偏振光导板单元和使用其的背光单元及显示装置的制作方法

文档序号:2722036阅读:266来源:国知局
专利名称:偏振光导板单元和使用其的背光单元及显示装置的制作方法
技术领域
本发明涉及具有改善了偏振性能的偏振光导板(LGP)单元和使用该偏振LGP单元的背光单元,以及使用该背光单元的显示装置。
背景技术
平板显示器分为自身发光来产生图像的自发射显示器和利用来自外光源的光来产生图像的非发射显示器。非发射显示器的典型例子是液晶显示器(LCD)。LCD需要诸如背光单元的单独光源以便产生图像。
现有的LCD仅使用从光源发射光的总量的约5%来产生图像。光利用率低是由LCD内的偏光器或滤色器中的光吸收所造成。LCD包括分别具有第一和第二电极的第一和第二基板,该第一和第二电极与注入在第一和第二基板之间的液晶材料一起用来产生电场。形成有第一电极的第一基板表面设置成面对形成有第二电极的第二基板表面。在LCD中,通过把电压施与第一和第二电极上所产生的电场改变液晶分子的排列来控制光的透射率。这样,LCD显示图像。
就是说,LCD像快门一样动作,通过改变线性偏振光的偏振方向使得光穿过或不穿过。因为LCD仅利用在一个方向上的线性偏振光,所以在LCD的前面和后面都设有偏光器。设置在LCD两边的偏光器是吸收偏光器,其透射在一个方向上偏振的光并吸收在另一方向偏振的光。吸收约50%的入射光到偏光器中是LCD光利用率低的最大因素。
为了减轻这一问题,正在积极地进行研究以通过替换吸收偏光器或通过将大多数的光转换成与设置在LCD后表面上的后偏光器的偏振方向具有相同偏振方向的光来提高光利用率。例如,诸如双亮度增强膜(DBEF)的多层反射偏振膜可以贴附到光导板(LGP)上,以便提高LCD的光利用率。然而,由于反射偏振膜的昂贵和偏振转换元件的缺乏,所以难于增加光利用率。因而,有必要集中研究分离和转变偏振的偏振LGP。
图1是常规偏振背光单元的截面图。参考图1,该常规偏振背光单元包括用作线光源的灯L,设置在LGP1的一侧并围绕灯L的银片R,设置在LGP1的底面4上的偏振转换元件15,面对LGP1的出射表面3设置的偏振分离板8,以及面对偏振分离板8的棱镜片10。
LGP1将由灯L发射并通过入射面2入射的光转换成通过出射面3出射的面光。偏振分离板8导致仅一种偏振态的光在分离后出射,同时偏振转换元件15转换其他偏振态的光的偏振方向,从而增加光利用率。然而,利用折射率和入射角之间的关系来分离一种偏振态的光的偏振分离板8不能使光垂直于出射表面3离开。因而,该常规的背光单元发射具有广角度范围的光,并需要分开的棱镜片10,其使光垂直于出射面3出射。同样,棱镜片10没有集成到LGP1中,从而使LGP1的制作复杂。

发明内容
本发明提供具有改善了偏振性能的偏振光导板(LGP)单元和带有偏振LGP单元的背光单元,以及带有背光单元的显示装置。
根据本发明的一个方面,提供有一种偏振LGP单元,其包括LGP,引导由光源发射的光;准直仪,设置在LGP上,并包括多个反射图案,每个图案具有斜面,其反射在向上的方向上LGP出射的光;和偏振分离层,设置在多个反射图案和LGP之间,并透射第一偏振态的光,而反射与第一偏振态成直角的第二偏振态的光。
根据本发明的另一方面,提供有一种背光单元,其包括光源;LGP,引导由光源发射的光;准直仪,设置在LGP上,并包括多个反射图案,每个图案具有斜面,其反射在向上方向上LGP出射的光;和偏振分离层,设置在多个反射图案和LGP之间,并透射第一偏振态的光,而反射与第一偏振态成直角的第二偏振态的光;和反射板,设置在LGP的一侧上。
根据本发明的另一方面,提供有一种显示装置,其包括背光单元,该背光单元包括光源;引导由光源发射的光的LGP;准直仪,其设置在LGP上并包括多个反射图案,每个图案具有斜面,其反射在向上的方向上LGP出射的光;偏振分离层,设置在多个反射图案和LGP之间,并透射第一偏振态的光,而反射与第一偏振态成直角的第二偏振态的光;和设置在LGP的一侧上的反射板;以及显示面板,利用背光单元出射的光产生图像。


参照附图,通过详细描述其中的示范性实施例,本发明的上述和其它特征及优点将变得更明了,其中图1是常规偏振背光单元的截面图;图2是根据本发明实施例的偏振光导板(LGP)单元和采用该偏振LGP单元的背光单元的截面图;图3A和3B是根据本发明实施例的如图2所示的准直仪的透视图;图4是示出根据本发明实施例的图2所示的偏振分离层的结构和分离偏振过程的示意图;图5是示出出射图2的偏振LGP单元的S偏振态和P偏振态光的透射率关于入射角的曲线图;图6是示出出射图2的偏振LGP单元的S偏振态和P偏振态光的透射率关于关于波长的曲线图;图7A和7B是根据本发明实施例的偏振LGP单元的截面图;和图8是根据本发明实施例的显示装置的截面图。
具体实施例方式
现将参照附图详细描述根据本发明优选实施例的背光单元和采用该背光单元的显示装置。然而,本发明可以以许多不同形式实施,并且不应解释成限于在此阐明的实施例;而是,提供这些实施例以便本公开向本领域的技术人员充分地转达本发明的概念。在附图中,相同的参考数字表示相同的元件,并且为清楚和方便起见可以放大每个元件的尺寸。
图2是根据本发明实施例的偏振光导板(LGP)单元200和采用该偏振LGP单元200的背光单元400的截面图。参照图2,背光单元400包括光源100和偏振LGP单元200,该偏振LGP单元200将由光源100发射的非偏振光在使光出射之前转换成线性的偏振光。
例如,光源100可以为诸如冷阴极荧光灯(CCFL)的线光源或诸如发光二极管(LED)的点光源。偏振LGP单元200包括引导由光源100发射的光的LGP 260、设置在LGP 260上的准直仪220和偏振分离层240,该偏振分离层240设置在LGP 260和准直仪220之间,并根据偏振部件分离LGP260出射的光。
LGP 260具有第一入射面260a和第一出射面260b,并且从光源100发射的光通过第一入射面260a入射,而通过第一出射面260b出射。LGP 260由可以透射入射光的透明材料形成,例如光学各向同性材料,如聚甲基丙烯酸甲酯(PMMA)或聚碳酸酯(PC)。
准直仪220包括多个反射图案226。准直仪220例如包括基板223和设置在基板223上的多个反射图案226。反射图案226相对LGP 260设置,并反射在向上方向上LGP 260出射的光。多个反射图案226中的每一个都具有第二入射面226a和斜面226b,从第一出射面260b出射的光通过第二入射面226a进入,斜面226b向第二出射面223a反射入射光。反射图案226可以具有多面体形状。斜面226b在垂直于第二出射面223a的方向上准直向第二出射面223a出射的光。即,准直光的方向可以通过调节斜面226b的斜度来调节。斜面226b具有斜度,以便在从斜面226b反射并通过第二出射面223a出射的光与第二出射面223a的法线之间的角度约在-10°和10°之间。图3A和3B是根据本发明实施例的如图2所示的准直仪的透视图。参照图3A和3B,瞄准器220包括多个反射图案226,其可以设置在一个或两个方向的阵列中。
偏振分离层240由多个具有不同反射率的薄膜形成,形成在第一出射面260b和第二入射面226a之间,透射通过第二入射棉226a进入的第一偏振态的光,并反射与第一偏振态成直角的第二偏振态的光。例如,第一偏振态和第二偏振态可以分别为P和S偏振态。
在偏振分离层240内分离入射光成不同偏振态的主要原理将在以后描述。
偏振LGP单元200可以包括粘合层280。粘合层280设置在LGP 260和多个偏振分离层240之间。粘合层280可以具有比LGP 260低的折射率。在这种情况下,因为只有入射角小于出射第一出射面260b的光的临界角的光可以通过粘合层260b透射,所以光在狭小角度范围入射在斜面226b上,从而导致从斜面226b上反射的光在狭小的角度范围通过第二出射面223a出射。
反射板310与面向第一入射面260a的LGP 260的表面相对设置,并将从LGP 260和粘合层280之间的界面反射的光和通过偏振分离层240反射的偏振光反射回LGP 260中。通过反射板310反射的光在通过粘合层280透射之前在LGP 260内沿部分改变的路线传播。
第一偏振转换元件330可以设置在反射板310和LGP 260之间。反射的而不是通过偏振分离层240透射的S偏振态光在通过偏振分离层240透射之前被转换成P偏振态光。为了促进偏振态的转化,第二偏振转化元件350可以设置在面对第一出射面260b的表面上。例如,第一和第二偏振转换元件330和350可以为由各向异性材料制成的1/4波板。背光单元400可以包括第一或第二偏振转化元件330或350。
图4是示出偏振LGP单元200的偏振分离层240结构和根据偏振部件分离光的过程的示意图。参照图4,偏振分离层240由具有折射率n1至n5的第一至第五层241至245的叠层形成在一种结构上,在该结构中,依次层叠了具有折射率ni的LGP 260和具有折射率na的粘合层280。现将更详细地描述通过偏振LGP单元200的光传播路径。首先,通过LGP 260传播到粘合层280的光的入射角θi的范围由等式(1)定义90°-θc1=90°-sin-1(1/ni)<θ1<θc2=sin-1(na/ni)...(1)θc1表示当光从具有折射率ni的LGP 260到折射率为1的空气层传播时发生全反射的临界角。因为当来自光源100的光通过空气层向LGP 260传播时,θc1是入射在LGP 260上的光的角QL的最大值,所以90°-θc1是向粘合层280传播的光的入射角θi的最小值。,θc2表示当光从LGP 260向粘合层280传播时发生全反射的临界角,并且是可以向粘合层280传播的光的入射角θi的最大值。在粘合层280和第一层241之间,在第一和第二层241和242之间,在第二和第三层242和243之间,在第三和第四层243和244之间,以及在第四和第五层244和245之间的界面241a至245a上的入射角θ1至θ5基于等式(1)和Snell定律定义的入射角θi的范围来绝对。当Brewster角θB1至θB5分别落在界面241a至245a上的入射角θ1至θ5范围内时,反射S偏振态光,而透射P偏振态光。当光从具有折射率n1的介质向具有折射率n2的介质传播时,Brewster角定义成tan-1(n2/n1)。入射角θ1至θ5的范围应分别包含Brewster角θB1至θB5。
例如,假设折射率n1高于折射率n2,并且从具有高折射率n1的介质向具有低折射率n2的介质传播的光的入射角θ2的范围包括在第一和第二层241和242之间的界面242a上的Brewster’s角θB2。通过界面242a透射的光的角θ3是入射到具有折射率n3的第三层243的光的角度。角θ3大于入射角θ2。为了入射角θ3的范围在界面243a包含Brewster角θB3,Brewster角θB3应大于Brewster角θB2而n3应大于n2。利用这一原理,偏振分离层240可以包括多个交互高和低的折射率层。
偏振分离层240包括诸如Al2O3、CeO2、Ta2O5、TiO2、ZnS、ZrO2、CaF2或MgF2的在可见光波长上透明的任意材料的薄层。
当LGP 260和粘合层280分别具有1.59和1.45的折射率时,以及当偏振分离层240具有折射率为2.35和1.63的两种材料的交替层时,51.03°<θi<65.78°,如等式(1)所定义。
表1展示在界面241a至245a计算的入射角θ1至θ5和Brewster角θB1至θB5的范围。
表1

如表1所明示,入射角θ2至θ5的范围分别包含Brewster角θB2至θB5。尽管入射角θ1的范围不包含Brewster角θB1,但通过使粘合层280的折射率略高于1.45,入射角θ1可以包含Brewster角θB1。当在界面241a至245a的入射角θ1至θ5等于Brewster角θB1至θB5时,垂直偏振态(S偏振态)的透射率具有最小值0。在这种情况下,反射具有S偏振态的入射光的预定部分,而仅透射水平偏振态(P偏振态)的光。因为当入射角θ1至θ5分别进一步偏离Brewster角θB1至θB5时,S偏振态的光的透射逐渐增加,所以仅小量S偏振态的光向每个连续层传播。当上述过程在界面241a至245a上重复时,S偏振态的光重复地从界面241a至245a反射,而P偏振态的光分离然后通过偏振分离层240透射。从界面241a至245a反射的大部分光具有S偏振态,而剩余的光具有P偏振态。这是由于随着入射角θ1至θ5分别进一步偏离Brewster角θB1至θB5,透射的P偏振态的光的数量逐步减少。反射的P偏振态光转换成具有入射角的光,从而其可以通过偏振分离层240透射。因为包括在LGP 260中的光学各向同性材料具有可以根据偏振方向改变的折射率,所以当S偏振态的光在LGP 260内传播时可以转换成P偏振态的光。作为选择,在通过偏振分离层240透射之前,通过偏振转换元件330和350,S偏振态的光可以转换成P偏振态的光。
图5是示出出射偏振LGP单元(图2中的200)的S偏振态和P偏振态的光的透射率关于入射角的曲线图。光具有550纳米的波长。如图5的曲线图所明示,P偏振态的光在(入射到偏振分离层240的光的)64°的入射角上具有100%的最大透射率,并且随着入射角进一步偏离64°,透射率逐步降低。另一方面,S偏振态光的透射率在整个入射角的范围上小于5%。因而,偏振分离层表现出极好的效率。
图6是示出出射偏振LGP单元(图2中200)的S偏振态和P偏振态光的透射率关于波长的曲线图。实线表示在64°入射角的透射率,而虚线表示在54°和74°入射角的透射率。如图6的曲线图所明示,基本在450nm至700nm的可见光范围中,在整个波长范围上P偏振态光的透射率大于约90%,而S偏振态光的透射率小于约20%。
随着在偏振分离层240中的层数增加,因为利用大量界面的偏振分离出现的更多,所以可以改善偏振分离效率。此外,偏振分离效率可以通过选择每层的折射率而增加,以便相对于入射角的范围最佳地选择Brewster角。
偏振分离层240可以由单个的薄层形成。图7A和7B是带有偏振分离层247和249的偏振LGP单元的截面图,每个都由根据本发明实施的单个薄层形成。图7A的偏振LGP单元不包括任何粘合层,而图7B的偏振LGP单元包括粘合层280。参照图7A,因为从光源100入射LGP 260的光的角θL的最大值是sin-1(1/ni),所以入射到偏振分离层247的光的角θ的范围在90°-sin-1(1/n)和90°之间。因而,偏振分离247的折射率n可以满足下面的等式(2),以便Brewster角在入射角θ的范围内。
tan-1(n/ni)>90°-sin-1(1/ni) ...(2)参照图7B,如图4所描述,入射到粘合层280上的角θi的范围如等式(1)所定义。因为入射到偏振分离层249的光的角θ的范围在sin-1[(ni/na)cos(sin-1(1/ni))]和90°之间,所以偏振分离层249的折射率n可以满足下面的等式(3),以便Brewster角在入射角θ的范围内。
tan-1(n/na)>sin-1[(ni/na)cos(sin-1(1/ni))] ...(3)图8是根据本发明实施例的显示装置的截面图。参照图8,显示装置包括背光单元400和显示面板500,该背光单元400包括根据本发明实施例的偏振LGP单元。显示面板500可以为例如LCD板。显示装置还包括设置在显示面板500之上的散射板600。由于基于前面所述的同样原理,通过背光单元400偏振的光可以垂直于显示面板500出射,将不再给出其中的详细描述。显示面板500利用从背光单元400发射的光来产生图像,而散射板600散射光,以便为通过显示面板500产生的图像提供宽视角。
具有根据本发明上述构造的偏振LGP单元增加了偏振光的数量,并且增加了垂直于偏振LGP出射的光的数量。因而,当采用根据本发明的偏振LGP单元的背光单元用于显示装置时,其具有高的光利用率和改善的图像特性,如亮度或对比率。因为允许光垂直出射的结构可以集成到LGP中,所以本发明还提供了简单的背光单元。
尽管本发明参照其中的示范性实施例已经进行了具体的展示和描述,但是本领域普通技术人员可以理解的是,可以对其做形式上和细节上的各种改变,而不脱离如权利要求所限定的本发明的精神和范围。
权利要求
1.一种偏振光导板单元,包括光导板,引导通过光源发射的光;准直仪,其设置在该光导板上,并且包括多个反射图案,每个图案具有斜面,其反射在向上方向上该光导板出射的光;和偏振分离层,设置在该多个反射图案和该光导板之间,并透射第一偏振态的光,而反射与该第一偏振态成直角的第二偏振态的光。
2.如权利要求1所述的偏振光导板单元,其中该反射图案具有多面体形状。
3.如权利要求1所述的偏振光导板单元,其中该偏振分离层包括具有不同折射率的多个薄膜。
4.如权利要求1所述的偏振光导板单元,其中该偏振分离层包括具有不同折射率的多个交替的双薄膜。
5.如权利要求1所述的偏振光导板单元,其中该斜面的该斜度是可调的,以便在从该斜面反射并通过该瞄准器的顶面出射的光和该顶面的法线之间的角度介于约-10°和10°之间。
6.如权利要求1所述的偏振光导板单元,其中该多个反射图案设置在一个或两个方向的阵列中。
7.如权利要求1所述的偏振光导板单元,其中该偏振分离层由具有折射率n的单个薄膜形成,且当ni为该光导板的折射率时,n满足tan-1(n/ni)>90°-sin-1(1/ni)。
8.如权利要求2所述的偏振光导板单元,其中在该偏振分离层中的每个该薄膜是由选自于由Al2O3、CeO2、Ta2O5、TiO2、ZnS、ZrO2、CaF2和MgF2组成的组中的一种制成。
9.如权利要求1所述的偏振光导板单元,还包括设置在该光导板和该偏振分离层之间的粘合层。
10.如权利要求9所述的偏振光导板单元,其中该偏振分离层由具有折射率n的单个薄膜形成,并且当ni和na分别表示该光导板和该粘合层的折射率时,n满足tan-1(n/na)>sin-1[(ni/na)cos(sin-1(1/ni))]。
11.如权利要求2所述的偏振光导板单元,还包括粘合层,其设置在该光导板和该偏振分离层之间,并具有低于该光导板的折射率。
12.一种背光单元,包括光源;光导板,引导来自该光源的光;准直仪,其设置在该光导板上,并且包括多个反射图案,每个图案具有斜面,其反射在向上方向上该光导板出射的光;偏振分离层,设置在该多个反射图案和该光导板之间,并透射第一偏振态的光,而反射与该第一偏振态成直角的第二偏振态的光;和反射板,设置在该光导板的一侧上。
13.如权利要求12所述的背光单元,其中该偏振分离层包括具有不同折射率的多个薄膜。
14.如权利要求12所述的背光单元,其中该偏振分离层包括具有不同折射率的多个交替的双薄膜。
15.如权利要求12所述的背光单元,其中该斜面的斜度是可调节的,以便从该斜面完全地反射并通过该准直仪顶面出射的光和该顶面的法线之间的角介于-10°和10°之间。
16.如权利要求12所述的背光单元,其中该多个反射图案设置在一个或两个方向的阵列中。
17.如权利要求12所述的背光单元,还包括设置在该光导板底面上的偏振转换元件。
18.如权利要求12所述的背光单元,还包括设置在该反射板和该光导板之间的偏振转换元件。
19.如权利要求18所述的背光单元,其中该偏振转换元件是1/4波板。
20.如权利要求12所述的背光单元,其中该偏振分离层的每个该薄膜由选自于由Al2O3、CeO2、Ta2O5、TiO2、ZnS、ZrO2、CaF2和MgF2组成的组中的一种制造。
21.如权利要求12所述的背光单元,还包括粘合层,其设置在该光导板和该偏振分离层之间,并且具有低于该光导板的折射率。
22.一种显示装置,包括如权利要求12所述的背光单元;和利用该背光单元出射的光产生图像的显示面板。
23.一种显示装置,包括如权利要求21所述的背光单元;和利用该背光单元出射的光产生图像的显示面板。
全文摘要
本发明提供一种偏振光导板(LGP)单元、采用该偏振LGP单元的背光单元和采用该背光单元的显示装置。该偏振LGP单元包括LGP,引导由光源发射的光;准直仪,其设置在LGP上,并包括多个反射图案,每个图案具有在向上方向上反射LGP出射光的斜面;和偏振分离层,设置在多个反射图案和LGP之间,并透射第一偏振态的光和反射成直角该第一偏振态的第二偏振态的光。具有根据本发明上述构造的偏振LGP单元增加了偏振光的数量,并且增加了垂直于偏振LGP出射的光的数量。因而,当采用根据本发明的偏振LGP单元的背光单元用于显示装置时,其具有高的光利用率和改善的图像特性。本发明还提供了简单的背光单元。
文档编号G02B6/00GK101063767SQ200610171140
公开日2007年10月31日 申请日期2006年12月25日 优先权日2006年4月27日
发明者黄圣模, 刘在镐 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1