

在根据本实施方式的驱动晶体管11中,将横断活性区域115的多个开口151和152设置在栅电极240下的半导体基板100中。因此,经由在开口151和152的底面的下方通过,在半导体基板100内形成驱动晶体管11的沟道。因此,在驱动晶体管11中,通过小于第一实施方式的开口量的开口151和152可以有效地使驱动晶体管11的有效沟道长度更长;因此,可以更有效地形成开口151和152。

另外,在根据本实施方式的驱动晶体管11中,可以将横断活性区域115并具有高于活性区域115的浓度的第一导电型沟道截断区域(channelstopperregion,沟道截止区域,沟道阻止区域)170设置在多个开口151和152之间的半导体基板100内。

由于沟道截断区域170中没有形成沟道,设置沟道截断区域170使得可以在沿着由开口151和152形成的不均匀的形状的z字形中形成驱动晶体管11的沟道。因此,可以在相同的占用面积下使驱动晶体管11的有效沟道长度更长。

具体地,如图8所示,根据本实施方式的驱动晶体管11的结构包括半导体基板100、设置在半导体基板100中的多个开口151和152、设置在开口151和152之间的沟道截断区域170、设置在包括开口151和152的内部的活性区域115上的栅极绝缘膜131、填充开口151和152的栅电极141、设置在活性区域115的两侧上夹着开口151和152的源极/漏极区120、和设置在栅电极141的侧面的侧壁绝缘膜160。另外,将元件隔离层110设置在活性区域115周围,其中设置了驱动晶体管11。

半导体基板100、元件隔离层110、栅极绝缘膜131、栅电极141、侧壁绝缘膜160和源极/漏极区120与第一实施方式中所描述的相同名字的构造基本相同;因此,此处省略了描述。

将设置在半导体基板100中的开口151和152串联排列以横断活性区域115。如第一实施方式中所描述的,可以将开口151和152通过干蚀刻、湿蚀刻等彼此独立地设置到等于或大于0.3μm且等于或小于1.5μm的深度。此外,设置开口151和152的区域的深度可以比设置元件隔离层110的深度浅。

注意图8示出了将横断活性区域115的两个开口(开口151和152)设置在半导体基板100中的实例,但是本实施方式不限于该实例。可以将三个或更多个横断活性区域115的开口设置为串联排列在半导体基板100中。以驱动晶体管11的沟道长度是期望长度的方式,适当设置在半导体基板100中的开口数。

沟道截断区域170是设置为横断活性区域115并具有高于活性区域115的浓度的第一导电型区域。没有将沟道截断区域170设置在半导体基板100的表面上,而是设置在半导体基板100内以不与开口151和152接触。因此,沟道截断区域170可以保证在开口151和152之间可以形成z字形沟道的区域。可以通过例如用第一导电型杂质(例如p型杂质诸如硼(b))另外掺杂开口151和152之间的活性区域115来设置沟道截断区域170。

另外,设置沟道截断区域170处的深度可以比设置开口151和152的区域的深度深,并可以进一步比设置元件隔离层110处的深度深。因此,沟道截断区域170可以防止驱动晶体管11的沟道由进一步在沟道截断区域170下方通过而形成。注意可以将沟道截断区域170设置为例如0.1μm或更高的深度。

在具有上述结构的驱动晶体管11中,经由源极/漏极区120之间的开口151和152下的区域形成三维沟道;因此,沟道长度可以更加长。另外,在设置沟道截断区域170的情况下,在驱动晶体管11中,开口151和152和沟道截断区域170使沟道能够形成在半导体基板100内的z字形中形成;因此沟道长度可以更加长。

因此,在驱动晶体管11中,饱和导通电流可以进一步降低,这使得可以用进一步远离阈值电压的栅极电压控制驱动晶体管11的导通/截止。这可以进一步抑制由于驱动晶体管11之间的阈值电压变化导致的导通电流变化,这可以进一步改善显示装置中显示的显示图像的均匀性。

(2.2.生产晶体管的方法)

接下来,将参考图9至图14描述根据本实施方式的生产晶体管的方法。图9至图14是描述根据本实施方式的生产晶体管的方法的步骤的各个截面图。

首先,如图8所示,包含硅(si)的半导体基板100经受硼(b)的离子注入(掺杂);因此形成活性区域115和215。然后,根据所谓的sti方法,使用阻抗层图案化进行蚀刻以形成活性区域115和215,然后形成sio2膜;因此,形成元件隔离层110。注意将形成的元件隔离层110的深度设置为1.2μm。

然后,将约几个纳米的热氧化膜形成在活性区域115和215的表面上,然后根据驱动晶体管11或选择晶体管20的特征进行离子注入。例如,为了在约5×1017/cm3的浓度下用硼(b)从表面掺杂约1μm,在驱动晶体管11的活性区域115上用不同能量进行离子注入多次。

接下来,如图9所示,形成图案化的阻抗层,然后进行干蚀刻等;因此,形成横断活性区域115的深度1μm的开口151和152。

这时,可以以也将开口151和152形成在与活性区域115接触的元件隔离层110中的方式进行干蚀刻。因此,可以形成可靠地横断活性区域115的开口151和152。注意si和sio2之间的蚀刻速率的差值导致形成在元件隔离层110中的开口151和152的深度是例如约50μm。

然后,如图11所示,通过使用经由光刻技术使在开口151和152之间开口的抗蚀剂等作为掩模,在开口151和152之间的间隔上选择性进行硼(b)的离子注入。因此,形成掺杂有浓度为约4×1018/cm3的硼(b)的沟道截断区域170。另外,进行预定离子注入以使除驱动晶体管11之外的选择晶体管20等具有期望特征。

接下来,如图12所示,形成栅极绝缘膜131。具体地,通过利用氧自由基的自由基氧化或热氧化,在活性区域115和215的表面上和开口151和152内形成均匀的3nm的sio2膜。此外,通过化学气相沉积(cvd)方法使sio2膜生长约15nm,然后通过cvd方法形成3nm的si3n4膜;因此,形成总计21nm的栅极绝缘膜131。

此外,在栅极绝缘膜131上形成栅电极141。具体地,通过cvd方法利用sih4和ph3作为原料气体形成厚度为200nm的3×1020/cm3的浓度的包含磷(p)的多晶硅膜。因此,例如可以完全填充宽度为约15μm的开口151和152。之后,通过利用氢氟酸和硝酸的混合水溶液的湿蚀刻,选择性除去除驱动晶体管11之外的含p多晶硅。

然后,形成厚度为200nm的非掺杂多晶硅的膜作为选择晶体管20的栅电极240,以及通过干蚀刻等除去驱动晶体管11中形成的非掺杂多晶硅的膜。

接下来,如图13所示,通过利用抗蚀剂等作为掩模进行磷(p)的离子注入,其中通过光刻工艺图案化预定区域;因此形成驱动晶体管11的源极/漏极区120。

然后,如图14所示,通过cvd方法形成100nm的sio2膜,然后进行深蚀刻(回蚀刻,etchback);因此形成侧壁绝缘膜160和260。另外,在形成侧壁绝缘膜160和260前后进行不同浓度的磷(p)的离子注入;因此形成包含ldd区域的选择晶体管20的源极/漏极区220。

通过以上步骤,可以产生根据本实施方式的驱动晶体管11。另外,通过进一步形成根据本实施方式配置为连接到驱动晶体管11的有机电致发光元件oled生产根据本实施方式的显示装置。注意通过参照根据本公开的第二实施方式的生产显示装置的方法,可以类似生产根据本公开的第一实施方式的显示装置。

具体地,在栅极、源极和漏极和各自销之间的接触点形成硅化物、形成接触孔、和形成接触销在图14中示出的驱动晶体管11上进行,因此形成栅极、源极和漏电极。另外,形成多层配线层以及布线来自电极的配线,然后形成有机电致发光元件oled,进一步形成保护层等;因此,可以产生显示装置。对于这些步骤,可以使用众所周知的常用步骤类似的方法;因此,此处省略了描述。

通过以上步骤,可以产生根据本公开的第二实施方式的显示装置。注意通过参照根据本公开的第二实施方式的生产显示装置的方法,可以类似生产根据本公开的第一实施方式的显示装置。

(2.3.晶体管的效果)

接下来,描述了用于根据本实施方式的显示装置的驱动晶体管11提供的效果。首先,通过以上生产方法生产驱动晶体管11。

注意将驱动晶体管11的栅极长度(设置源极/漏极区120的方向上的栅电极的宽度)设置为0.8μm,将开口151和152的宽度设置为0.15μm,以及将沟道截断区域的宽度设置为0.3μm。

首先,确认通过形成开口151和152减少通过以上生产方法产生的驱动晶体管11的饱和导通电流。具体地,测量当将8v用作漏极-源极电压vds和栅极-源极电压vgs时的饱和导通电流。

在没有设置开口151和152的驱动晶体管中,饱和导通电流是350μa,而在根据本实施方式的驱动晶体管11中,饱和导通电流是54μa。因此,确认通过提供开口151和152,有效的沟道长度更长,以及可以将饱和导通电流降低为1/6或更低。这是对应于约5μm有效沟道长度的特征。

然后,评估通过以上生产方法产生的驱动晶体管11的导通电流变化和开口的数量和深度之间的关系。具体地,将4v用作漏极-源极电压vds,然后将使导通电流的中值是0.01μa的栅极-电源电压vgs应用于驱动晶体管,并评估导通电流变化。图15中示出了结果。图15是示出了导通电流变化相对于设置在驱动晶体管11中的开口的数量和深度的关系的图。

注意在图15中,通过相对于100%的比例评估取决于开口151和152的数量和深度的导通电流变化的抑制程度,100%是没有设置开口151和152的驱动晶体管的导通电流变化。

如图15所示,确认可以通过增加开口的深度抑制导通电流变化。具体地,通过设置开口的深度至300nm或更高显著抑制导通电流变化。还确认通过增加开口的数目进一步抑制导通电流变化。具体地,确认在设置两个开口以及开口的深度是300nm或更高的情况下,与没有设置开口的情况相比,可以将导通电流变化抑制到50%或更低。

此外,确认在这种情况下,抑制了导通电流变化,并且还抑制了显示装置的像素之间的有机电致发光元件的亮度变化,这改善显示图像的均匀性至可见程度。

<3.总结>

如上所述,根据本公开,在驱动有机电致发光元件(其是显示装置的一个像素)的驱动晶体管10中,在不增加占有面积的情况下可以使有效的沟道长度更长。具体地,在驱动晶体管10中,通过提供横断活性区域115的开口150以及在半导体基板100内沿着开口150三维形成沟道使得沟道长度更长。

因此,可以在不降低应用的栅极电压的情况下降低驱动晶体管10的导通电流,这可以抑制由于驱动晶体管10之间的阈值电压变化导致的导通电流变化。因此,可以在不增加驱动晶体管10占用的面积的情况下抑制导通电流变化;因此在显示装置中,可以改善显示图像的均匀性,同时提高分辨率。

注意也可以将上述的显示装置用作显示输入图像信号或作为静止图像或活动图像内产生的图像信号的各种电子设备的显示单元。这种电子设备的实例包括含存储介质诸如半导体存储器的音乐播放器、成像装置诸如数字照相机和摄影机、笔记本式个人计算机、游戏操作台、可移动信息终端诸如移动式电话和手机等。

以上已经参照附图描述了本公开的优选的实施方式,但是本公开不限于以上实施例。在不背离所附权利要求的范围的情况下,本领域技术人员可以找到各种变更和修改,但是应理解它们自然落入本公开的技术范围内。

进一步地,本说明书中所描述的效果仅是示例性的或举例说明的效果,而不是限制性的。因此,通过或代替以上效果,根据本公开的技术可以实现对于本领域技术人员来说由本说明书的描述是显而易见的其他效果。

此外,本技术还可以配置如下。

(1)

一种显示装置,包括:

驱动晶体管,包括

设置在半导体基板中的第一导电型活性区域,

设置为横断活性区域的开口,

设置在包括开口内部的活性区域上的栅极绝缘膜,

填充开口的栅电极,和

设置在活性区域的两侧上夹着开口的第二导电型扩散区域;和

配置为由驱动晶体管驱动的有机电致发光元件。

(2)

根据(1)的显示装置,其中,将多个开口设置为串联排列。

(3)

根据(2)的显示装置,其中,将具有高于活性区域的浓度的第一导电型沟道截断区域设置在每个开口之间。

(4)

根据(3)的显示装置,其中,将沟道截断区域设置为横断活性区域。

(5)

根据(3)或(4)的显示装置,其中,将沟道截断区域设置在半导体基板内部。

(6)

根据(3)至(5)中任一项的显示装置,其中,将沟道截断区域设置到比设置在活性区域周围的具有绝缘性的元件隔离层深的区域。

(7)

根据(1)至(6)中任一项的显示装置,其中,开口具有300nm或更深的深度。

(8)

根据(7)的显示装置,其中,将开口设置到比设置在活性区域周围的具有绝缘性的元件隔离层浅的区域。

(9)

根据(1)至(8)中任一项的显示装置,其中半导体基板是硅基板。

(10)

一种电子设备,包括:

显示单元,包括

驱动晶体管,包括

设置在半导体基板中的第一导电型活性区域,

设置为横断活性区域的开口,

设置在包括开口内部的活性区域上的栅极绝缘膜,

填充开口的栅电极,和

设置在活性区域的两侧上夹着开口的第二导电型扩散区域;和配置为由驱动晶体管驱动的有机电致发光元件。

符号说明

1显示装置

10、11驱动晶体管

20选择晶体管

100半导体基板

110元件隔离层

115活性区域

120源极/漏极区

130、131栅极绝缘膜

140、141栅电极

150、151、152开口

160侧壁绝缘膜

170沟道截断区域

oled有机电致发光元件

dtr驱动晶体管

str选择晶体管。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1