使用波导反射器阵列投射器的多深度平面三维显示器的制造方法_2

文档序号:8417460阅读:来源:国知局
2]这里描述了平面波导506的多层2D阵列502,其中,每层投射与3D体积中的不同虚拟深度平面相对应的光。如上所解释,图5A-5C示出示例性多层WRAP显示设备或系统500的一部分,该设备或系统具有堆叠为层的2D平面波导、列或波导集合506。每层506包括多个波导,例如,如图3A的实例所示的线性或矩形波导504。光分布耦合器510的集合和/或其它光耦合器512、514将2D阵列502的线性或矩形波导504光耦合到其它组件。例如,光分布耦合器510和/或其它光耦合器512、514可将2D阵列502的线性或矩形波导504光耦合到提供像素图案(例如,RGB强度调制的像素图案)的子系统。在一些情形下,光耦合器510的集合在这里和/或者在权利要求中被称为列分布耦合器的线性阵列或者被称为第二横轴(Y)分布光耦合器或耦合管。如前所述,本领域技术人员将容易理解,这样的结构不需要是中空的,并且在很多实施中将是实心的,在很多方面与光纤类似。
[0043]WRAP设备500中的每个单独的波导504包括一系列被拆解的弯曲球面反射器或镜540,弯曲球面反射器或镜540被设计为将无穷远聚焦的光重新聚焦到特定的径向距离。菲涅尔透镜是从一系列光学微组件构造的宏观光学元件的实例。WRAP设备500包括微反射器540的阵列,该微反射器有效地用作侧注入(例如从被表示为第一端的侧注入)的菲涅尔镜。图18示出了在球1804的一部分的配置中的微反射器1802a-1802n (共同表示为1802,为了绘图清楚仅显示了两个)的阵列的实例,而不是将在等效菲涅尔镜中发现的线性配置1808中的微反射器1806a-1806n (共同表示为1806,为了绘图清楚仅显示了两个)的阵列,其中,球面配置1804中的微反射器1802的定向与线性菲涅尔镜配置1808的微组件或微反射器1806的定向相匹配。
[0044]WRAP设备500包括含有每个2D波导506的线性或矩形波导504中的弯曲微反射器的阵列。弯曲微反射器的阵列被定位和定向,以和透镜或弯曲镜类似地起作用,以在特定的径向距离投射虚拟图像。尽管在这里和/或权利要求中被表示为“反射器”,如这里所解释,弯曲微反射器典型地部分地反射且部分地传递电磁能,例如光(即,近红外光或N-1R、可见光、近紫外光或N-UV)的光波长。如这里所述,反射率可为电磁能或光的角模的函数。
[0045]传统的基于透镜的成像系统或基于弯曲镜的成像系统使用具有大表面曲率的光学元件。传统的基于透镜的成像系统或基于弯曲镜的成像系统是前面或背面注入,典型地通过来自投射器元件的宽光场。这样的传统系统倾向于相对较厚且重,并且通常使用多个光学元件和移动部件来改变其焦距。相反,所示WRAP设备500的线性波导504的2D阵列502 (图5A)具有平面表面。所示WRAP设备500的线性波导504的2D阵列502可通过来自光纤的窄角度光束的锥542 (图3A)为侧注入的(即,注入到在这里和在权利要求中用第一端来表示的侧中),该窄角度光束然后被内部倍增为宽光场。所示WRAP设备500的线性波导504的2D阵列502可以变得很薄且轻。所示2D平面波导或层506可被容易地堆叠以产生多焦点显示器,其中,每个2D平面波导、层、列或集合506提供与其它2D平面波导、层、列或集合独立的光路,例如,允许每个提供在3D图像中的相应焦点或深度平面。
[0046]与如上所述的LOE系统10(图1B-1、1B-2、1B_3)相反,在一个实施例中,WRAP设备500投射多个深度平面522 (图5C),每个通过对应球面波前曲率524 (图5C)聚焦在不同的径向距离。WRAP设备500可包括一系列线性或矩形圆柱形波导,该波导被布置为垂直(xy)列以产生平面2D波导506,该平面2D波导506在某些情形下可被称为线性或矩形波导503的2D组装。WRAP设备500可包括多个2D平面波导、列、层或集合506,每个对应于不同的虚拟深度平面522 (图5C)。WRAP设备500可使用凸球面弯曲微反射器540 (图3A和5A)。微反射器540可具有一个或多个表面曲率,并且在每个波导层506中该表面曲率可改变。如图3B和3C最佳示出的,每个微反射器540可被沿着两个角度方向Φ、Θ而定向。角度方向Φ、Θ可在任意给定的线性波导504中改变,或者可在单层506中的线性波导504之间或者在不同层506之间改变。
[0047]如图8最佳不出的,例如,通过一个或多个光强度调制器546、光纤光缆548、角模(angular mode)调制器或光束偏转器550、通过光闸552来实施的可选的光多路去复用开关、可选的z轴耦合阵列554以及之前所描述和所示的y轴光耦合器或光耦合阵列510的单独集合,可从一个或多个RGB (红色、绿色、蓝色)光源544,将光(例如,像素图案)耦合到WRAP设备500的2D阵列503。
[0048]WRAP 是什么
[0049]WRAP设备500可包括薄的平面2D波导506的堆叠,该波导506自身由线性或矩形圆柱形波导504的水平行构成。尽管被表示为2D,2D波导506物理地具有深度,但被表示为这样,因为每个表示2D阵列502的2D分片或部分(即,列)。尽管被表示为2D,波导的2D阵列物理地具有深度,但被表示为这样,因为长度是构成2D阵列502的单独线性或矩形波导504的固有属性。类似地,尽管有时被称为线性波导504,这些波导物理地具有高度和宽度,但被表示为这样,因为每个提供了线性光路。
[0050]图3A示出了 WRAP设备500的示例性单层2D阵列503。通过光纤512、514、548将光的输入锥542引导到分布光親合器或Y轴光親合器510中,该分布光親合器或Y轴光親合器有时在这里被称为耦合管(在图3A中垂直定向)。被安装在光耦合器510内的行中的是多个分束器556a-556n (共同表示为556,为绘图清楚起见,仅显示了两个)。每个分束器556将在它上面入射的光的第一部分反射到多个堆叠的线性或矩形波导504中的一个(在图3A中水平定向),并将光的第二部分传输到下一分束器556。于是,入射到分布光親合器或I轴光親合器510中的光被发射到沿着分布光親合器或y轴光親合器510的至少部分长度而定位的多个线性或矩形波导504中。
[0051]如之前所解释,在每个线性或矩形波导504中嵌入、定位或形成的是弯曲微反射器540的线性阵列,其被成形和角度定向,以致通过微反射器540,将被引导通过线性或矩形波导504的每个成角度的光束,从线性或矩形波导504投射到三维弯曲图案中。图3B示出了波导中的微反射器540的示例性定向角Φ、Θ,其中,为了图示简单,以平面形式展示了微反射器。图3C示出了用于弯曲微反射器540的定向角Φ、Θ的实例。所投射的图案对应于由置于给定X、1、Z坐标的虚拟点源所产生的球面波前,该X和y坐标由光束的2D角度定向来确定,且该z坐标由微反射器的特定配置以及在给定2D平面波导、列、层或集合506中的2D定向梯度来确定。每个2D平面波导、列、层或集合506被配置为具有不同的波前形状和聚焦属性,以致每层投射与不同z坐标或径向坐标(r坐标)相对应的虚拟深度平面。
[0052]放置在给定X、y、z坐标的光的点源产生了光的辐射三维图案,其以非常特定的方式在整个三维空间中改变。特别地,点源生成球面波前,该球面波前的表面曲率与辐射球的半径成反比例地改变。WRAP设备500被设计为,在接收到与给定x、y坐标相对应的输入光线时,对于特定的z坐标以合适的波前曲率和二维旋转,来生成该球的部分。
[0053]WRAP如何工作
[0054]如图3A的实例所示,可通过单独的多模光纤512来提供输入到每个WRAP 2D平面波导、列、层或集合506的光,光的小锥542已经被注入到该多模光纤512中。备选地,输入到每个2D平面波导、列、层或集合506的光是以通过去复用开关552 (图8)的相应输入通道514的光锥542的形式。光锥542包含光束的二维角度分布,该光束的二维角度分布与在要重新产生的3D体积的单个深度平面中存在的二维X、y光强度图案相对应。存在多种方式将光锥的角度分布耦合到输入光纤中,例如,使用MEMS扫描仪、可切换液晶或者MEMS衍射光闸。
[0055]传播光锥542应具有限定或已知的角度图案,例如,如图6的实例中所示。在一些实施例中,在线性或矩形波导504内部传播的光锥542应大致位于-22.5度到-67.5度的角度范围内的两个角度方向上,并且被投射到波导外面的光锥560应大致位于-22.5度到+22.5度的角度范围内的两个角度方向上。显著地,在相对较窄的光线角度范围中,将在波导中传播,于是输入图像的角度范围应被对应地限制。在这些角度范围以外传播的光将产生混淆和重像。
[0056]存在两种方式来驱动2D阵列502中的2D平面波导、列、集合或多层506,并行或串行的。在并行的方法中(如图5A的实例所示),每个波导层506被不同的多模光纤512驱动,该光纤传播与特定深度层体积中包含的视觉场的一部分相对应的角度图案。这些角度图案由位于基础单元中的驱动电子(例如RGB光源、强度调制器)生成,然后经过多个多模光纤512并行地发送到2D阵列502。例如,可以使用扫描投射器系统(例如,扫描光纤投射器)或通过将2D微投射器耦合到针孔孔径(pinhole aperture)来对2D图像进行角度编码。
[0057]在串行方法中(如图8的实例所示),整个视觉场的角度图案被同时产生并在不同的波导层506之间排序,每次一个角度光束,使用与产生图案的2D光束偏转器550相同步的光闸552。由于该过程在2D阵列、分布或y轴光親合器510和/或z轴光親合器562 (图9)中而不是在基础单元中进行,它可以由单个单模光纤514来驱动。在该系统中,输入图像被角度编码,从而传播经过光纤或其它波导514的每个可分解的角度与单个物点的强度相对应。为了以该方式来编码图像,使用多模光纤514和光耦合器514、562,其能够以和显示器的线性分辨率可比的角密度来传播多个角模式。光锥的角度范围与光学设备500的最大视野相对应,例如45度。
[0058]图9示出了经过部分WRAP设备的光传播的示例性图示,其包括z轴光耦合器562。图9展示了 z轴光耦合器562、分布或y轴光耦合器510以及线性或矩形波导(可交换地被称为X轴波导)504的相对定向。在图9的实施例中,光最初通过z轴光耦合器562进入。z轴光耦合器在很多方面可以类似于线性或矩形波导,例如,具有至少一对相对的平面侧,该平面侧提供至少部分内部反射以沿着z轴光耦合器562的长度来传播或引导光。z轴光親合器562包含成角度的平面微反射器564a-564n(共同表不为564)的线性阵列,其将光的入射角度分布的副本(copies)倍增并注入到相应列、集合或层506的分布或y轴光親合器510中。分布或y轴光耦合器510可在构造上类似于z轴光耦合器562,具有成角度的平面微反射器566a_566n(共同表不为566)的线性阵列。分布或y轴光親合器510将光的入射角度分布的副本倍增并注入到相应列、集合或层506中的每个X轴波导504中。
[0059]如图2A所示,窄的成角度的平面波光束566进入线性或矩形波导504,从平面反射器568朝着相对的反射表面532中的至少一个而反射。当每个窄的成角度的平面波光束传播经过波导并击中弯曲微反射器540时,平面波光束被分为两个光束。还如图2A所示,第一光束继续到下一微反射器540,且第二光束以发散图案来反射,其具有的曲率是反射第二光束的微反射器5
当前第2页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1