有源矩阵型液晶显示装置的制作方法

文档序号:2809938阅读:199来源:国知局
专利名称:有源矩阵型液晶显示装置的制作方法
技术领域
本发明是关于有源矩阵型液晶显示装置的。具体地说,是关于具有象素区尺寸互不相同的主显示区和副显示区的有源矩阵型液晶显示装置的相对电极的构造的。
近年来,作为有源矩阵型液晶显示装置,已知具有图6中所示的结构。图6是薄膜晶体管(Thin Film Transistor以后略记为TFT)阵列基板140的平面图。
在已有的有源矩阵型装置的TFT阵列基板140中,分别形成构成象素的象素区132排列成矩阵形状的显示区130、为了连接该显示区130的扫描线101到外接栅极驱动IC的扫描线引出线134和扫描线端子136、为了连接显示区130的信号线119到外接的源极驱动IC的信号线引出线135和信号线端子137。
根据给已有的有源矩阵型液晶显示装置附加新功能的观点,如

图1所示,显示区30(后面称为主显示区)以外,例如为了显示文字信息的目的,有必要设置其他的显示区31(后面称为副显示区)。
在这种情况下,为了要求主显示区30高清晰度显示,象素区32较小,副显示区31由于它的显示目的,必然象素区33的尺寸不必与主显示区的象素尺寸一致。倒不如,例如由于显示文字要大易于识别的要求,副显示区31的象素区33的尺寸设计成比主显示区30的象素区32的尺寸大。
此外,已有的具有副显示区的液晶显示装置中,如图7所示的相对电极形成为相对基板41的整个表面上共同的一个相对电极13。
一方面,有源矩阵型液晶显示装置中,相对设置的一对基板之间夹持的液晶层用作显示介质的时候,为了防止液晶层图像保留,给液晶层施加没有叠加直流电压的交流电压,把它用作显示电压。该交流电压从信号线施加到主要形成象素区的象素电极上,从扫描线作为栅电压借助于接通状态的TFT施加到。向该象素电极和通过液晶层相对设置的电极上施加一定的直流电压。除此之外,由于液晶层上施加电场,它的折射率发生变化,液晶层作为显示介质使用成为可能。
但是,由于液晶的介电常数按照电场强度而变化、TFT的栅极和漏极之间具有寄生电容、以及扫描线与象素电极之间具有寄生电容等原因,变化TFT处于接通状态的栅电压变化时,象素电极的电位Vp产生动态电压降。
图5(a)~图5(c)是液晶显示装置的驱动电压简略视图。图5(a)示出TFT的栅极上施加的电压Vg,图5(b)示出TFT的源极上施加的电压Vs,图5(c)示出TFT的漏极即象素电极的电压Vp。图5(c)中Vsc表示源极上施加的交流电压的中心电压,图5(c)中的Vcom表示相对电极上施加的电压。由于相对电极和象素电极上分别施加电压Vcom和Vp,在液晶层上给予有效电位,作为显示介质工作。图5(a)~图5(c)的横轴表示时间,Vg、Vs、Vp的定时。图5(a)中示出的电压的高电位是TFT处于接通状态期间,低电位是TFT处于断开状态期间。
TFT处于断开状态的栅电压Vg变化时,如图5(c)所示的象素电极的电位Vp产生动态电压降ΔVp。这样,TFT处于断开状态的栅电压Vg变化时,基于一对基板之间的液晶层产生的电容、由扫描线与其上方的栅极绝缘膜以及电容电极形成的存储电容以及上述寄生电容之间发生电荷分配,象素电极的电压Vp产生电压降ΔVp。
象素电极11的电位的电压降ΔVp用如下的式(1)表示ΔVp=(Vgh×(Cgdon+Cgp)-VgI×(Cgdoff+Cgp)-Vs(Cgdon-Cgdoff))/(Cs+CIc+Cgdoff+Cgp)…(1)其中ΔVp象素电极的电位的电压降;Vgh栅电压的高电位;CgdonTFT接通时的寄生电容;Cgp扫描线和象素电极之间的寄生电容;VgI栅电压的低电位;CgdoffTFT断开时的寄生电容;Vs信号电压的电位;Cs存储电容;CIc液晶层的电容。
如式(1)所示,发生象素电极的电位的电压降ΔVp的因素包括液晶层的电容CIc、薄膜晶体管的寄生电容Cgd、存储电容Cs等。
发生前述电压降ΔVp的一方面因素是不能避免液晶的介电常数按照电场强度而变化、与液晶的物理性质有关。其次,另一方面因素是由于TFT的栅极与漏极之间的寄生电容以及扫描线与象素电极之间的寄生电容这两个寄生电容中,TFT栅极与漏极之间具有寄生电容,前述电极之间形成的栅极绝缘膜形成电容,是目前的有源矩阵型液晶显示装置的构造不能避免的。
象这样象素电极的电位Vp产生电压降ΔVp,象素电极的电位Vp的正副电压振幅之间产生差值。如果施加相同的电压,液晶具有相同的透过率,例如就在没有施加电压的状态下透过率高的通用白光型有源矩阵型夜间显示装置而言,电压振幅大极性的透过率越低,电压振幅低的极性的透过率越高。因此,按照透过率产生亮暗反复,这样变成可目视的闪烁。
其次,对于正副极性电压的振幅是非对称的,这样变成向象素电极施加叠加有交流电压的直流电压,产生显示残留即所谓的图像保留现象。
于是,以前为使得驱动液晶的交流电压的正副电压振幅变成相等,适当调整相对电极的电位,以及存储电容相对于基于液晶层的电容并列形成,谋求消除上述闪烁图像保留。
可是,在设置主显示区以外的象素区尺寸不同的副显示区的情况下,由于前述液晶电容和前述寄生电容的数值根据象素区的尺寸而不同,主显示区和副显示区中各自象素电极的电压降ΔVp产生差值。结果,施加在主显示区和副显示区中相对电极上的最佳电位尽管都不相同,如以前例子一样使用共同相对电极的情况下,由于任何一个相对电极上都不能施加最佳电压,主显示区或副显示区任何一方都存在发生闪烁的问题。同时,主显示区或副显示区任何一方都存在发生图像保留的问题。
本发明就是为了解决上述问题而提出的,在具有象素区尺寸不同的主显示区和副显示区的有源矩阵型液晶显示装置情况下,由于主显示区和副显示区中的相对电极分开,使得能够向各自的相对电极施加最佳电压,是防止发生闪烁图像保留而采取的手段。
即,对于图5(c)来说,主显示区和副显示区中产生不同电压降ΔVp的情况下,各自相对电极上施加最佳相对电极电压Vcom,各个显示区中正副极性电压振幅变成相等。
本发明涉及的有源矩阵型液晶显示装置,在相对设置的一对基板之间夹有液晶层,前述一侧的基板表面上多条扫描线和多条信号线呈矩阵状交叉形成,在多条扫描线和信号线形成交差部分的附近,分别形成栅极与前述扫描线连接的薄膜晶体管、与该薄膜晶体管连接的象素电极、前述扫描线与形成存储电容器的电容电极。前述扫描线和信号线包围的象素区的尺寸互不相同,构成主显示区和副显示区。一方面,在前述的另一侧的相对基板的液晶层一侧的表面上形成相对电极,对着主显示区的相对电极和对着副显示区的相对电极分别构成。
进一步,主显示区和副显示区的象素区的尺寸不同的情况下,由于根据象素区的尺寸向对着各个显示区的相对电极上的施加不同的电压,所以分别设计电压施加手段。
由于液晶显示器是这样形成的,按照各自的象素电极的尺寸主显示区和副显示区的相对电极上施加最佳电压。
例如,在如下情况下,即由于主显示区为了显示图像等要求高分辨率,而由于副显示区为了显示文字等分辨率不太成为问题,形成主显示区的象素区尺寸比副显示区的象素区尺寸小,各相对电极上施加的电压是对着主显示区的相对电极上施加的电压低。
即对于式(1)来说,副显示区一方的象素区尺寸大,液晶层的电容C1c变大,电压降ΔVp变小。所以,就图5(c)来说,正副极性电压的振幅相等,相对电极上施加的电压是对着副显示区的电极上施加的电压高较好。
因此,由于各相对电极上施加与象素区的尺寸相平衡的最佳电压,因此能够防止闪烁图像保留。
各相对电极上施加不同的电压,所以具有各自分离的电压施加手段。
下面,根据附图描述本发明的实施例。
图1是本发明的一个实施例中使用的TFT阵列基板的平面图;图2是图1中所示的TFT阵列基板的副显示区的一个象素区附近的放大平面图;图3是沿图2中的A-A’的截面图;图4是本发明的相对电极的平面图;图5(a)~图5(c)是液晶显示装置的驱动电压的说明图;图6是已有的TFT阵列基板的平面图;图7是已有的相对电极的平面图。
在图1中,示出了与本发明的实施例有关的有源矩阵型液晶显示装置中的TFT阵列基板40的平面图。
在本发明中,FTF阵列基板40上主显示区30和副显示区31上分别有多数的象素区32和33呈矩阵状排列。这样,象素区是由扫描线1和信号线19包围的区域,主显示区30和副显示区31上的象素区尺寸互不相同。
更具体地说,主显示区30的象素区32的尺寸为宽40μm×长120μm,副显示区31的象素区33的尺寸为宽40μm×长400μm。
本实施例中,由比主显示区30的象素区32尺寸大的象素区33构成副显示区31,在扫描线方向上象素区的宽度一致,形成在主显示区30上方。
另外,扫描这样的象素区的扫描线1、和提供信号的信号线19形成方格形状。信号线19是在象素区尺寸不同的主显示区30和副显示区31中间歇形成的连接线。
而且在对着TFT阵列基板40的相对基板41上,设置有如图4所示的分别对着主显示区30和副显示区31的相对电极13a和13b,上面施加各不相同的电压。
主显示区30以及副显示区31的外部,分别形成引至扫描线的端子36的扫描线引出线34,为的是从各显示区30、31的扫描线1连接到外接的栅极驱动IC上,和引至信号线的端子37的信号线引出线35,为的是从各显示区30、31的信号线19连接到外部的源极驱动IC上。而且,就本实施例的不同情况而言,有同一TFT阵列基板上装有驱动电路的情况,这种情况下,没有扫描线引出线和前述的信号线引出线从该驱动电路的输出上引出的构造。
其次,图2中示出了取出本实施例的液晶显示装置的副显示区31的一个象素区33的放大平面图。另外,图3中示出了沿着图2中的贯穿TFT21、接触电极18a以及电容电极9的线A-A’的截面图。而且,主显示区30的象素区32尺寸不同,构造副显示区31的象素区33相同。
如图2中所示,该副显示区31的象素区33是扫描线1和信号线19包围而成的,在纸面左下方形成TFT21、而在纸面上方形成存储电容22。纸面中央设置象素电极11。
立体观看如图3所示,使用该TFT阵列基板40的液晶显示装置,有液晶层20介于其间的TFT阵列基板40和相对设置的相对基板41。相对基板41上,设置有遮光用的黑色体矩阵15、彩色滤光片14、以及由铟和锡的氧化物(Indium Tin Oxide下面简单记作ITO)形成的与象素电极11相同的透明相对电极13。与液晶接触的面上形成有定向膜12。因此,在象素电极11与相对电极13之间施加电压,在液晶层20上施加电场,这样形成对液晶分子的定向控制。此外,这种构造分别具有象素电极11和相对电极13,由于它们之间具有电介体液晶层20,因此形成电容(以下把它称为液晶电容)。
如图2和图3所示,TFT设置有从扫描线1引出的栅极2,上面设置有氮化硅形成的绝缘膜3,其上又设置有由非结晶硅形成的半导体膜4,再上面设置有由添加鳞的非结晶硅的n+型非结晶硅形成的欧姆接触膜5,再上面形成有由半导体形成的漏极7和源极8。其中源极8是从信号线19引出。而且,在漏极7和源极8的上面,设置这样由氮化硅形成的钝化膜10、漏极7上的钝化膜10上形成接触电极18a。而且漏极7和由ITO形成的透明象素电极11通过接触电极18a连接。
存储电容22是扫描线1作为一侧电极,其上的栅极绝缘膜3形成电介体,再上面是形成有形成为另一侧电极的电容电极9。电容电极9是由漏极7和源极8借助于同一导体形成的。与TFT21一样电容电极9上面形成有钝化膜10,该钝化膜10上形成有接触电极18b、设置有电容电极9上引出的由ITO形成的象素电极11、电容电极9和象素电极11通过接触电极18b连接。而且,存储电容22与前述的液晶电容是并联关系,同时形成TFT21的负载电容。
在本实施例中,在同一TFT阵列基板40上分别形成象素区尺寸为宽40μm×长120μm的主显示区30和象素区尺寸为宽40μm×长400μm的副显示区31的两个显示区。与此相对的相对电极13a和13b,在如图4所示的一个相对基板41上各显示区分别设置。相对电极13a和13b由与象素电极11相同的ITO膜形成。
各相对电极13的尺寸(面积),与主显示区30和副显示区31的面积大致相等。
为对这样分开的各相对电极施加最佳电压,作为电压施加手段,分别准备两系列用于产生直流电压的DC/DC转换器(图中省略)。可将各个DC/DC转换器变换为对各个相对电极的最佳电压,施加到各个相对电极上。
本实施例中,主显示区30的象素区32的尺寸比副显示区31的象素区33的尺寸小,主显示区30的相对电极13a上施加的电压比副显示区31的相对电极13b上施加的电压低。例如本实施例中,主显示区30的相对电极13a上施加的电压为3.7V,副显示区31的相对电极13b上施加的电压为4.0V。
根据上面的说明,本发明中象素区尺寸不同的两个显示区上的两个相对电极上施加不同的电压。即就图5(c)来说,按照显示区的象素区尺寸变化Vcom的值,结果消除了正副极性的电压振幅之间的差值。
本发明涉及的有源矩阵型液晶显示装置,由于分开了相对电极,所以能够按照各个象素区的尺寸施加最佳电压,结果防止了闪烁图像保留。
权利要求
1.一种有源矩阵型液晶显示装置,其特征在于相对设置的一对基板之间夹有液晶层,前述一例基板的表面上呈矩阵状交叉形成多数扫描线和多数信号线,多数扫描线和信号线形成交叉部分的附近,分别形成具有连接到前述扫描线的栅极的薄膜晶体管、分别连接到该薄膜晶体管上的象素电极和存储电容、具有扫描线和信号线包围的象素区的尺寸互不相同的主显示区和副显示区、前述另一侧相对基板的液晶层一侧表面上形成相对电极、对着前述主显示区的相对电极和对着前述副显示区的相对电极分别形成。
2.根据权利要求1所述的有源矩阵型液晶显示装置,其特征在于前述主显示区的象素区尺寸比前述副显示区的象素区尺寸小。
3.根据权利要求1所述的有源矩阵型液晶显示装置,其特征在于具有对着前述主显示区的相对电极和对着前述副显示区的相对电极上分别施加不同的电压的电压施加手段。
4.根据权利要求3所述的有源矩阵型液晶显示装置,其特征在于前述主显示区的象素区尺寸比前述副显示区的象素区尺寸小,而且具有向对着前述主显示区的相对电极上施加的电压比向对着前述副显示区的相对电极上施加的电压低的电压施加手段。
全文摘要
对于具有象素区尺寸互不相同的主显示区和副显示区的有源矩阵型液晶显示装置,防止发生闪烁图像保留。对应于主显示区和副显示区的相对电极分开设计,主显示区使用的相对电极和副显示区使用的相对电极上按照象素区的尺寸分别施加最佳电压。
文档编号G02F1/1343GK1293380SQ00129680
公开日2001年5月2日 申请日期2000年10月12日 优先权日1999年10月14日
发明者仲野阳 申请人:阿尔卑斯电气株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1