偏振镜、偏振片、光学薄膜及图像显示装置的制作方法

文档序号:2766799阅读:216来源:国知局
专利名称:偏振镜、偏振片、光学薄膜及图像显示装置的制作方法
技术领域
本发明涉及偏振镜。另外,本发明还涉及使用该偏振镜的偏振片、光学薄膜。尤其涉及使用了该偏振镜、光学薄膜的液晶显示装置、有机EL显示装置、CRT、PDP等图像显示装置。
背景技术
液晶显示装置急速地在钟表、移动电话、PDA、笔记本电脑、个人电脑用监视器、DVD播放机、TV等领域开拓着市场。液晶显示装置是使利用液晶的转换引起的偏振状态变化可视化的装置,根据其显示原理可以使用偏振镜。特别是在TV等用途,要求越来越高的亮度还有对比度的显示,就偏振镜而言,正在开发、引入更明亮(高透射率)和更高对比度(高偏振度)的偏振镜。
作为偏振镜,例如使碘吸附在聚乙烯醇而拉伸的结构的碘系偏振镜,因为具有高透射率、高偏振度,所以被广泛使用(例如,参照专利文献1)。但是,由于碘系偏振镜在短波长侧的偏振度相对低,从而存在着在短波长侧黒显示的蓝色脱落、白显示的黄色调等的色相(hue)上的问题点。
另外,碘系偏振镜在吸附碘时容易产生不均。由此,特别在晶黒显示时,透射率的不均被检测出来,有使辨识(visibility)性降低这样的问题。作为解决该问题的方法,例如,提出使吸附于碘系偏振镜的碘的吸附量增加、使黒显示时的透射率位于人眼的感知界限以下的方法,或采用难以产生不均本身的拉伸加工的方法等。但是,前者的问题在于,使白显示时的透射率与黒显示时的透射率同时降低,显示本身变暗。另外,后者的问题在于,需要取代加工本身,生产率降低。
另一方面,用使用了二色性染料的染料系偏振镜来代替碘化合物(例如,参照专利文献2)。就该偏振镜而言,其使耐热性提高,对于伴随移动电话或PDA等的室外使用的构件,或被预测在车载导航器或液晶投影仪等预测在高温下使用的构件,由于在碘系偏振镜中伴随碘的升华或配位化合物状态的变化而使偏振光分离功能降低,以致经不起使用,从而作为代替方案被提出。但是,与碘化合物相比,二色性染料的吸收二色比低。由此,染料系偏振镜与碘系偏振镜相比,光透射率和偏振度的并存性变差。也就是说,如果先于光透射率使二色性色素的浓度变小,对比度下降,如果提高浓度,则对比度提高,但偏振镜的光透射率降低而变暗,所以,如碘系偏振镜那样,难以使光透射率和偏振度并存。
对于这些问题,公开有在树脂基质中分散有液晶性双折射材料和二色性染料的混合相的偏振镜(参照专利文献3)。该偏振镜使被二色性染料所吸收的方向的偏振光散射,从而提高该偏振光吸收效率,由此使光透射率和偏振度并存。在专利文献3中,预先在作为微小区域被分散的液晶性双折射材料中混合二色性染料,而使其在该微小区域中取向。但是,由于该取向约束力比碘系偏振镜中的拉伸聚乙烯醇相对于碘配位化合物的取向约束力低,使得二色性染料原本具有的二色性不能充分表现,从而限制了作为偏振镜的特性提高的程度。
专利文献1特开2001-296427号公报专利文献2特开昭62-123405号公报专利文献3特开2002-207118号公报发明内容本发明的目的在于,提供一种能够抑制黒显示时的透射率不均的具有高透射率、高偏振度、并且耐热性出色的偏振镜。
另外,本发明目的还在于,提供使用了该偏振镜的偏振片、光学薄膜。进而,其目的还在于,提供使用了该偏振镜、偏振片、光学薄膜的图像显示装置。
本发明人等为了解决上述课题,进行了潜心研究,结果发现,通过以下所示的偏振镜可以达到上述目的,从而完成了本发明。
即,本发明涉及一种偏振镜,其特征在于,由具有在以透光性树脂形成的基质中分散有至少两种微小区域的结构的薄膜构成,该微小区域的至少一种通过液晶性双折射材料形成,其他的微小区域的至少一种是由含有在所述液晶性双折射材料的液晶温度范围内不丧失二色性的二色性吸光体的聚乙烯醇系树脂材料形成。
形成所述微小区域的液晶性双折射材料优选处于取向状态。另外,所述液晶性双折射材料优选至少在取向处理时刻呈现液晶性。
所述本发明的偏振镜,在由透光性树脂形成的基质中分散有至少两种微小区域。该微小区域的至少一种是液晶性双折射材料、其他微小区域的至少一种是含有二色性吸光体的聚乙烯醇系树脂材料。这样,除了通过由二色性吸光体产生的吸收二色性的功能之外,还兼备散射各方异性的功能,从而利用这两项功能的协同效果来提高偏振性能,由此获得透射率和偏振度并存的辨识性良好的偏振镜。另外,二色性吸光体在液晶温度范围内不丧失二色性,由于在微小区域内含有该二色性吸光体,所以使耐热性出色。
各方异性散射的散射性能起因于基质和微小区域的折射率差。由于形成微小区域的液晶性双折射材料与基质的透光性树脂相比,Δn的波长分散更高,从而进行散射的轴的折射率差越是短波长侧变得越大,并且波长越短散射量越多。由此,波长越短偏振性能的提高效果越大,从而能够实现整体上高偏振且色相中性的偏振镜。特别是利用了碘作为二色性吸光体的碘系偏振镜,由于短波长侧的偏振性能相对低,所以基于本发明的偏振性能提高效果及中性化效果较大。
在所述偏振镜中,优选液晶性双折射材料的双折射为0.02以上。微小区域所使用的液晶性双折射材料,从获得更大各方异性散射功能的观点来看,优选使用具有所述双折射的材料。
在所述偏振镜中,形成微小区域的液晶性双折射材料、和透光性树脂的相对于各光轴方向的折射率差,优选在显示最大值的轴方向的折射率差(Δn1)为0.03以上,且在与Δn1方向正交的双向的轴方向的折射率差(Δn2)是所述Δn1的50%以下。
通过将相对于各光轴方向的所述折射率差(Δn1)、(Δn2)控制在所述范围内,可以制成如在美国专利第2123902号说明书中提出的那样的、具有只选择性地使Δn1方向的直线偏振光散射的功能的散射各向异性薄膜。即,由于在Δn1方向的折射率差较大,所以使线偏振光散射,另一方面,由于在Δn2方向的折射率差较小,所以可以使线偏振光透过。此外,与Δn1方向正交的双向的轴方向的折射率差(Δn2)优选都相等。
为了提高散射各向异性,Δn1方向的折射率差(Δn1)为0.03以上,优选为0.05以上,特别优选为0.10以上。另外,与Δn1方向正交的双向的折射率差(Δn2)优选为所述Δn1的50%以下,进一步为优选30%以下。
在所述偏振镜中,形成微小区域的聚乙烯醇系树脂材料所含有的二色性吸光体,优选其吸收轴沿Δn1方向取向。
通过使聚乙烯醇系树脂材料中的二色性吸光体发生取向并使该材料的吸光轴平行于所述Δn1方向,能够选择性地吸收作为散射偏振光方向的Δn1方向的直线偏振光。其结果,入射光当中的Δn2方向的直线偏振光成分,与不具有各向异性散射性能的以往型偏振镜相同,没有散射而是透过。另一方面,Δn1方向的直线偏振光成分被散射,且被二色性吸光体所吸收。通常,吸收由吸收系数和厚度决定。在光被如此散射的情况下,与无散射的情况相比,光程长度飞跃性地变长。作为结果,Δn1方向的偏振光成分与以往的偏振镜相比,被多余地吸收。即,以相同的透射率得到更高的偏振度。
以下,对理想的模型进行详细说明。使用通常用在直线偏振镜中的两个主透射率(第一主透射率k1(透射率最大方位=Δn2方向的直线偏振光透射率)、第二主透射率k2(透射率最小方向=Δn1方向的直线偏振光透射率))进行如下讨论。
在市售的碘系偏振镜中,如果使二色性吸光体(碘系吸光体)沿一个方向进行取向,平行透射率、偏振度分别用平行透射率=0.5×((k1)2+(k2)2)、偏振度=(k1-k2)/(k1+k2)表示。
另一方面,假设在本发明的偏振镜中,Δn1方向的偏振光被散射,平均光程长度为α(>1)倍,假设由散射引起的偏振消除可以被忽略,此时的主透射率可以分别用k1、k2’=10x(其中,x为αlogk2)表示。
即,此时的平行透射率、偏振度用平行透射率=0.5×((k1)2+(k2’)2)偏振度=(k1-k2’)/(k1+k2’)表示。
例如,在与市售的碘系偏振镜(平行透射率0.385,偏振度0.965k1=0.877,k2=0.016)相同条件(染色量、制作步骤相同)下,制作本发明的偏振镜,在计算上当α为2倍时,降低至k2=0.0003,作为结果,平行透射率为0.385不变,偏振度提高到0.999。上述是在计算上,当然通过由散射引起的偏振消除或表面反射以及反向散射的影响等,功能会有些许降低。由上式可知,α越高越好,二色性吸光体的二色比越高,就可以达到越高的功能。为了提高α,可以尽可能提高散射各向异性功能,选择性地使Δn1方向的偏振光强烈地散射。另外,反向散射越少越好,反向散射强度相对于入射光强度的比率优选为30%以下,进一步优选为20%以下。
在所述偏振镜中,薄膜可以适当使用通过拉伸制造的薄膜。
在所述偏振镜中,偏振镜的微小区域优选Δn2方向的长度为0.05~500μm。
在可见光区域的波长中,为了强烈散射在Δn1方向上具有振动面的直线偏振光,将分散分布的微小区域控制成Δn2方向的长度为0.05~500μm,优选为0.5~100μm。如果微小区域的Δn2方向的长度与波长相比过短,就不会充分地发生散射。另一方面,有可能出现下述问题等,即,如果微小区域的Δn2方向的长度过长,薄膜强度降低,或形成微小区域的液晶性材料在微小区域中不能充分取向等。
在所述偏振镜中,二色性吸光体使用至少在400~700nm的波段具有吸收区域的材料。
所述偏振镜优选,相对于透射方向的直线偏振光的透射率为70%以上,且其浊度值为10%以下,相对于吸收方向的直线偏振光的浊度值为50%以上。
具有所述透射率、浊度值的本发明的偏振镜,相对于透过方向的直线偏振光具有高透射率和良好的辨识性,且相对于吸收方向的直线偏振光具有较强的光扩散性。因此,通过简便的方法,在不牺牲其它的光学特性的情况下,具有高透射率、高偏振度,能够抑制黑显示时的透射率的不均。
本发明的偏振镜,相对于透过方向的直线偏振光、即与所述二色性吸光体的最大吸收方向正交的方向的直线偏振光,优选具有尽可能高的透射率,当将己入射的直线偏振光的光强度设为100时,优选具有70%以上的光线透射率。光线透射率更优选为75%以上,进一步优选光线透射率为80%以上。在这里,与使用带有积分球的分光光度计测量的380nm~780nm的分光透射率相比,光线透射率相当于根据CIE 1931 XYZ表色系统计算的Y值。此外,由于从偏振镜的正反面的空气界面反射约8%~10%,所以理想的极限是从100%减去其表面反射部分而得到的值。
另外,从显示图像的辨识性的清晰性的观点来看,本发明的偏振镜优选不对透过方向的直线偏振光进行散射。因此,相对于透过方向的直线偏振光的浊度值优选为10%以下、进一步优选为8%以下,更进一步优选为5%以下。另一方面,从局部的透射率偏差引起的不均被散射所隐蔽的观点出发,偏振镜优选对吸收方向的直线偏振光、即上述二色性吸光体的最大吸收方向的直线偏振光进行强烈散射。因此,相对于吸收方向的直线偏振光的浊度值优选为30%以上。更优选为40%以上,进一步优选为50%以上。还有,浊度值是基于JISK 7136(塑料-透明材料的浊度的求法)而测定的值。
所述光学特性除了偏振镜的吸收二色性的功能之外,还通过散射各向异性的功能被复合化而引起。同样的情况可以通过美国专利第2123902号说明书或特开平9-274108号公报或特开平9-297204号公报所记载的方法来实现,即利用使散射最大的轴与吸收最大的轴平行那样的轴配置,来重叠具有只选择性散射线偏振光的功能的散射各向异性薄膜、和二色性吸收型偏振镜。但是,这些需要另外形成散射各向异性薄膜,或者重叠时的轴吻合精度存在问题,进而在已简单重叠时,不能达到上述的已吸收的偏振光的光程长度增大效果,难以实现高透过、高偏振度。
另外,本发明涉及在所述偏振镜上没有设置透明保护层的偏振片。
另外,本发明还涉及在所述偏振镜的至少一面上设置了透明保护层的偏振片。
另外,本发明还涉及一种光学薄膜,其特征在于,层叠有至少1张所述偏振镜、所述偏振片。
进而,本发明涉及一种图像显示装置,其特征在于,使用了所述偏振镜、所述偏振片或所述光学薄膜。


图1是表示本发明的偏振镜的一个例子的概念图。
图中1-透光性树脂,2a-液晶性双折射材料的微小区域,2b-聚乙烯醇系树脂材料的微小区域,3-二色性吸光体具体实施方式
以下,参照附图对本发明的偏振镜进行说明。图1是本发明的偏振镜的概念图。在图1中,具有由透光性树脂1形成薄膜并将该薄膜作为基质(matrix)且使至少2种微小区域2分散的结构。就微小区域2而言,至少一种是由液晶性双折射材料形成的微小区域2a,其他的至少一种是由含有二色性吸光体3的聚乙烯醇系树脂材料形成的微小区域2b。还有,二色性吸光体3也可以被分散在成为基质的透光性树脂1中。
图1是在微小区域2a和透光性树脂1的折射率差显示最大值的轴方向(Δn1方向)上,微小区域2b所包括的二色性吸光体3取向时的示例。在微小区域2a中,Δn1方向的偏振光成分发生散射。在图1中,位于薄膜面内的一个方向的Δn1方向成为吸收轴。在薄膜面内与Δn1方向正交的Δn2方向为透射轴。还有,与Δn1方向正交的又一个Δn2方向为厚度方向。
透光性树脂1可以没有特别限制地使用在可见光区域具有透光性且分散吸附二色性吸光体的材料。作为透光性树脂1,可以举出透光性的水溶性树脂。但是,作为微小区域2b,为了使聚乙烯醇系树脂分散而使用了聚乙烯醇系树脂以外的树脂。由于基质使用聚乙烯醇系树脂以外的树脂,从而耐热性、耐湿性出色。尤其在使用水溶性以外的树脂时,耐热性、耐湿性出色。作为透光性树脂1,例如可以举出聚乙烯基吡咯烷酮系树脂、直链淀粉系树脂等水溶性树脂。另外,作为透光性树脂1,例如可以举出聚对苯二甲酸乙二醇酯或聚对苯二甲酸乙二醇酯等聚酯系树脂;聚苯乙烯或丙烯腈-苯乙烯共聚合物(AS树脂)等的苯乙烯系树脂;聚乙烯、聚丙烯、具有环(cyclo-)系以及降冰片烯结构的聚烯烃、乙烯-丙烯共聚合物等烯烃系树脂。进而,还可以举出氯乙烯系树脂、纤维素系树脂、丙烯酸系树脂、酰胺系树脂、酰亚胺系树脂、砜系树脂、聚醚砜系树脂、聚醚醚酮系树脂聚合物、聚苯硫醚系树脂、偏氯乙烯系树脂、聚乙烯醇缩丁醛系树脂、芳基化物系树脂、聚甲醛系树脂、硅酮系树脂、氨基甲酸酯系树脂等。它们可以适当使用能挤压成形的树脂。所述透光性树脂1,也可以是具有难以产生由成形变形等引起的取向双折射的各向同性的材料,也可以是具有易于产生取向双折射的各向异性的材料。
微小区域2a的形成使用液晶性双折射材料。液晶性双折射材料优选使用至少在取向处理时刻呈现液晶性的材料。也就是说,液晶性双折射材料只要在取向处理时刻呈现液晶性,则在形成的微小区域2a中可以呈现液晶性、也可以丧失液晶性。
形成微小区域2a的液晶性双折射材料,也可以是向列相型液晶性、蝶状液晶型液晶性、胆甾醇型液晶性的任意一种,并且也可以是溶致型液晶性的材料。另外,液晶型双折射材料,可以是液晶性热塑性树脂,也可以是由液晶性单体的聚合而形成的材料。在液晶性双折射材料为液晶性热塑性树脂的情况下,从最终获得的结构体的耐热性的观点而言,优选玻化温度高的材料,并且优选使用至少在室温时为玻璃状态的材料。液晶性热塑性树脂通常经过加热而取向,冷却后使其固定,形成保持液晶性不变的微小区域2a。液晶性单体能够在配合后,在通过聚合、交联等而固定的状态下,可以形成微小区域2a,但是存在已形成的微小区域2a中液晶性丧失的材料。
作为所述液晶性热塑性树脂,可以没有特别限制地使用主链型、侧链型或它们的复合型的各种骨架的聚合物。作为主链型的液晶聚合物,可以举出具有结合了由芳香族单元等构成的直线状原子团(mesogene)基的结构的缩合系的聚合物,例如聚酯系、聚酰胺系、聚碳酸酯系、聚酯酰亚胺系等聚合物。作为成为直线状原子团基的所述芳香族单元,可以举出苯系、联苯系、萘系的芳香族单元。这些芳香族单元可以具有氰基、烷基、烷氧基、卤基等取代基。
作为侧链型的液晶聚合物,可以举出将聚丙烯酸酯系、聚甲基丙烯酸酯系、聚-α-卤代-丙烯酸酯系、聚-α-卤代-氰基丙烯酸酯系、聚丙烯酰胺系、聚硅氧烷系、聚丙二酸酯系的主链作为骨架,在侧链具有由环状单元等构成的直线状原子团基的聚合物。作为成为直线状原子团基的所述环状单元,可以举例为联苯系、苯甲酸苯酯系、苯基环己烷系、氧化偶氮苯系、甲亚胺系、偶氮苯系、苯基嘧啶系、二苯乙炔系、苯甲酸二苯酯系、双环己烷、环己基苯系、联三苯系等。此外,这些环状单元的末端例如可以具有氰基、烷基、烯基、烷氧基、卤基、卤代烷基、卤代烷氧基、卤代烯基等取代基。另外,直线状原子团基的苯基可以使用具有卤基的化合物。
另外,任意液晶聚合物的直线状原子团基可以借助赋予屈曲性的间隔基来结合。作为间隔基,可以举出聚亚甲基链、聚氧亚甲基链等。形成间隔基的结构单元的重复数虽然由直线状原子团部的化学结构来适当决定,但聚亚甲基链的重复单元为0~20,优选为2~12,聚氧亚甲基链的重复单元数为0~10,优选为1~3。
所述液晶性热塑性树脂优选玻化温度为50℃以上,进一步优选为80℃以上。另外,优选重均分子量为2千~10万左右的材料。
作为液晶性单体,可以举出在末端具有丙烯酰基、甲基丙烯酰基等聚合性官能团并在其上具有由所述环状单元等构成的直线状原子团基、间隔基的液晶性单体。另外,也可以使用具有2个以上的丙烯酰基、甲基丙烯酰基等作为聚合性官能团的化合物,引入交联结构,使耐久性改善。
形成微小区域2a的材料,并非全部限定为所述液晶性双折射材料,只要是与基质材料不同的材料,就可以使用非液晶性的树脂。作为树脂,可以举出聚芳基化物、聚砜、聚酰亚胺、聚碳酸酯、聚丙烯酰胺、聚对苯二甲酸乙二醇酯、丙烯酸苯乙烯共聚物等。另外,作为形成微小区域2a的材料,能够使用不具有双折射的粒子等。作为该微粒,例如可以举出聚丙烯酸酯、丙烯酸苯乙烯共聚物等树脂。对微粒的尺寸没有特别限制,但使用0.05~500μm、优选0.5~100μm的粒径的微粒。形成微小区域2a的材料,优选所述液晶性双折射材料,但是也能够使用将非液晶性材料混入到所述液晶性双折射材料中的材料。并且,在形成微小区域2a的材料中,也能够单独使用非液晶性材料。
微小区域2b由含有二色性吸光体3的聚乙烯醇系树脂材料形成。
所述微小区域2b所使用的聚乙烯醇系树脂材料,可以没有特别限制地使用由所述二色性吸光体3染色的材料。例如,可以举出以往在偏振镜中所使用的聚乙烯醇或其衍生物。作为聚乙烯醇衍生物,除了可以举出聚乙烯醇缩甲醛、聚乙烯醇缩乙醛等以外,还可以举出用乙烯、丙烯等烯烃,丙烯酸、甲基丙烯酸、巴豆酸等不饱和羧酸及其烷基酯、丙烯酰胺等改性的物质。
二色性吸光体3优选使用具有耐热性且在对形成微小区域2a的液晶性双折射材料在液晶温度范围进行加热而使其取向时也没有因分解或改性导致二色性丧失的吸光体。
作为吸收二色性染料,优选使用通过添加到一直以来的聚乙烯醇系树脂中而使二色性呈现的染料。例如,可以没有特别限制地使用在特开平5-296281号公报、特开平5-295282号公报、特开平5-311086号公报、特开平6-122830号公报、特开平6-128498号公报、特开平7-3172号公报、特开平8-67824号公报,特开平8-73762号公报、特开平8-127727号公报等中所公开的二色性染料。另外,还能够适当使用在特开平5-53014号公报、特开平5-53015号公报、特开平6-122831号公报、特开平6-265723号公报、特开平6-337312号公报、特开平7-159615号公报、特开平7-318728号公报、特开平7-325215号公报、特开平7-325220号公报、特开平8-225750号公报、特开平8-291259号公报、特开平8-302219号公报、特开平9-73015号公报、特开平9-132726号公报、特开平9-302249号公报、特开平9-302250号公报、特开平10-259311号公报、特开2000-319633号公报、特开2000-327936号公报、特开2001-2631号公报、特开2001-4833号公报、特开2001-108828号公报、特开2001-240762号公报、特开2002-105348号公报、特开2002-155218号公报、特开2002-179937号公报、特开2002-220544号公报、特开2002-275381号公报。特开2002-357719号公报、特开2003-64276号公报、特开平2-13903号公报、特开平2-89008号公报、特开平3-89203号公报、特开2003-313451号公报、特开2003-327858号公报、特开平3-89203号公报、特开2003-313451号公报、特开2003-327858号公报等中所公开的二色性染料,或在特开平9-230142号公报、特开平11-218610号公报、特开平11-218611号公报、特开2001-27708号公报、特开2001-33627号公报、特开2001-56412号公报、特开2002-296417号公报、特开平1-313568号公报、特开平3-12606号公报、特开2003-215338号公报、WO00/37973号小册子等公开的二色性染料。当然,在本发明中,吸收二色性染料并不限定于此,能够优选使用可将聚乙烯醇系树脂染色的任意染料。
就本发明的偏振镜而言,在制作利用透光性树脂1形成基质的薄膜的同时,使由聚乙烯醇系树脂材料形成并被分散的微小区域2b中含有二色性吸光体3,进而使由液晶性双折射材料形成的微小区域2a分散。另外,在薄膜中,将所述Δn1方向的折射率差(Δn1)、Δn2方向的折射率差(Δn2)控制在所述范围内。
对本发明的偏振镜的制造工序没有特别限制,但是例如通过实施以下工序而获得(1)制造使成为微小区域的液晶性双折射材料、由二色性吸光体染色的聚乙烯醇系材料分散在成为基质的透光性树脂中的混合溶液或熔融树脂的工序;(2)使所述(1)的混合溶液或熔融树脂薄膜化的工序;(3)使由所述(2)获得的薄膜取向(拉伸)的工序;(4)在所述(1)工序中没有添加二色性吸光体时,使二色性吸光体在成为微小区域的聚乙烯醇系树脂材料中分散(染色)的工序。还有,可以适当决定工序(1)~(4)的顺序。
在所述工序(1)中,首先,调制使成为微小区域的液晶性双折射材料、由二色性吸光体染色的聚乙烯醇系材料分散在形成基质的透光性树脂中而成的混合溶液或熔融树脂。
在调制混合溶液时,没有特别限制其调制法,但是可以举出利用所述基质成分(透光性树脂)和液晶性双折射材料以及聚乙烯醇系材料的相分离现象的方法。例如,可以举出如下所述的方法等,即选择难以与基质成分互容的材料作为液晶性双折射材料及聚乙烯醇系材料,通过界面活性剂等分散剂在基质成分的溶液中使液晶性双折射材料及聚乙烯醇系材料的溶液熔融混炼并分散的方法等。在使二色性吸光体也一起分散时,可以举出将形成基质的材料、液晶性双折射材料及聚乙烯醇系材料和二色性吸光体一次混合的方法、或预先使二色性吸光体分散在聚乙烯醇系树脂材料中后将形成基质的材料、液晶性双折射材料混合的方法,但是调制法不限定于此,能够采用适当的方法。
在所述工序(1)中调制熔融树脂时,没有特别限制该调制法,但可以举出利用所述基质成分和液晶性双折射材料及聚乙烯醇系材料的相分离现象的方法。例如,可以举出如下所述的方法等,即选择难以与基质成分互容的材料作为液晶性双折射材料及聚乙烯醇系材料,通过界面活性剂等分散剂在基质成分的溶液中使液晶性双折射材料及聚乙烯醇系材料的溶液熔融混炼并分散的方法等。在使二色性吸光体也一起分散时,可以举出将形成基质的材料、液晶性双折射材料及聚乙烯醇系材料和二色性吸光体一次混合的方法、或在预先对聚乙烯醇系树脂材料和二色性吸光体进行熔融混炼后重新对形成基质的材料、液晶性双折射材料进行混合的方法等,但是调制法不限定于此,能够采用适当的方法。
对分散在基质中的液晶性双折射材料的使用量没有特别限制,相对于透光性树脂100重量份,液晶性双折射材料为0.01~100重量份,优选0.1~10重量份。另外,对分散在基质中的聚乙烯醇系树脂材料的使用量没有特别限制,相对于透光性树脂100重量份,聚乙烯醇系树脂材料为0.001~5000重量份,优选为0.1~1000重量份。
将液晶性双折射材料及聚乙烯醇系树脂材料溶解在溶剂中或不溶解直接使用。作为溶剂,可以举例为水、甲苯、二甲苯、己烷、环己烷、二氯甲烷、三氯甲烷、二氯乙烷、三氯乙烷、四氯乙烷、三氯乙烯、甲基乙基甲酮、甲基异丁基酮、环己酮、环戊酮、四氢呋喃、醋酸乙酯等。在通过溶液进行调制时,基质成分的溶剂与液晶性双折射材料及聚乙烯醇系树脂材料的溶剂可以相同也可以不同。
还有,在基质成分的溶液或熔融树脂、液晶性双折射材料或聚乙烯醇系树脂材料的溶液或熔融树脂、或它们的混合溶液中或混合熔融树脂中,只要在不妨害本发明的目的的范围内,能够含有分散剂、界面活性剂、紫外线吸收剂、阻燃剂、抗氧化剂、增塑剂、脱模剂、润滑剂、着色剂等各种添加剂。
在将所述混合溶液或混合熔融树脂薄膜化的工序(2)中,在使用所述混合溶液时,通过加热干燥而除去溶剂,来制作在基质中使两种以上的微小区域分散的薄膜。作为薄膜形成方法,能够采用浇铸法、挤压成形法、注射模塑成形法、辊成形法、流延成形法等各种方法。另外,在使用混合熔融树脂时,能够采用直接压延、挤压成形、注射模塑成形、辊成形、流延成形等各种方法。
在薄膜成形时,薄膜中的微小区域的尺寸最终被控制成Δn2方向为0.05~500μm。通过调节混合溶液的粘度、混合溶液的溶剂的选择、组合、分散剂、混合溶剂的热加工(冷却速度)、干燥速度,能够控制微小区域的大小或分散性。
在将所述薄膜取向的工序(3)中,能够通过拉伸薄膜来实施取向。拉伸可以举出单向拉伸、双向拉伸、斜向拉伸等,但通常进行单向拉伸。拉伸方法可以为空气中的干式拉伸或水系浴中的湿式拉伸中的任意一种。在采用湿式拉伸时,水系浴中能够含有适当的添加剂。另外,对拉伸倍率没有特别限制,通常优选为2~10倍左右。
通过该拉伸,能够使二色性吸光体在拉伸轴方向取向。另外,形成微小区域的液晶性双折射材料,通过所述拉伸在微小区域中沿拉伸方向取向,并且呈现双折射。
微小区域优选对应拉伸而变形。在微小区域为非液晶性材料时,拉伸温度最好选择为树脂的玻化温度附近,在微小区域为液晶性双折射材料时,拉伸温度最好选择为在拉伸时的温度下液晶性材料成为向列相或者近晶相等液晶状态或者各向同性相状态的温度。当在拉伸时刻取向不充分时,可以另外加上加热取向处理等工序。
对于液晶性双折射材料的取向,除了上述拉伸之外,还可以使用电场或磁场等外场。另外,在液晶性双折射材料中混合偶氮苯等光反应性物质,或者使用向液晶性双折射材料中导入了肉桂酰基等光反应性基的物质,使它通过光照射等取向处理而取向。进而也可以并用拉伸处理和如上所述的取向处理。在液晶性双折射材料为液晶性热塑性树脂的情况下,在拉伸时取向之后,通过在室温下冷却而使取向固定化以及稳定化。液晶性单体的固化例如与光聚合引发剂混合而分散在基质成分的溶液中,取向后,在任一时刻照射紫外线等而固化,由此使取向稳定化。
在所述(2)中进行薄膜化后,根据需要能够实施在由聚乙烯醇系树脂材料形成的微小区域中使二色性吸光体分散(染色)的工序(4)。例如,可以举出在将二色性吸光体溶解在溶剂中的浴中浸渍所述薄膜的方法,或将含有二色性吸光体的溶液涂敷在所述薄膜上的方法等。作为浸渍的时间,可以在所述拉伸工序(3)之前也可以在其后。关于此时使用的二色性染料的溶液的浓度或助剂等的使用,能够任意进行。
对获得的偏振镜中的二色性吸光体的比例没有特别限制,透光性树脂和吸收二色性吸光体的比例,优选相对于透光性树脂100重量份,被控制成二色性吸光体为大致0.05~100重量份、进一步为0.1~50重量份。
在制作偏振镜时,除了所述工序(1)~(4)以外,能够实施用于各种目的的工序(5)。作为工序(5),例如可以举出以提高薄膜的染色效率为主要目的,将薄膜浸渍于适宜的溶剂中使其溶胀的工序。另外,可以举出以对水溶性树脂(基质)实施交联为主要目的,或以调节二色性吸光体的量平衡、调节色相为主要目的,进行添加剂的添加或向含有添加剂的溶液的薄膜浸渍工序。
将所述薄膜取向(拉伸)拉伸的工序(3)、在由聚乙烯醇系树脂材料形成的微小区域中使二色性吸光体分散染色的工序(4)以及所述工序(5),能够任意选择工序的次数、顺序、条件(浴温度或浸渍时间等),各工序也可以单独执行,也可以使多个工序同时进行。另外,工序(1)中预先使二色性吸光体分散后,还能够在工序(4)中使二色性吸光体分散染色。此时,工序(1)、(4)中的二色性吸光可以相同,也可以不同。
经过以上处理的薄膜,优选在适当条件下干燥。干燥根据通常方法进行。
对获得的偏振镜(薄膜)的厚度没有特别限制,通常为1μm~5mm,优选5μm~3mm、进一步优选10μm~1mm。
就如此得到的偏振镜而言,通常在拉伸方向上,形成微小区域的液晶性双折射材料的折射率和基质树脂的折射率没有特别的大小关系,拉伸方向成为Δn1方向。与拉伸轴正交的两个垂直方向成为Δn2方向。另外,就二色性吸光体而言,拉伸方向成为显示最大吸收的方向,成为吸收+散射的效果得到最大限度体现的偏振镜。
通过本发明获得的偏振镜,由于具有与现有的吸收型偏振片相同的功能,所以能够在没有任何变更的情况下运用到使用吸收型偏振片的各种应用领域中。
获得的偏振镜,由于基质不是聚乙烯醇树脂,由此能够直接用作偏振片,并根据需要能够形成为对其至少一面设置透明保护层的偏振片。透明保护层能够作为由聚合物涂敷的涂敷层,或作为薄膜的层叠层等而设置。作为形成透明保护层的透明聚合物或薄膜材料,能够使用适当的透明材料,优选使用透明性或机械强度、热稳定性或水分屏蔽性等各方面具有良好性质的材料。作为形成所述透明保护层的材料,可以举例为聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯等聚酯系聚合物、二乙酰纤维素或三乙酰纤维素等纤维素系聚合物、聚甲基丙烯酸甲酯等丙烯酸系聚合物、聚苯乙烯或丙烯腈-苯乙烯共聚物(AS树脂)等苯乙烯系聚合物、聚碳酸酯系聚合物等。另外,作为形成所述透明保护层的聚合物的例子,还可以举例为聚乙烯、聚丙烯、具有环系或降冰片烯结构的聚烯烃,乙烯-丙烯共聚物之类的聚烯烃系聚合物,氯乙烯系聚合物,尼龙或芳香族聚酰胺等酰胺系聚合物,酰亚胺系聚合物,砜系聚合物,聚醚砜系聚合物,聚醚醚酮系聚合物,聚苯硫醚系聚合物,乙烯基醇系聚合物,偏氯乙烯系聚合物,聚乙烯醇缩丁醛系聚合物,芳基化物系聚合物,聚甲醛系聚合物,环氧系聚合物,或者所述聚合物的混合物等。
另外,特开2001-343529号公报(WO01/37007)所记载的聚合物薄膜,例如可以举出含有(A)在侧链上具有取代和/或未取代亚氨基的热塑性树脂,和(B)在侧链上具有取代和/或未取代苯基以及腈基的热塑性树脂的树脂组合物。作为具体例,可以举例为含有由异丁烯和N-甲基马来酸酐缩亚胺组成的交替共聚物和丙烯腈-苯乙烯共聚物的树脂组合物的薄膜。薄膜能够使用由树脂组合物的混合挤压制品等构成的薄膜。
从偏振特性或耐久性等观点来看,能够特别优选利用的透明保护层是通过碱等对表面实施皂化处理的三乙酰纤维素薄膜。透明保护层的厚度可为任意厚度,但一般以偏振片的薄型化等为目的,优选为500μm以下、进一步优选为1~300μm、特别优选为5~300μm。还有,当在偏振镜的两侧设置透明保护层时,在其表背面能够使用由不同聚合物等构成的透明保护薄膜。
还有,透明保护薄膜尽可能优选没有着色的薄膜。因而,优选使用由Rth=[(nx+ny)/2-nz]·d(在此,nx、ny是薄膜平面内的主折射率,nz是薄膜厚度方向的折射率,d是薄膜厚度)表述的薄膜厚度方向的相位差值为-90nm~+75nm的保护薄膜。通过使用所述厚度方向的相位差值(Rth)为-90nm~+75nm的薄膜,能够大致消除保护薄膜产生的偏振片的着色(光学着色)。厚度方向相位差值(Rth)进一步优选为-80nm~+60nm,特别优选-70nm~+45nm。
在所述透明保护薄膜的没有粘接偏振镜的面上,也可以实施硬涂层层或防反射处理、防粘连处理、以扩散或防眩为目的的处理。
实施硬涂处理的目的是防止偏振片表面损坏等,例如能够通过将丙烯酸系、硅酮系等适宜的紫外线固化性树脂构成的硬度、滑动特性等出色的固化被膜附加到透明保护薄膜的表面的方式等而形成。防反射处理的目的是防止偏振片表面中的外光的反射,可以通过形成基于以往的防反射膜等来完成。另外,实施防粘连处理的目的是防止与相邻层的粘附。
另外,实施防眩处理的目的是防止外光在偏振片的表面反射而干扰偏振片透过光的辨识等。例如可以通过利用喷砂方式或压纹加工方式的粗面化方式或配合透明微粒的方式等适当的方式,对透明保护薄膜的表面赋予微细凹凸结构而形成。作为所述表面微细凹凸结构的形成中所含有的微粒,例如使用平均粒径为0.5~50μm的由氧化硅、氧化铝、氧化钛、氧化锆、氧化锡、氧化铟、氧化镉、氧化锑等组成的往往具有导电性的无机系微粒、由交联或未交联的聚合物等组成的有机微粒等透明微粒。在形成表面微细凹凸结构时,微粒的使用量相对于100重量份形成表面微细凹凸结构的透明树脂,一般为大致2~50重量份,优选为5~25重量份。防眩层也可以兼当用于将偏振片透过光扩散而扩大视角等的扩散层(视角扩大功能等)。
还有,所述防反射层、防粘连层、扩散层或防眩层等除了能够设置成透明保护薄膜自身以外,也可以作为其他光学层与透明保护层分开设置。
在所述偏振镜和透明保护薄膜的粘接处理中,使用胶粘剂。作为胶粘剂,能够例示异氰酸酯系胶粘剂、聚乙烯醇系胶粘剂、明胶系胶粘剂、乙烯基系乳胶系、水系聚酯等。所述胶粘剂通常用作由水溶液构成的胶粘剂,通常含有0.5~60重量%的固体成分而成。
本发明的偏振片,通过利用所述胶粘剂贴合所述透明保护薄膜和偏振镜而制造。胶粘剂的涂敷,可以是对透明保护薄膜、偏振镜的任意一方进行,也可以是对两者进行。在贴合后,实施干燥工序,形成由涂敷干燥层构成的胶粘层。偏振镜和透明保护薄膜的贴合,能够通过辊层叠机等进行。对胶粘剂层的厚度没有特别限制,但通常大致为0.1~5μm。
本发明的偏振片在实际使用时能够作为与其他光学层层叠的光学薄膜使用。对该光学层没有特别限定,例如能够使用反射板或半透射板、相位差板(包括1/2或1/4等波阻片)、视角补偿薄膜等在液晶显示装置等的形成中可以使用的光学层1层或2层以上。特别优选的偏振片是在本发明的偏振片上进一步层叠反射板或半透过反射板而成的反射型偏振片或半透过型偏振片;在偏振片上进一步层叠相位差板而成的椭圆偏振片或圆偏振片;在偏振片上进一步层叠视角补偿薄膜而成的宽视场角偏振片;或者在偏振片上进一步层叠亮度改善薄膜而成的偏振片。
反射型偏振片是在偏振片上设置反射层而成的,可用于形成反射从辨识侧(显示侧)入射的入射光来进行显示的类型的液晶显示装置等,并且可以省略内置的背光灯等光源,从而具有易于使液晶显示装置薄型化等优点。当形成反射型偏振片时,可以通过根据需要借助透明保护层等在偏振片的一面附设由金属等构成的反射层的方式等适当的方式而进行。
还有,在上述中,半透过型偏振片可以通过作成用反射层来反射光同时使光透过的半透半反镜等半透过型的反射层而获得。半透过型偏振片通常被设于液晶单元的背面侧,可以形成如下类型的液晶显示装置等,即,在比较明亮的环境中使用液晶显示装置等的情况下,反射来自于辨识侧(显示侧)的入射光而显示图像,在比较暗的环境中,使用内置于半透过型偏振片的背面的背光灯等内置光源来显示图像。
下面对偏振片上进一步层叠相位差板而成的椭圆偏振片或圆偏振片进行说明。在将直线偏振光改变为椭圆偏振光或圆偏振光,或者将椭圆偏振光或圆偏振光改变为直线偏振光,或者改变直线偏振光的偏振方向的情况下,可以使用相位差板等。特别是,作为将直线偏振光改变为圆偏振光或将圆偏振光改变为直线偏振光的相位差板,可以使用所谓的1/4波阻片(也称为λ/4片)。1/2波阻片(也称为λ/2片)通常用于改变直线偏振光的偏振方向的情况。
椭圆偏振片可以有效地用于以下情况等,即补偿(防止)超扭曲向列相(STN)型液晶显示装置因液晶层的双折射而产生的着色(蓝或黄),从而进行所述没有着色的白黑显示的情况等。另外,控制三维折射率的偏振片还可以补偿(防止)从斜向观察液晶显示装置的画面时产生的着色,因而优选。圆偏振片可以有效地用于例如对以彩色显示图像的反射型液晶显示装置的图像的色调进行调整的情况等,而且还具有防止反射的功能。作为上述相位差板的具体例子,可以举出由聚碳酸酯、聚乙烯醇、聚苯乙烯、聚甲基丙烯酸甲酯、聚丙烯或其他聚烯烃、聚芳基化物、聚酰胺之类的适当的聚合物构成的薄膜经拉伸处理而成的双折射性薄膜或液晶聚合物的取向薄膜、用薄膜支撑液晶聚合物的取向层的构件等。相位差板可以是例如各种波阻片或用于补偿由液晶层的双折射造成的着色或视角等的构件等具有对应于使用目的的适当的相位差的构件,也可以是层叠2种以上的相位差板而控制了相位差等光学特性的构件等。
另外,上述椭圆偏振片或反射型椭圆偏振片是通过适当地组合并层叠偏振片或反射型偏振片和相位差板而成的。这类椭圆偏振片等也可以通过在液晶显示装置的制造过程中依次分别层叠(反射型)偏振片及相位差板来形成,以构成(反射型)偏振片及相位差板的组合,而如上所述,预先作为椭圆偏振片等光学薄膜的偏振片在质量的稳定性和层叠操作性等方面出色,因此具有可以提高液晶显示装置等的制造效率的优点。
视角补偿薄膜是从不垂直于画面的稍微倾斜的方向观察液晶显示装置的画面的情况下也使图像看起来比较清晰的、用于扩大视场角的薄膜。作为此种视角补偿相位差板,例如由相位差薄膜、液晶聚合物等的取向薄膜或透明基材上支撑了液晶聚合物等的取向层的材料等构成。通常的相位差板使用沿其面方向被实施了单向拉伸且具有双折射的聚合物薄膜,与此相对,在被用作视角补偿薄膜的相位差板上,可以使用沿其面方向被实施了双向拉伸且具有双折射的聚合物薄膜、沿其面方向被单向拉伸且沿其厚度方向也被拉伸并可控制厚度方向的折射率的具有双折射的聚合物或像倾斜取向膜那样的双向拉伸薄膜等。作为倾斜取向膜,例如可以举出在聚合物薄膜上粘接热收缩膜后在因加热形成的收缩力的作用下,对聚合物薄膜进行了拉伸处理或/和收缩处理的材料、使液晶聚合物倾斜取向的材料等。作为相位差板的原材料聚合物,可使用与上述的相位差板中说明的聚合物相同的聚合物,可以使用以防止辨识角变化所导致的着色等或扩大辨识度良好的视场角等为目的的适宜的聚合物,所述辨识角变化基于液晶单元所造成的相位差。
另外,从实现辨识度良好的宽视场角的观点等出发,可以优选使用用三乙酰纤维素薄膜对由液晶聚合物的取向层、特别是圆盘状液晶聚合物的倾斜取向层构成的光学各向异性层进行支撑的光学补偿相位差板。
将偏振片和亮度改善薄膜贴合在一起而成的偏振片,通常被设于液晶单元的背面一侧。亮度改善薄膜是显示如下特性的薄膜,即,当因液晶显示装置等的背光灯或来自背面侧的反射等,有自然光入射时,反射规定偏振轴的直线偏振光或规定方向的圆偏振光,而使其他光透过,因此将亮度改善薄膜与偏振片层叠而成的偏振片可使来自背光灯等光源的光入射,而获得规定偏振状态的透过光,同时,所述规定偏振状态以外的光不能透过,被予以反射。借助设于其后侧的反射层等再次反转在该亮度改善薄膜面上反射的光,使之再次入射到亮度改善薄膜上,使其一部分或全部作为规定偏振状态的光透过,从而增加透过亮度改善薄膜的光,同时向偏振镜提供难以吸收的偏振光,从而增大能够在液晶显示的图像显示等中利用的光量,并由此可以提高亮度。
作为所述的亮度改善薄膜,例如可以使用电介质的多层薄膜或折射率各向异性不同的薄膜的多层层叠体之类的显示出使规定偏振轴的直线偏振光透过而反射其他光的特性的薄膜、胆甾醇型液晶聚合物的取向薄膜或在薄膜基材上支撑了该取向液晶层的薄膜之类的显示出将左旋或右旋中的任一种圆偏振光反射而使其他光透过的特性的薄膜等适宜的薄膜。
在偏振片上层叠了所述光学层的光学薄膜可以利用在液晶显示装置等的制造过程中依次独立层叠的方式来形成,但是预先经层叠而成为光学薄膜的偏振片在质量的稳定性或组装操作等方面优良,因此具有可以改善液晶显示装置等的制造工序的优点。在层叠中可以使用粘合剂层等适宜的粘接手段。在粘接所述偏振片或其他光学薄膜时,它们的光学轴可以根据目标相位差特性等而采用适宜的配置角度。
在上述的偏振片或至少层叠有一层偏振片的光学薄膜上,也能够设置用于和液晶单元等其他部件粘接的粘合层。对形成粘合层的粘合剂没有特别限定,例如可以适宜地选择使用以丙烯酸系聚合物、硅酮系聚合物、聚酯、聚氨酯、聚酰胺、聚醚、氟系或橡胶系等聚合物为基础聚合物的粘合剂。特别优选使用类似丙烯酸系粘合剂的光学透明性优良并显示出适度的润湿性、凝聚性以及胶粘性的粘合特性且耐气候性或耐热性等优良的粘合剂。
而且,除了上述之外,从防止因吸湿造成的发泡现象或剥离现象、因热膨胀差等引起的光学特性的下降或液晶单元的翘曲、进而从高质量且耐久性优良的液晶显示装置的形成性等观点来看,优选吸湿率低且耐热性优良的粘合层。
粘合层中可以含有例如天然或合成树脂类、特别是增粘性树脂或由玻璃纤维、玻璃珠、金属粉、其它的无机粉末等构成的填充剂、颜料、着色剂、抗氧化剂等可添加于粘合层中的添加剂。另外也可以是含有微粒并显示光扩散性的粘合层等。
在偏振片、光学薄膜的一面或两面上附设粘合层时可以利用适宜的方式进行。作为其例子,例如可以举出以下方式,即调制在由甲苯或乙酸乙酯等适宜溶剂的纯物质或混合物构成的溶剂中溶解或分散基础聚合物或其组合物而成的约10~40重量%的粘合剂溶液,然后通过流延方式或涂敷方式等适宜的展开方式直接将其附设在偏振片上或光学薄膜上的方式;或者基于上述而在隔离件上形成粘合层后将其移送并粘贴在偏振片上或光学薄膜上的方式等。
粘合层也能够作为不同组成或种类等的各层的重叠层而设置在偏振片或光学薄膜的一面或两面上。另外,当设置于两面上时,偏振片或光学薄膜的内外也能够是不同组成、种类或厚度等的粘合层。粘合层的厚度可以根据使用目的或粘接力等而适当确定,一般为1~500μm,优选5~200μm,特别优选10~100μm。
对于粘合层的露出面,在供于使用前为了防止其污染等,可以临时粘贴隔离件以进行覆盖。由此能够防止在通常的操作状态下与粘合层接触的现象。作为隔离件,在满足上述的厚度条件的基础上,例如可以使用根据需要用硅酮系或长链烷基系、氟系或硫化钼等适宜的剥离剂对塑料薄膜、橡胶片、纸、布、无纺布、网状物、发泡片材或金属箔、它们的层叠体等适宜的薄片体进行涂敷处理后的材料等以往常用的适宜的隔离件。
还有,在本发明中,也可以在形成上述的偏振片的偏振镜、保护薄膜、光学薄膜等以及粘合层等各层上,利用例如用水杨酸酯系化合物或苯并苯酚(benzophenol)系化合物、苯并三唑系化合物或氰基丙烯酸酯系化合物、镍配位化合物系化合物等紫外线吸收剂进行处理的方式等方式,使之具有紫外线吸收能力等。
本发明的偏振片或光学薄膜能够优选用于液晶显示装置等各种装置的形成等。液晶显示装置可以根据以往的方法形成。即,一般来说,液晶显示装置可通过适宜地组合液晶单元和偏振片或光学薄膜以及根据需要而加入的照明系统等构成部件并装入驱动电路而形成,在本发明中,除了使用本发明的偏振片或光学薄膜之外,没有特别限定,可以依据以往的方法形成。对于液晶单元而言,也可以使用例如TN型或STN型、π型等任意类型的液晶单元。
能够形成在液晶单元的一侧或两侧配置了偏振片或光学薄膜的液晶显示装置、在照明系统中使用了背光灯或反射板的装置等适宜的液晶显示装置。此时,本发明的偏振片或光学薄膜能够设置在液晶单元的一侧或两侧上。当将偏振片或光学薄膜设置在两侧时,它们既可以相同,也可以不同。另外,在形成液晶显示装置时,可以在适宜的位置上配置1层或2层以上例如扩散板、防眩层、防反射膜、保护板、棱镜阵列、透镜阵列薄片、光扩散板、背光灯等适宜的部件。
接着,对有机电致发光装置(有机EL显示装置)进行说明。一般地,有机EL显示装置是在透明基板上依次层叠透明电极、有机发光层以及金属电极而形成发光体(有机电致发光体)。这里,有机发光层是各种有机薄膜的层叠体,已知有例如由三苯基胺衍生物等构成的空穴注入层和由蒽等荧光性有机固体构成的发光层的层叠体、或此种发光层和由二萘嵌苯衍生物等构成的电子注入层的层叠体、或者这些空穴注入层、发光层及电子注入层的层叠体等各种组合。
在包括如下所述的有机电致发光体的有机EL显示装置中,可以在透明电极的表面侧设置偏振片,同时在这些透明电极和偏振片之间设置相位差板,其中,所述有机电致发光体在通过施加电压而进行发光的有机发光层的表面侧设有透明电极,同时在有机发光层的背面侧设有金属电极。
由于相位差板及偏振片具有使从外部入射并在金属电极反射的光成为偏振光的作用,因此由该偏振光作用具有使得从外部无法辨识出金属电极的镜面的效果。特别是,采用1/4波阻片构成相位差板,并且将偏振片和相位差板的偏振光方向的夹角调整为π/4时,可以完全遮蔽金属电极的镜面。
实施例下面,记述本发明的实施例,进行更具体的说明。还有,以下的份是指重量份。
实施例1将聚合度500的聚乙烯改性聚乙烯醇树脂(株式会社クラレ制“エクセバ一ルRS-4150”)100份、与亲水性二色性染料(クラリアント日本株式会社,“INK GREY B”)17份在220℃下熔融混炼、并通过造粒机使其颗粒化。另一方面,将环烯烃系树脂(Ticona公司制、TOPAS)100份、与由下式[化1] 表示的液晶高分子(为了方便将式设为块(block)体。重均分子量为5000)5份在250℃下熔融混炼,并通过造粒机使其颗粒化。利用双螺杆挤塑机(模头温度240℃)将含有所述环烯烃系树脂的颗粒100份和含有聚乙烯醇树脂的颗粒30份成形为厚度200μm的薄膜状。然后,通过干式拉伸法(170℃)将获得的薄膜拉伸6倍,从而获得本发明的偏振镜。
(各向异性散射出现的确认和折射率的测定)另外,在用偏振光显微镜观察得到的偏振镜时,可以确认在环烯烃系树脂中形成了被无数分散的液晶高分子和聚乙烯醇树脂的微小区域。该液晶高分子沿拉伸方向取向,微小区域的拉伸方向(Δn1方向)的平均尺寸为5~10μm。另外,与拉伸方向正交的方向的(Δn2方向)的平均尺寸为0.5~3μm。
关于基质和液晶高分子的微小区域的折射率,分别进行测定。测定在20℃下进行。首先,用阿贝折射计(测定光589nm)测定在同一拉伸条件下拉伸的环烯烃系树脂单独的折射率,结果拉伸方向(Δn1方向)的折射率=1.53,Δn2方向的折射率=1.53。另外,测定液晶高分子的折射率(ne异常光折射率和no寻常光折射率)。no是在实施了垂直取向处理的高折射率玻璃上取向涂设液晶性单体,用阿贝折射计(测定光589nm)进行测定。另一方面,向已水平取向处理的液晶单元中注入液晶性单体,用自动双折射测定装置(王子计测机器株式会社制,自动双折射计(KOBRA21ADH)测定相位差(Δn×d),另外,通过其它途径,通过光干涉法测定单元间隔(d),从相位差/单元间隔算出Δn,将该Δn与no的和作为ne。ne(相当于Δn1方向的折射率)=1.72,no(相当于Δn2方向的折射率)=1.53。因此,算出Δn1=1.72-1.53=0.19、Δn2=1.53-1.53=0.00。从以上可以确认所希望的各向异性散射的出现。
比较例1将含有聚乙烯醇树脂850的10重量%水溶液、与含有所述实施例1中使用的液晶高分子100份和吸收型二色性色素(M86、三井化学株式会社制)50份的10重量%甲苯溶液,用均质混合器搅拌混合,并用浇铸法得到厚度80μm的薄膜。接着,使水和甲苯两溶剂充分干燥,然后在160℃下拉伸2倍和拉伸6倍,并急速冷却后获得偏振镜。
(光学特性评价)用带有积分球的分光光度计(日立制作所制的U-4100)测定在实施例1和比较例1中得到的偏振镜的光学特性。将通过格兰-汤姆森棱镜偏振镜得到的完全偏振光设为100%而测定相对于各线偏振光的透射率。还有,透射率用基于CIE 1931 XYZ表色系统算出的已进行可见度补正的Y值表示。k1表示最大透射率方向的直线偏振光的透射率,k2表示其正交方向的直线偏振光的透射率。结果示于第1表中。
偏振度P通过P={(k1-k2)/(k1+k2)}×100算出。单体透射率T通过T=(k1+k2)/2算出。
浊度值是对相对于最大透射率方向的直线偏振光的浊度值和相对于吸收方向(其正交方向)的直线偏振光的浊度值进行测定。浊度值的测定是按照JIS K7136(塑料-透明材料的浊度值的求法),使用浊度计(村上色彩研究所制的HM-150),将市售的偏振片(日东电工公司制NPF-SEG1224DU单体透射率43%,偏振度99.96%)配置于样品的测定光的入射面侧,使市售的偏振片和样品(偏振片)的拉伸方向正交而进行测定,此时测定的浊度值即为浊度值。但是,在市售的浊度计的光源中,正交时的光量在检测器的感度界限以下,所以使用光导使另外设置的高光强度的卤素灯的光入射,并在检测感度内,之后手动进行快门开闭,算出浊度值。
关于不均(拉伸不均)的评价,在暗室中将样品(偏振镜)配置在液晶显示器所使用的背光灯装置的上面,并且将市售的偏振片(日东电工公司制NPF-SEG1224DU)作为检偏镜以与偏振轴正交的方式进行层叠,按照以下基准目视确认其水平。
×通过目视可以确认不均的水平。
○通过目视不能以确认不均的水平。


如上述表1所示,实施例1在透射率、偏振度方面皆优异,并且也没有拉伸不均。
(耐热性/耐湿性)在切断成尺寸大小为25mm×50mm的偏振镜的两面上,借助聚氨酯系胶粘剂贴合厚度为80μm的三乙酰纤维素薄膜作为保护薄膜,获得偏振片。将该偏振片借助丙烯酸系胶粘剂贴附在滑动玻璃上,来测量初始光学特性(单体透射率、偏振度)。然后,作为耐热性试验,在80℃的干燥机中投入1000小时。另外,作为耐湿性试验,在60℃、95%RH的恒温恒湿器中投入1000小时。分别测定耐热性试验后、耐湿性试验后的偏振片的光学特性,并求得其变化量即试验后的值-初始值。其结果表示在表2中。
在耐热性试验中,优选偏振度变化量(%)为±2%以内,进一步优选为±1%以下,这是因为,能够提供具有耐热性的良好的偏振片或光学薄膜。另外,在耐湿性试验中,优选偏振度变化量(%)为±3%以下,进一步优选为±2%以下,这是因为,能够提供具有耐湿性的良好的偏振片或光学薄膜。


工业上的可利用性本发明的偏振镜、或使用了该偏振镜的偏振片、光学薄膜,适合用于液晶显示装置、有机EL显示装置、CRT、PDP等图像显示装置。
权利要求
1.一种偏振镜,其特征在于,由具有在以透光性树脂形成的基质中分散有至少两种微小区域的结构的薄膜构成,该微小区域的至少一种是由液晶性双折射材料形成,其他的微小区域的至少一种是由含有在所述液晶性双折射材料的液晶温度范围内不丧失二色性的二色性吸光体的聚乙烯醇系树脂材料形成。
2.根据权利要求1所述的偏振镜,其特征在于,形成微小区域的液晶性双折射材料处于取向状态。
3.根据权利要求2所述的偏振镜,其特征在于,液晶性双折射材料至少在取向处理时刻显示液晶性。
4.根据权利要求2所述的偏振镜,其特征在于,液晶性双折射材料的双折射为0.02以上。
5.根据权利要求2所述的偏振镜,其特征在于,形成微小区域的液晶性双折射材料、和透光性树脂的相对于各光轴方向的折射率差是,在显示最大值的轴方向上的折射率差(Δn1)为0.03以上,且在与Δn1方向正交的双向的轴方向的折射率差(Δn2)是所述Δn1的50%以下。
6.根据权利要求5所述的偏振镜,其特征在于,形成微小区域的聚乙烯醇系树脂材料所含有的二色性吸光体,其吸收轴沿Δn1方向取向。
7.根据权利要求1所述的偏振镜,其特征在于,所述薄膜是通过拉伸而制造的薄膜。
8.根据权利要求5所述的偏振镜,其特征在于,偏振镜的微小区域,其Δn2方向的长度为0.05~500μm。
9.根据权利要求1所述的偏振镜,其特征在于,二色性吸光体至少在400~700nm的波段具有吸收区域。
10.根据权利要求1所述的偏振镜,其特征在于,相对于透射方向的直线偏振光的透射率为70%以上,且其浊度值为10%以下,相对于吸收方向的直线偏振光的浊度值为30%以上。
11.一种在权利要求1所述的偏振镜上未设置有透明保护层的偏振片。
12.一种在权利要求1所述的偏振镜的至少一面上设置有透明保护层的偏振片。
13.一种光学薄膜,其特征在于,权利要求1所述的偏振镜被层叠有至少一张。
14.一种图像显示装置,其特征在于,使用了权利要求1~10的任何一项所述的偏振镜、权利要求11或12所述的偏振片或权利要求13所述的光学薄膜。
全文摘要
本发明提供一种偏振镜,其由具有在以透光性树脂形成的基质中分散有至少两种微小区域的结构的薄膜构成,该微小区域的至少一种是由液晶性双折射材料形成,其他的微小区域的至少一种是由含有在所述液晶性双折射材料的液晶温度范围内不丧失二色性的二色性吸光体的聚乙烯醇系树脂材料形成。该偏振镜具有能够抑制黒显示时的透射率不均的高透射率、高偏振度,并且耐热性出色。
文档编号G02F1/1335GK1965251SQ20058000927
公开日2007年5月16日 申请日期2005年3月18日 优先权日2004年4月5日
发明者吉冈昌宏, 宫武稔 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1