反射型光调制装置、投影仪及AR/VR显示器的制作方法

文档序号:14675580发布日期:2018-06-12 21:26阅读:484来源:国知局
反射型光调制装置、投影仪及AR/VR显示器的制作方法

本公开一般涉及显示领域,尤其涉及反射型光调制装置、投影仪及AR/VR显示器。



背景技术:

随着增强现实(Augmented Reality,简称AR)和虚拟现实(Virtual Reality,简称VR)等技术的逐步应用,带动了微显示技术的发展,其中LCOS(Liquid Crystal on Silicon)硅基液晶因其在分辨率、开口率、功耗、体积等方面具有很大优势而逐渐成为研究的热点。特别是,反射型硅基液晶。

AR/VR显示中采用的反射型光调制装置的结构通常将光源发出的光经偏振分光棱镜分成两束传播方向垂直的线偏振光,其中只有一束偏振光经硅基液晶层的调制后进入投影镜头。

可见,上述反射型光调制装置未充分利用所有偏振光,造成光利用率的低下。



技术实现要素:

鉴于现有技术中的上述缺陷或不足,提供一种光利用率较高的反射型光调制装置、投影仪及AR/VR显示器。

第一方面,提供一种反射型光调制装置,装置包括:

光源;

沿光源的光传播方向设置有偏振分光层,偏振分光层将光源的光分成两束传播方向垂直的线偏振光;

经偏振分光层透射的线偏振光的传播方向上设置第一调制反射层,经偏振分光层反射的线偏振光的传播方向上设置第二调制反射层,第一调制反射层与第二调制反射层同步调制;偏振分光层背离第二调制反射层的一侧设置有投影镜头。

第二方面,提供一种投影仪,包括本发明提供的各实施例的反射型光调制装置。

第三方面,提供一种AR/VR显示器,包括本发明提供的各实施例的反射型光调制装置。

根据本发明实施例提供的技术方案,通过分别在光源相对面和投影镜头相对面设置反射层,能够解决现有反射型光调制装置的光利用率低下的问题。

附图说明

通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:

图1示出了根据本申请实施例的反射型光调制装置工作在暗态下的示例性示意图;

图2示出了根据本申请实施例的反射型光调制装置工作在亮态下的示例性示意图。

具体实施方式

下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。

请参考图1,示出了根据本申请实施例的反射型光调制装置工作在暗态下的示例性示意图。如图1所示,一种反射型光调制装置包括:

光源140;

沿光源的光传播方向设置有偏振分光层120,偏振分光层120将光源的光分成两束传播方向垂直的线偏振光;

经偏振分光层120透射的线偏振光的传播方向上设置第一调制反射层150,经偏振分光层120反射的线偏振光的传播方向上设置第二调制反射层110,第一调制反射层150与第二调制反射层110同步调制;偏振分光层背离第二调制反射层的一侧设置有投影镜头。

偏振分光镜120能够将光源的光分成两束传播方向垂直的线偏振光S偏振光和P偏振光。如图1所示,光源发出的光161经偏振分光层120后,分成S偏振光162和P偏振光163。光源140发射的光161,经偏振分光层120分光后的P偏振光163和S偏振光162分别进入第一调制反射层150和第二调制反射层110,反射的光再次经偏振分光层120,并根据光的特性进入投影镜头130或外界。

其中,第一调制反射层150与第二调制反射层110同步调制。即第一调制反射层150工作在调制模式时第二调制反射层110也工作在调制模式,第一调制反射层150工作在非调制模式时第二调制反射层110也工作在非调制模式。

在一些优选实施例中,偏振分光层具体为偏振分光镜,该偏振分光镜可由高精度直角棱镜胶合而成,其中一个棱镜的斜边上镀有偏振分光介质膜,所述斜边与第二调制反射层110形成一定夹角,优选地,该夹角为45度角。

优选地,光源和偏振分光层之间设置有准直透镜(图中未标出)。该准直透镜用于准直光源发出的光161。

优选地,调制反射层具体为硅基液晶。通过控制液晶的偏转,对入射的光进行调制。

在一些实施例中,硅基液晶以光进入方向依次设置有玻璃层111、透光电极层112、液晶层113、金属反射电极层114和驱动电路层115。第一调制反射层150和第二调制反射层110可采用相同的硅基液晶结构。

优选地,透光电极层为ITO电极层。掺锡氧化铟(Indium Tin Oxide,简称ITO),是一种n型半导体材料,具有高导电率、高可见光透过率,高机械硬度和化学稳定性。

优选地,金属反射电极层为铝镀电极层。可采用抛光的铝镀层,用于提供电极和光线反射。

优选地,驱动电路层包括CMOS有源驱动电路。驱动电路层可采用互补金属氧化物半导体(Complementary Metal-Oxide Semiconducrtor,简称CMOS)工艺制造,用于控制液晶层113的偏转。

如图1所示,调制反射层工作在调制模式时,光源发出的光161经偏振分光镜120后,分为S偏振光162和P偏振光163,其中,S偏振光162进入调制反射层110,调制反射层110对光进行调制,将S偏振光转换为P偏振光164,该P偏振164光能够通过偏振分光镜120进入投影镜头130。另外,P偏振光163进入调制反射层150,调制反射层150对光进行调制,将P偏振光163转换为S偏振光165,该S偏振光经45度角的反射进入投影镜头130。此时,显示为亮态。可见亮态时,几乎全部的光都用于显示,提高了光利用率。使得显示亮度大大提高。

接着,请参考图2,示出了根据本申请实施例的反射型光调制装置工作在亮态下的示例性示意图。如图2所示,调制反射层工作在非调制模式时,光源发出的光161经偏振分光镜120后,分为S偏振光162和P偏振光163,其中,S偏振光162进入调制反射层110,调制反射层110不对光进行调制,经反射电极层114的反射的S偏振164经45度角的反射后进入外部。另外,P偏振光163进入调制反射层150,调制反射层150不对光进行调制,被反射的将P偏振光165能够通过偏振分光镜120射出至外部。此时,显示为暗态。

以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1