一种阵列基板及包括其的显示装置的制作方法

文档序号:12731111阅读:230来源:国知局
一种阵列基板及包括其的显示装置的制作方法

本发明涉及显示技术领域,具体涉及一种阵列基板,以及包括该阵列基板的显示装置。



背景技术:

液晶显示(liquid crystal display,LCD)装置具有功耗低、携带方便而成为目前广泛使用的显示装置,而有机发光显示(organic electroluminesence display,OLED)装置具有广视角、高对比度、高反应速度等优点逐渐成为新一代主流的显示装置。

不论是液晶显示装置还是有机发光显示装置,阵列基板都是不可或缺的组件。目前,阵列基板包括显示区域和围绕显示区域的非显示区域,在显示区域,阵列排布有多个薄膜晶体管、多条相互交叉绝缘的数据线和扫描线等;而在非显示区域,包括各类用于与显示区域的薄膜晶体管、数据线、扫描线等电连接的外围走线,以及移位寄存器电路、防静电电路等。

近年来,内置触控显示装置将触控功能和显示功能集成于一体,与传统的外挂式触控显示装置,内置触控显示装置具有更轻、更薄的优点。通常地,应用于内置触控显示装置的阵列基板会设置有触控电极以及触控电极引线,触控电极引线用于电连接触控电极与驱动芯片。此外,由于触控电极引线在生产过程中容易产生静电,因此,现有技术中会将触控电极引线在非显示区域连接至防静电电路。

对于目前常用的面内电场(in-plane switch,IPS)显示模式和边缘电场(fringe field switch,FFS)显示模式而言,触控电极线与驱动芯片之间,以及触控电极线与防静电电路之间通过跨桥方式进行电连接。具体地,现有技术中,在形成最后一层氧化物导体层(可以是像素电极或者是公共电极)前,通过掩膜版在非显示区域形成通孔,继而在形成最后一层氧化物导体层时实现触控电极线与防静电电路的电连接,以及触控电极线与驱动芯片的电连接。

现有技术中,触控电极线通常采用金属材料制成且作为第三金属层,而触控电极与防静电电路的电连接是通过第三金属层与防静电电路中薄膜晶体管的源极/漏极(第二金属层)电连接实现;触控电极线与驱动芯片间的电连接是通过第三金属层与第二金属层电连接、第二金属层再与第一金属层电连接的方式实现(即采用换线的方式)。然而,通过上述方式制备得到的阵列基板容易发生接触不良,从而造成阵列基板容易被静电击伤、或者触控灵敏度下降等问题。



技术实现要素:

有鉴于此,本发明实施例提供一种阵列基板以及一种显示装置,以实现触控电极线与防静电电路的良好接触从而提高阵列基板的防静电能力,以及实现触控电极与驱动芯片的良好接触从而提高触控灵敏度。

为实现上述目的,本发明实施例提供如下技术方案:

首先,本发明实施例提供了一种阵列基板,该阵列基板包括衬底基板,包括显示区域和非显示区域;第一金属层,位于所述显示区域和所述非显示区域;第二金属层,位于所述第一金属层远离所述衬底基板的一侧;第三金属层,位于所述第二金属层远离所述衬底基板的一侧;第一绝缘层,设置于所述第一金属层和所述第二金属层之间;第二绝缘层,设置于所述第二金属层和所述第三金属层之间;第一氧化物导体层,位于所述第三金属层远离所述衬底基板的一侧;第二氧化物导体层,位于所述第一氧化物导体层远离所述衬底基板的一侧;第三绝缘层,位于所述第一氧化物导体层和所述第三金属层之间;其中,在所述显示区域,所述第一氧化物导体层和所述第二氧化物导体层之间设置有第四绝缘层,在所述非显示区域,所述第三金属层与所述第二金属层至少通过所述第一氧化物导体层电连接。

其次,本发明实施例还提供了一种显示装置,该显示装置包括上述阵列基板。

与现有技术相比,本发明实施例提供的阵列基板以及显示装置具有如下技术效果:1、由于采用第一氧化物半导体层实现第三金属层和第二金属层间的电连接,第一氧化物导体层与第二金属层之间的膜层数量较少,从而降低跨桥电极(第一氧化导体层)在在通孔中的断线风险;2、第一氧化物半导体层远离衬底基板的一侧设置有第三绝缘层和/或第二氧化物导体层,从而避免跨桥电极(第一氧化物导体层)在后续制成中被腐蚀。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。

图1为本发明实施例提供的阵列基板结构示意图;

图2为图1所示阵列基板显示区域中一个子像素的一种结构示意图;

图3为图1所示阵列基板显示区域中一个子像素的另一种结构示意图;

图4为图1所示阵列基板非显示区域中防静电电路单元的一种结构示意图;

图5为图4所示结构沿AA'的一种剖面结构示意图;

图6为图3所示结构沿AA'的另一种剖面结构示意图;

图7为图1所示阵列基板非显示区域中防静电电路单元的另一种结构示意图;

图8为图7所示结构沿BB'的剖面结构示意图;

图9为图1所示阵列基板非显示区域在第三金属层换线处的一种结构示意图;

图10为图9所示结构沿CC'的一种剖面结构示意图;

图11为图9所示结构沿CC'的另一种剖面结构示意图;

图12为图1所示阵列基板非显示区域在第三金属层换线处的另一种结构示意图;

图13为图12所示结构沿DD'的一种剖面结构示意图;

图14为图9所示结构沿CC'的又一种剖面结构示意图;

图15为图1所示阵列基板非显示区域在第三金属层换线处的又一种结构示意图;

图16为本发明实施例提供的一种显示装置结构示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

为了提高第三金属层和第二金属层之间的电连接稳定性,本发明实施例提供了一种阵列基板,该阵列基板包括衬底基板,衬底基板包括显示区域和非显示区域,位于显示区域和非显示区域的第一金属层;位于第一金属层远离远离衬底基板的一侧的第二金属层;位于第二金属层远离衬底基板的一侧的第三金属层;设置于第一金属层和第二金属层之间的第一绝缘层,设置于第二金属层和第三金属层之间的第二绝缘层;位于第三金属层远离衬底基板的一侧的第一氧化物导体层;位于第一氧化物导体层远离衬底基板的一侧的第二氧化物导体层;位于第一氧化物导体层和第三金属层之间的第三绝缘层;其中,在显示区域,第一氧化物导体层和第二氧化物导体层之间设置有第四绝缘层,在非显示区域,第三金属层与第二金属层至少通过第一氧化物导体层连接。

请参考图1至图5,图1为本发明实施例提供的阵列基板结构示意图,图2为图1所示阵列基板显示区域中一个子像素的剖面结构示意图,图3为图1所示阵列基板显示区域中一个子像素的另一种结构示意图,图4为图1所示阵列基板非显示区域中防静电电路单元的一种结构示意图,图5为图4所示结构沿AA'的一种剖面结构示意图。

结合图1和图2,阵列基板包括衬底基板220,衬底基板220包括显示区域10和非显示区域20。显示区域10包括多个显示薄膜晶体管DT、多条数据线106、多条栅极线104以及多条触控电极线206;显示薄膜晶体管DT包括栅极104a、源极106a/漏极108和有源层102,显示薄膜晶体管DT的栅极104a和多条栅极线104包括于第一金属层M1,显示薄膜晶体管DT的源极106a/漏极108和多条数据线106包括于第二金属层M2,多条触控电极线206包括于第三金属层M3。在触控电极线206远离衬底基板220的一侧设置有像素电极208,在像素电极208远离衬底基板220的一侧设置有公共电极210,像素电极208通过过孔与源极106a电连接。通常地,像素电极208和公共电极210为氧化物材料的导体,更为具体地,像素电极208和公共电极210通常为氧化铟锡(indium tin oxide,ITO)。

其中,公共电极210通过过孔与触控电极线206电连接;在第一金属层M1(例如:栅极104a和栅极线104)和第二金属层M2(例如:源极106a/漏极108和数据线106)之间设置有第一绝缘层224,在第二金属层M2(例如:源极106a/漏极108和数据线106)和第三金属层M3(例如:触控电极线206)之间设置有第二绝缘层226;在第一氧化物导体层OC1(例如:像素电极208)和第三金属层M3(例如:触控电极线206)之间的第三绝缘层228。此外,在显示区域10,第一氧化物导体层OC1(例如:像素电极208)和第二氧化物导体层OC2(例如:公共电极210)之间设置有第四绝缘层229。

需要说明的是,虽然在图2所述结构示意图中第一氧化物导体层OC1为像素电极208,第二氧化物导体层OC2为公共电极210,但是本发明实施例并非局限于此,例如,如图3所示,第一氧化物导体层可以为公共电极210,第二氧化物导体层OC2可以为像素电极208。本发明实施例中,第一氧化导体层和第二氧化物导体层OC2之间能够形成横向电场,当本发明实施例提供的阵列基板应用于液晶显示面板或者液晶显示装置时,第一氧化物导体层OC1和第二氧化物导体层OC2形成的横向电场能够控制液晶发生旋转以实现显示。

需要说明的是,在图2和图3所示结构中,像素电极208和公共电极210的其中一者在一个像素对应的区域内设置有多个条形开口,另一者在一个子像素对应的区域内为整面结构,这样的设置方式为边缘场开关技术(Fringe Field Switching,FFS)。然而,本发明实施例对像素电极208和公共电极210之间的电场模式并不做限制,例如,在其他的实施例中,像素电极208和公共电极210还可以按照平面开关技术(In Plane Switch,IPS)进行设置。例如,像素电极208和公共电极210在一个子像素对应的区域内均设置有条形开口,此时,像素电极208作为第一氧化物导体层OC1、公共电极210作为第二氧化物导体层OC2,或者,公共电极210作为第一氧化物导体层OC1、像素电极208作为第二氧化物导体层OC2。当像素电极208和公共电极210位于同一层且相互绝缘时,像素电极208和公共电极210可以作为第一氧化物导体层OC1或者第二氧化物导体层OC2,其他电极可以作为第二氧化物导体层OC2或者第一氧化物导体层OC1,例如,其他电极可以为触控电极。

需要说明的是,在图2和图3所示结构中,薄膜晶体管结构为低温多晶硅型薄膜晶体管,即,显示薄膜晶体管DT的有源层102为低温多晶硅材料。如图2和图3所示,当有源层102为低温多晶硅材料时,显示薄膜晶体管DT通常采用顶栅结构,即栅极104a位于有源层102远离衬底基板220的一侧,在有源层102和栅极104a之间设置有栅极绝缘层222。然而,本发明实施例并非局限于此,在本发明的其他实施例中,显示薄膜晶体管DT的有源层还可以是非晶硅材料或者氧化物半导体材料,当有源层为氧化物半导体时,可选有源层为铟镓锌氧化物(indium gallium zinc oxide,IGZO)。此外,显示薄膜晶体管DT的结构还可以是底栅结构,例如,当显示薄膜晶体管DT的有源层为非晶硅时采用底栅结构。

进一步地,下面将详细阐述本发明实施例提供的阵列基板在非显示区域的部分结构。结合图1、图4和图5,阵列基板的非显示区域20包括防静电电路202,其中,防静电电路202包括多个防静电单元ESD。可选地,防静电电路202的防静电单元ESD如图3所示,即包括两个防静电薄膜晶体管ET1和ET2,防静电薄膜晶体管ET1的源极2022a和防静电薄膜晶体管ET2的源极2022b电连接,防静电薄膜晶体管ET1的漏极2024a和防静电薄膜晶体管ET2的漏极2024b电连接。具体地,防静电薄膜晶体管ET1的栅极2026a与自身的漏极2024a电连接,防静电薄膜晶体管ET2的栅极2026b与自身的漏极2024b电连接。触控电极线206与防静电单元ESD通过过孔电连接。

需要说明的是,本发明实施例还包括触控电极层,所述触控电极层包括多个触控电极单元,触控电极线在显示区域与触控电极单元对应电连接,因此,本发明实施例中的防静电电路能够及时导走触控电极块和触控信号线的静电,防止触控电极块、触控信号线被静电击伤。在本发明的一些实施例中,公共电极复用为触控电极,例如,当触控结构为自电容时,位于第一氧化物导体层OC1或者第二氧化物导体层OC2的公共电极可以复用为触控电极,复用为触控电极的公共电极包括多个块状的公共电极单元(触控电极块);当触控结构为互电容结构时,公共电极可以复用为触控驱动电极或者触控检测电极,复用为触控驱动电极或者触控检测电极的公共电极包括多个条状的公共电极块(触控驱动电极单元或者触控检测电极单元)。具体地,如图1所示,公共电极210被分割为多个矩形的公共电极块210a。图1中仅仅示意图出上述自电容模式常见的结构,但是本发明实施例中公共电极210分割为公共电极块210a的形状还可以为其他形状,例如,菱形、多边形、条形等。

进一步地,触控电极线(第三金属层M3)与防静电电路电连接的具体结构请参考图4和图5,图5为图4所示结构沿AA'的一种剖面结构示意图。在非显示区域,触控电极线206与防静电薄膜晶体管ET2的漏极2024b之间通过连接导体电连接,具体地,触控电极线206与连接导体208a电连接,连接导体208a与防静电薄膜晶体管ET2的漏极2024b电连接,第四绝缘层229覆盖连接导体208a。其中,位于非显示区域的连接导体208a可以与图2中位于显示区域的像素电极208同层设置,也可以和图3中位于显示区域的公共电极210同层设置;防静电薄膜晶体管ET2的栅极2026b包括于第一金属层M1,防静电薄膜晶体管ET2的源极2022b/漏极2024b包括于第二金属层M2,连接导体208a包括于第一氧化物导体层OC1,位于非显示区域的触控电极线206位于第三金属层M3。因此,本发明实施例中,第三金属层M3和第二金属层M2在非显示区域通过第一氧化物导体层OC1中的连接导体208a电连接,而第一氧化物导体层OC1远离衬底基板220的一侧设置有第四绝缘层229,能够防止连接导体208a在后续制程中被腐蚀,从而提高第三金属层M3和第二金属层M2之间的电连接稳定性。因此,本实施例提供的阵列基板能及时导出位于第三金属层M3中的触控电极线206、与触控电极线206电连接的触控电极上的静电,从而防止发生静电击伤、提高触控灵敏度。所述“后续制程”除包括形成第二氧化物导体层OC2外还包括本发明实施例提供的阵列基板与对向基板的贴合、填充液晶等;或者所述“后续流程”除包括形成第二氧化物导体层OC2还包括封装步骤等。

可选地,本发明实施例提供的阵列基板中,在第二金属层M2和第三金属层M3之间设置的第二绝缘层包括平坦化层,所述平坦化层具有通孔,所述通孔向衬底基板的垂直投影与第二金属层M2向衬底基板的垂直投影交叠。如图5所示,第二绝缘层226仅有一层绝缘层,即为平坦化层2264,且平坦化层2264具有通孔2264a,通孔2264a暴露出位于第二金属层M2的防静电薄膜晶体管ET2的漏极2024b。此外,如图5所示,在栅极2026b和有源层2020之间设置有栅极绝缘层222。

需要说明的是,本发明提供的一些实施例中,在平坦化层2264设置有通孔2264a,而不是在第三金属层M3和第二金属层M2电连接处设置贯穿平坦化层2264、第二绝缘层226中其他膜层和第三绝缘层228的深孔,能够避免连接导体208a跨越深孔,从而减少连接导体208a发生断线的可能。

可选地,上述各实施中,平坦化层2264还设置有凹槽(图中未示出)。通常地,平坦化层是位于阵列基板上厚度最大的绝缘层;在阵列基板的非显示区域,平坦化层设置有凹槽,所述凹槽用于在阵列基板进行配向时防止配向液体向外扩散,其中,向外扩展是指向阵列基板的边缘扩散。需要说明的是,所述凹槽的深度可以小于平坦化层2264的厚度,也可以等于平坦化层2264的厚度。此外,平坦化层2264的通孔2264a和平坦化层2264的凹槽可以采用同一道掩膜版制成,具体地,可以根据需要选择普通掩膜版或者灰阶掩膜版。

在本发明的一些实施例中,平坦化层2264的凹槽的形状可以是围绕非显示区域的环形,也可以是围绕非显示区域的多个条形。需要说明的是,在另一些实施例中,当第二绝缘层226设置有其他绝缘层时,平坦化层2264可以仅设置在显示区域,或者仅设置在显示区域和部分非显示区域,但是平坦化层2264在非显示区域不设置凹槽。此外,上述列举的实施中均设置有平坦化层2264,但是本发明实施例并非局限于此,在其他的实施例中,第二绝缘层226可以不设置平坦化层。

进一步地,请参考图5,第一氧化物导体层OC1(图5中的连接导体208a)与第三金属层M3(图5中的触控电极线206)通过第一过孔h1连接,第一氧化物导体层OC1与第二金属层(图5中的防静电薄膜晶体管ET2的漏极2024b)通过第二过孔h2连接,第一过孔h1贯穿第三绝缘层228,第二过孔h2贯穿所述第二绝缘层226和第三绝缘层228,第二过孔h2向衬底基板220的垂直投影与平坦化层2264的通孔2264a向衬底基板的垂直投影交叠。需要说明的是,图5中的第二绝缘层226只包括平坦化层2264,因此,第二过孔h2只需要贯穿第三绝缘层228即可实现第三金属层M3与第二金属层M2电连接,但是,当第二绝缘层226还设置有其他绝缘层时,第二过孔h2需要贯穿其他的绝缘层;如果第二绝缘层中没有设置有通孔2264a的平坦化层,则第二过孔h2需要贯穿整个第二绝缘层226以实现第三金属层M3和第二金属层M2电连接。

可选地,第三金属层M3与第二金属层M2通过第一氧化物导体层OC1、第二氧化物导体层OC2电连接。具体地,触控电极线(第三金属M3)与防静电电路电连接的具体结构请参考图4和图6,图6为图4所示结构沿AA'的另一种剖面结构示意图,图6所示结构与图5所示结构类似,不同之处在于第三金属层M3和第二金属层M2的连接方式,其他相同之处本实施例不再赘述。在非显示区域,触控电极线206与防静电薄膜晶体管ET2的漏极2024b之间通过连接导体208a和210a电连接,具体地,触控电极线206通过第一过孔h1与连接导体208a电连接,连接导体208a与防静电薄膜晶体管ET2的漏极2024b通过第二过孔h2电连接,辅助连接导体210a与连接导体210a直接接触。需要说明的是,连接导体208a包括于第一氧化物导体层OC1,辅助连接导体210a包括于第二氧化物导体层OC2。

需要说明的是,第二氧化物导体层OC2包括第一区域和第二区域,在所述第一区域,第二氧化物导体层OC2与第一氧化物导体层OC1之间设置有第四绝缘层;在所述第二区域,第二氧化物导体层OC2与第一氧化物导体层OC1相互接触;所述第二区域向衬底基板的垂直投影与平坦化层的通孔向衬底基板的垂直投影重叠。具体地,在显示区域中,第一氧化物导体层OC1和第二氧化物导体层OC2之间设置有绝缘层以实现相互绝缘,但是在非显示区域,位于第一氧化物导体层OC1的连接导体208a和位于第二氧化物导体层OC2的辅助连接导体210a相互接触以实现电连接。为了实现第一氧化物导体层OC1在显示区域相互绝缘,而在非显示区域有相互电连接的区域,则在形成第二氧化导体层OC2之前,需要采用一道掩膜板将第一氧化物导体层OC1和第二氧化物导体层OC2相互电连接处的绝缘层刻蚀掉,在图6所示的结构中,需要将连接导体208a和辅助连接导体210a对应位置处位于第一氧化物导体层OC1和第二氧化物导体层OC2的绝缘层刻蚀掉。同样地,在非显示区域中,除图6示意的区域外,其他区域也可以在第一氧化物导体层OC1和第二氧化物导体层OC2之间设置第四绝缘层229。此时,第一氧化物导体层OC1和第二氧化物导体层OC2之间设置有绝缘层的区域可以称为第一区域,第一氧化物导体层OC1和第二氧化物导体层OC2之间未设置绝缘层的区域可以称为第二区域,辅助连接导体210a和连接导体208a位于第二区域,且,第二区域向衬底基板220的垂直投影与平坦化层2264的通孔2264a向衬底基板220的垂直投影重叠。

需要说明的是,本发明提供的部分实施例中,在平坦化层2264设置有通孔2264a,而不是在第三金属层M3和第二金属层M2电连接处设置贯穿平坦化层2264、第二绝缘层226中其他膜层和第三绝缘层228的深孔,也不是在第三金属层M3和第二金属层M2电连接处设置贯穿平坦化层2264、第二绝缘层226中其他膜层、第三绝缘层228和第四绝缘层229的深孔,能够避免连接导体208a和辅助连接导体210a跨越深孔;从而减少连接导体208a发生断线的可能。

本实施例中第三金属层M3与第二金属层M2通过第一氧化物导体层OC1、第二氧化物导体层OC2电连接,即,采用连接导体208a和辅助连接导体210a实现触控电极线206和防静电薄膜晶体管ET2的漏极2024b之间的电连接,这样的连接方式进一步提高第三金属层M3和第二金属层M2之间的电连接稳定性。具体地,由于第一氧化物导体层OC1与第二金属层M2之间的绝缘层厚度较大,其和第二金属层M2连接的路劲较为陡峭,且第一氧化导体层OC1的厚度与第二金属层M2相比通常较薄,因此,位于第一氧化物导体层OC1的连接导体208a容易发生断线。然而,本实施例中增加了辅助连接电极210a可以断线的连接导体208a电连接起来,从而提高第三金属层M3(触控电极线206)和第二金属层M2(防静电薄膜晶体管ET2的漏极2024b)之间的电连接稳定性。因此,本实施例提供的阵列基板能及时导出位于第三金属层M3中的触控电极线206、与触控电极线206电连接的触控电极上的静电,从而防止发生静电击伤、提高触控灵敏度。

还需要进一步说明的是,虽然本实施例中连接导体208a没有被绝缘层覆盖,但是连接导体208a被辅助连接导体210a覆盖,因此,本实施例中仍然能够避免连接第三金属层M3(触控电极线206)和第二金属层M2(防静电薄膜晶体管ET2的漏极2024b)的连接导体208a在后续制程中被腐蚀。

可选地,第三金属层M3和第二金属层M2分别通过第一氧化物导体层OC1与第二氧化物导体层OC2电连接。具体地,请参考图7和图8,图7为图1所示阵列基板非显示区域中防静电电路单元的另一种结构示意图,图8为图7所示结构沿BB'的又一种剖面结构示意图,图7所示的结构与图4所示的结构类似,不同之处在于第三金属层M3和第二金属层M2的连接方式,其他相同之处不再赘述;图8所示的结构与图6所示的结构类似,不同之处在于第三金属层M3和第二金属层M2的连接方式,其他相同之处不再赘述。如图8所示,位于第一氧化物导体层OC1的连接导体208a与位于第三金属层M3的触控电极线206通过第一过孔h1连接,且与位于第二金属层M2的防静电薄膜晶体管ET2的漏极2024b通过第二过孔h2连接;位于第二氧化物导体层OC2的辅助连接导体210a与位于第三金属层M3的触控电极线206通过第三过孔h3连接,且与位于第二金属层M2的防静电薄膜晶体管ET2的漏极2024b通过第四过孔h4连接。

需要说明的是,如图8所示,在非显示区域还设置有第四绝缘层229,第一过孔h1贯穿第三绝缘层228,第二过孔h2贯穿第三绝缘层228和第二绝缘层226,第三过孔h3贯穿第四绝缘层229和第三绝缘层228,第四过孔h4贯穿第四绝缘层229、第三绝缘层228和第二绝缘层226;第二过孔h2、第四过孔h4向衬底基板220的垂直投影与平坦化层2264的通孔2264a向衬底基板220的垂直投影重叠。具体地,第二过孔h2、第四过孔h4向平坦化层2264的垂直投影位于平坦化层2264的通孔2264a内。

需要说明的是,本发明提供的部分实施例中,在平坦化层2264设置有通孔2264a,而不是在第三金属层M3和第二金属层M2电连接处设置贯穿平坦化层2264、第二绝缘层226中其他膜层和第三绝缘层228的深孔,能够避免连接导体208a跨越深孔,从而减少连接导体208a发生断线的可能。

在本实施例中,位于第三金属层M3的触控电极线206与位于第二金属层M2的防静电薄膜晶体管ET2的漏极2024b之间分别通过位于第一氧化物导体层OC1的连接导体208a、位于第二氧化物导体层OC2的辅助连接导体210a电连接,且第一氧化物导体层OC1和第二氧化物导体层OC2之间还设置有第四绝缘层229,因此,不仅能够防止连接导体208a在后续制程中发生腐蚀,还能增强电连接稳定性。即,如果连接导体208a发生断路,辅助连接导体210a还可以实现第三金属层M3和第二金属层M2之间的电连接。因此,本实施例提供的阵列基板能及时导出位于第三金属层M3中的触控电极线206、与触控电极线206电连接的触控电极上的静电,从而防止发生静电击伤、提高触控灵敏度。

为了便于说明,上述实施例中以触控电极线和防静电电路之间的电连接方式详细说明了第三金属层M3和第二金属层M2之间的连接方式。然而,本发明实施例并未局限于此,只要涉及第三金属层M3和第二金属层M2之间进行电连接都可以采用本发明提供的连接方式。为了更好的理解本发明,下面将针对如何将触控电极线与控制部的电连接为例进行说明,其中,控制部可以是驱动芯片(Integarated Circuit,IC)或者柔性电路板(Flexible Printed Circuit,FPC)等。具体地,阵列基板还包括位于非显示区域的所述控制部,第一金属层M1、第二金属层M2以及第三金属层么均与所述控制部电连接。

请参考图1和图9,图9为图1所示阵列基板非显示区域在第三金属层M3换线处的结构示意图。在图1所示的阵列基板中,非显示区域20中,在显示区域10和驱动芯片IC之间设置有换线区204,所述换线区204为不同层之间的导线进行电连接以实现换线的区域。第三金属层M3若要与驱动芯片IC进行电连接,需要通过换线方式实现,即,如图9所示,位于第三金属层M3的触控电极线206通过换线电极块2042换线才能实现与位于第一金属层M1的驱动引线2044电连接,驱动引线2044与驱动芯片IC直接电连接。需要说明的是,图9仅仅示意出本发明的一种实施例,但是在本发明的其他实施例中,与驱动芯片IC直接电连接的驱动引线2044还可以位于第二金属层M2;驱动引线2044不与驱动芯片IC电连接,而是与柔性电路板直接电连接。

具体地,触控电极线206的换线方式请参考图10,图10为图9所示结构沿CC'的一种剖面结构示意图。其中,图10所示的第三金属层M3和第二金属层M2之间的连接方式图5所示相同,因此,相同内容本实施例不再赘述。如图10所示,位于第一氧化物导体层OC1的连接导体208a与位于第三金属层M3的触控电极线206通过第一过孔h1连接,位于第一氧化物导体层OC1的连接导体208a与位于第二金属层的换线电极块2042通过第二过孔h2连接;第一过孔h1贯穿第三绝缘层228,第二过孔h2贯穿所述第二绝缘层226和第三绝缘层228。触控电极线206通过前述设置方式与换线电极块2042电连接,位于第二金属层M2的换线电极块2042通过第五过孔h5和位于第一金属层M1的驱动引线2044实现电连接,进而,位于第三金属层M3的触控电极线206实现了与位于第一金属层M1的驱动引线2044电连接。需要说明的是,在连接导体208a远离衬底基板220的一侧设置有第四绝缘层229。本实施例中,通过位于第四绝缘层229靠近衬底基板220一侧的连接导体208a实现触控电极线206和换线电极块2042的电连接,能够防止连接导体208a在后续制程中发生腐蚀,确保触控电极线206与驱动芯片IC的电连接稳定,从而提高触控灵敏度。

可选地,触控电极线206的换线方式还可以参考图11,图11为图9所示结构沿BB'的另一种剖面结构示意图。其中,图11所示的第三金属层M3和第二金属层M2之间的连接方式图6所示相同,因此,相同内容本实施例不再赘述。如图11所示,位于第一氧化物导体层OC1的连接导体208a与位于第三金属层M3的触控电极线206通过第一过孔h1连接,位于第一氧化物导体层OC1的连接导体208a与位于第二金属层的换线电极块2042通过第二过孔h2连接;第一过孔h1贯穿第三绝缘层228,第二过孔h2贯穿所述第二绝缘层226和第三绝缘层228;位于第二氧化物导体层OC2的辅助连接导体210a与连接导体208a直接接触。触控电极线206通过前述设置方式与换线电极块2042电连接,位于第二金属层M2的换线电极块2042通过第五过孔h5和位于第一金属层M1的驱动引线2044实现电连接,进而,位于第三金属层M3的触控电极线206实现了与位于第一金属层M1的驱动引线2044电连接。本实施例中通过辅助连接导体210a与连接导体208a直接接触增强了触控电极线206和驱动芯片IC之间的电连接稳定性,从而提高触控灵敏度。

需要说明的是,图11只是示意出了本实施例提供的阵列基板的局部结构,在阵列基板的显示区域,第一氧化物导体层OC1和第二氧化物导体层OC2之间设置有绝缘层,例如,如图2或者图3所示,第一氧化物导体层OC1和第二氧化物导体层OC2之间设置有第四绝缘层229。同样地,在非显示区域中,除图10示意的区域外,其他区域也可以在第一氧化物导体层OC1和第二氧化物导体层OC2之间设置第四绝缘层229。此时,第一氧化物导体层OC1和第二氧化物导体层OC2之间设置有绝缘层的区域可以称为第一区域,第一氧化物导体层OC1和第二氧化物导体层OC2之间未设置绝缘层的区域可以称为第二区域,辅助连接导体210a和连接导体208a位于第二区域,且,第二区域向衬底基板220的垂直投影与平坦化层2264的通孔2264a向衬底基板220的垂直投影重叠。

可选地,触控电极线206的换线方式还可以参考图12和图13,图12为图1所示阵列基板非显示区域在第三金属层换线处的另一种结构示意图,图13为图12所示结构沿DD'的一种剖面结构示意图。其中,图13所示的第三金属层M3和第二金属层M2之间的连接方式图8所示相同,因此,相同内容本实施例不再赘述。如图13所示,位于第一氧化物导体层OC1的连接导体208a与位于第三金属层M3的触控电极线206通过第一过孔h1连接,且与位于第二金属层M2的换线电极块2042通过第二过孔h2连接;位于第二氧化物导体层OC2的辅助连接导体210a与位于第三金属层M3的触控电极线206通过第三过孔h3连接,且与位于第二金属层M2的换线电极块2042通过第四过孔h4连接;连接导体208a与辅助连接导体210a之间设置有第四绝缘层229。触控电极线206通过前述设置方式与换线电极块2042电连接,位于第二金属层M2的换线电极块2042通过第五过孔h5和位于第一金属层M1的驱动引线2044实现电连接,进而,位于第三金属层M3的触控电极线206实现了与位于第一金属层M1的驱动引线2044电连接。本实施例中,通过位于第一氧化物导体层OC1的连接导体208a、位于第二氧化导体层OC2的辅助连接导体210a分别电连接位于第三金属层M3的触控电极线206和位于第二金属层M2的换线电极块2042,在辅助连接导体210a增强电连接稳定性的同时,连接导体208a被第四绝缘层229保护以避免在后续制程发生腐蚀。因此,本实施例能够进一步提高阵列基板的触控灵敏度。

在上述实施例中以第二绝缘层226仅包括平坦化层2264进行举例,然而,本发明提供的实施例并非局限于此,在本发明的其他实施例中,第二绝缘层226除了包括平坦化层2264外,还包括其他的层间绝缘层。下面将以触控电极线与控制部之间的连接方式为例进行说明。

请参考图14,图14为图9所示结构沿CC'的又一种剖面结构示意图。图14所示的第三金属层M3和第二金属层M2之间的连接方式与图10所示相同,因此,相同之处本实施例不再赘述。如图14所示,第二绝缘层226包括平坦化层2264、第一层间绝缘层2262和第二层间绝缘层2266。具体地,第一层间绝缘层2262位于第二金属层M2和平坦化层2264之间,第二层间绝缘层2266位于平坦化层2264和第三金属层M3之间。此时,第二过孔h2需要贯穿第一层间绝缘层2262和第二层间绝缘层2266。由于平坦化层2264的通孔2264a是在形成第三金属层M3之间形成,而通孔2264a已经暴露出第二金属层M2中需要和第第三金属层M3电连接的区域,因此,在刻蚀第三金属层M3时会腐蚀第二金属层M2中位于通孔2264a中的区域。然而,本实施例中设置的第一层间绝缘层2262和第二层间绝缘层2266能够防止第二金属层M2在第三金属层刻蚀的过程发生腐蚀,从而确保后续第三金属层M3和第二金属层M2之间的电连接稳定性。

需要说明的是,图14所示结构只是本发明实施例中的一种,在其他的实施例中,位于第二绝缘层226的层间绝缘层可以只有一层或者多层,本发明实施例对此不作限制,在实际生产中可以根据需要选择层间绝缘层的数量。

需要说明的是,图5、图6、图8、图10、图11和图13所示结构中,第二绝缘层226也可以包括一层或者多层层间绝缘层。不管第二绝缘层226包括多少层间绝缘层,位于连接导体208a和第二金属层M2之间的过孔都要贯穿所有的层间绝缘层,和/或,位于辅助连接导体210a和第二金属层M2之间的过孔都要贯穿所有的层间绝缘层。

此外,触控电极线206的换线方式还可以参考图15,图15为图1所示阵列基板非显示区域在第三金属层换线处的又一种结构示意图。需要说明的是,图15所示换线处的结构和图9类似,不同之处在于换线电极块2042与两条触控电极线206电连接,其他相同之处不再赘述。需要说明的是,图15所示结构中与同换线电极块2042电连接的两条触控电极线206在显示区域与同一个触控电极块(公共电极块)电连接。在本发明的其他实施例中,如果一个触控电极块与多条触控电极线206电连接,则所述多条触控电极线206在换线处电连接至同一换线电极块2042。

同样地,上述实施例中,在触控电极线206换线处的平坦化层2264设置有通孔2264a,而不是在第三金属层M3和第二金属层M2电连接处设置贯穿平坦化层2264、第二绝缘层226中其他膜层和第三绝缘层228的深孔,能够避免连接导体208a跨越深孔;或/和,而不是在第三金属层M3和第二金属层M2电连接处设置贯穿平坦化层2264、第二绝缘层226中其他膜层、第三绝缘层228和第四绝缘层229的深孔,能够避免辅助连接导体210a跨越深孔。因此,本发明实施例提供的阵列基板减少连接导体208a发生断线的可能。

最后,本发明实施例还提供了一种显示装置,如图16所示,图16为本发明实施例提供的一种显示装置的结构示意图。具体地,该显示装置包括外壳2,显示面板4、摄像头6以及信号灯8,其中,显示面板4包括上述任一实施例所述的阵列基板。由于本发明阵列基板中的位于第三金属层M3的触控电极线和第二金属层M2之间的电连接稳定性和/或防腐蚀性得到提高,从而提高显示装置的触控灵敏度和使用寿命。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1