一种基于各向同性陶瓷超构材料的高效率宽带反射镜的制作方法

文档序号:13948699阅读:318来源:国知局
一种基于各向同性陶瓷超构材料的高效率宽带反射镜的制作方法

本发明涉及反射镜,尤其是涉及一种基于各向同性陶瓷超构材料的高效率宽带反射镜。



背景技术:

高效率宽带反射镜,即对入射光实现全反射,可控制从微波到可见光波段的电磁波的传播。传统的高效率宽带反射镜结构所使用材料的一些问题,如体积大、损耗较大、制作工艺繁杂、价格昂贵等,而人工电磁超构材料可以通过结构设计使之实现自然材料所不具备的物理性质,并解决以上传统材料的问题,为高效率宽带反射镜的设计提供了一个全新的方向。

目前,电磁超构材料高效率反射镜主要有:

一种基于等离激元的布拉格反射器,依次按半导体‐介质‐半导体排列的亚波长结构,该结构所使用的半导体材料为锑化铟,介质材料则为交替出现的二氧化硅和多孔二氧化硅。根据相干相消的原理,实现太赫兹波段的全反射。

一种基于一维光子晶体的太赫兹反射器,由二氟化钡–pbs(聚丁二酸丁二脂)周期排列构成,根据光子晶体带隙原理,可在太赫兹波段实现全反射。

然而,这些反射镜分别存在频带较窄,多层结构,结构复杂,制作工艺要求严格等问题。

参考文献:

1、zhaoq,zhouj,zhangf,etal.mieresonance-baseddielectricmetamaterials[j].materialstoday,2009,12(12):60–69。

2、němech,kadlecc,kadlecf,etal.resonantmagneticresponseoftio2microspheresatterahertzfrequencies[j].appliedphysicsletters,2012,100(100):489。



技术实现要素:

本发明的目的在于可克服上述反射镜的不足,提供对极化不敏感,并可在大的入射角范围内工作的一种基于各向同性陶瓷超构材料的高效率宽带反射镜。

本发明由单层周期性排列的立方体介质块组成,所述单层周期性排列的立方体介质块的尺寸相同。

所述立方体介质块的基底媒质可使用石英或硅,这对于反射效果的影响并不大;所述立方体介质块可采用tio2立方块,其宽度和厚度可为30μm,周期可为33μm。

所述基于各向同性陶瓷超构材料的高效率宽带反射镜的工作方法如下:

1)入射波:频率在0.83~0.96thz范围内的线极化波,正入射或斜入射到介质层表面上;

2)反射波:被高效率宽带反射镜完全反射的电磁波。

本发明的工作原理是:可以假设沿z方向传播的线极化入射波照射表面,入射波的电场和磁场激发介质块,形成位移电流,根据场分布可等效为磁偶极子和电偶极子,分别对应于0.83thz和0.96thz的磁共振和电共振。磁共振可以形成数值较小的负的磁导率μeff,而电共振可形成数值较大的负的介电常数εeff,则在两个共振峰之间该结构的特性阻抗几乎为0,即实现阻抗失配,从而达到实现全反射的目的。

本发明在较高的入射角下也能产生,对极化不敏感,横电和横磁波入射均可达到相同的全反射效果,并且可以通过改变几何尺寸进行调整。此外,所提出的高效率宽带反射镜在电磁波屏蔽,滤波器的潜在应用中具有带宽较宽,制作工艺简单,损耗小,效率高的优点。

附图说明

图1为本发明实施例的结构示意图。

图2是本发明实施例的反射-频率曲线。

具体实施方式

下面结合附图对本发明的具体实施方式进行说明。

如图1所示,本发明实施例为单层结构,由立方体介质块1周期性排列组成,光从空气层入射到高效率宽带反射镜表面,产生各向同性全反射。利用本发明的一种具体实施方式为:设介质块的材料为tio2,宽度为30μm,周期为33μm。该高效率宽带反射镜工作时,源处的电磁波正入射或以一定角度斜入射到结构上,经过高效率宽带反射镜作用后,完全被反射。

图2所示的表面所述高效率宽带反射镜的工作频率在0.83~0.96thz,在图1的实施方式下,线极化波垂直入射到单层介质表面,实现全反射。本发明在0.83~0.96thz都能实现接近于1的全反射。



技术特征:

技术总结
一种基于各向同性陶瓷超构材料的高效率宽带反射镜,涉及反射镜。由单层周期性排列的立方体介质块组成,单层周期性排列的立方体介质块的尺寸相同。立方体介质块的基底媒质使用石英或硅;所述立方体介质块采用TiO2立方块,其宽度和厚度为30μm,周期为33μm。工作方法为入射波:频率在0.83~0.96THz范围内的线极化波,正入射或斜入射到介质层表面上;反射波:被高效率宽带反射镜完全反射的电磁波。在较高的入射角下也能产生,对极化不敏感,横电和横磁波入射均可达到相同的全反射效果,可通过改变几何尺寸进行调整。所提出的高效率宽带反射镜在电磁波屏蔽,滤波器的潜在应用中具有带宽较宽,制作工艺简单,损耗小,效率高。

技术研发人员:宋争勇;褚琼琼;柳清伙
受保护的技术使用者:厦门大学
技术研发日:2017.11.16
技术公布日:2018.03.16
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1