层叠吸音材料的制作方法

文档序号:23395672发布日期:2020-12-22 14:03阅读:183来源:国知局
层叠吸音材料的制作方法

本发明涉及一种层叠有两种以上的层而成的层叠结构的吸音材料。



背景技术:

所谓吸音材料是具有吸收声音的功能的制品,多用于建筑领域或汽车领域。作为构成吸音材料的材料,公知的是使用不织布。例如专利文献1中,作为具有吸音性的多层物品,公开了包含支持体层、以及层叠于支持体层上的亚微米纤维层,亚微米纤维层的中央纤维直径小于1μm且平均纤维直径为0.5μm~0.7μm的范围,通过熔融膜原纤化法或电场纺丝法形成。在专利文献1的实施例中,公开了一种层叠物品,其是将基重(单位面积重量)100g/m2、直径约18μm的聚丙烯纺粘不织布作为支持体层,在其上层叠有单位面积重量14g/m2~50g/m2、平均纤维直径约0.56μm的亚微米聚丙烯纤维。另外,在另一实施例中,公开了一种多层物品,其在单位面积重量62g/m2的聚酯的梳理处理网上层叠有单位面积重量6g/m2~32g/m2、平均纤维直径0.60μm的电场纺丝聚己内酯纤维。关于实施例中制作的多层物品,测定了音响吸收特性,并且显示了具有相较于仅支持体的音响吸收特性更优异的音响吸收特性。

另外,还已知吸音材料中使用发泡体。例如在专利文献2中公开了一种使音响舒适性(声音的反射成分的减少及最优化)及热舒适性提高的层叠结构体,且包括具有特定范围的开放多孔率的有机聚合物发泡体作为支持层,包括具有特定的通气阻力的玻璃布帛作为表面层,在支持层与表面层之间包括非连续的粘接层。公开了作为有机聚合物发泡体,可列举以聚氨基甲酸酯、尤其是聚酯氨基甲酸酯、氯丁橡胶(neoprene)(注册商标)、硅酮或三聚氰胺为基础材料的发泡体,且其密度优选为10kg/m3~120kg/m3,厚度优选为1.5mm~2.5mm。

专利文献3公开了一种吸收低频及高频的声音的层叠吸音不织布,其包括谐振膜与至少一个其他的纤维材料层,谐振膜由直径为600nm、表面重量(单位面积重量)为0.1g/m2~5g/m2的纳米纤维层形成的物质。公开了纳米纤维层典型而言利用电场纺丝制作,另一方面,基材层为直径10μm~45μm、单位面积重量5g/m2~100g/m2的纤维织物,进而还可层叠其他层。另外,为了达到适当的厚度及单位面积重量,公开了也可进一步层叠此层叠体。

专利文献4中公开了利用纳米纤维的吸音特性优异的不织布结构体。专利文献4的不织布结构体的特征在于,包含含有纤维径小于1μm的纳米纤维的纤维体,此纤维体的厚度为10mm以上。另外,公开了所述纤维体可由支持体支持,也可成为将纤维体与支持体反复层叠而成的结构。公开了纳米纤维例如通过熔喷法形成,在实施例中,在作为支持体的聚丙烯水刺不织布上形成纤维径0.5μm、单位面积重量350g/m2的纳米纤维体的层。

现有技术文献

专利文献

专利文献1:日本专利特开2014-15042号公报

专利文献2:日本专利特表2014-529524号公报

专利文献3:日本专利特表2008-537798号公报

专利文献4:日本专利特开2016-121426号公报



技术实现要素:

发明所要解决的问题

如上所述,作为吸音材料,研究了各种结构的不织布层叠体,也公知的是使用纤维径低于1μm的纳米纤维或被称为亚微米纤维的极细纤维。但是,要求具有更优异的吸音特性的吸音材料、尤其是在400hz~1000hz的低频区域、1000hz~3150hz的中频区域、2000hz~5000hz的高频区域、另外5000hz~12500hz的超高频区域的所有区域中显示出优异的吸音性能的层叠吸音材料。鉴于所述状况,本发明的课题在于提供一种在低频区域、中频区域、高频区域及超高频区域的所有区域中具有优异的吸音性的吸音材料。

解决问题的技术手段

发明人为了解决所述课题反复进行了研究。结果发现,在包含基材层与多孔质层的层叠吸音材料中,通过包含一层以上的具有特定范围的平均流量细孔径及单位面积重量的多孔质层,进而与平均音响透过损失为特定值以上的基材层组合,可解决所述课题,从而完成了本发明。

本发明具有以下结构。

[1]一种层叠吸音材料,包含多孔质层与基材层,且

所述多孔质层是纤维层或包含微多孔膜的层,

所述多孔质层的平均流量细孔径为0.1μm~30μm,单位面积重量为0.1g/m2~200g/m2

所述基材层在1000hz至12500hz下的平均音响透过损失为2db以上,

所述基材层配置在声音的入射侧,所述多孔质层配置在声音的透过侧。

[2]根据[1]所述的层叠吸音材料,其中所述基材层为选自由不织布、织布、发泡泡沫及蜂窝芯所组成的群组中的至少一种。

[3]根据[1]或[2]所述的层叠吸音材料,其中所述多孔质层是包含含有纤维的不织布的纤维层,所述纤维选自由聚偏二氟乙烯、尼龙6,6、聚丙烯腈、聚苯乙烯、聚氨基甲酸酯、聚砜、聚乙烯醇、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚乙烯及聚丙烯所组成的群组中的至少一种。

[4]根据[1]~[3]中任一项所述的层叠吸音材料,其中所述多孔质层及所述基材层分别包含一层。

[5]根据[1]~[4]中任一项所述的层叠吸音材料,其中在垂直入射吸音率测定法中,在通过测定频率为400hz至1000hz为止的吸音率,算出吸音率的平均吸音率(α)时,平均吸音率(α)的值满足下述式,

1.00≥α≥0.23。

[6]根据[1]~[5]中任一项所述的层叠吸音材料,其中在垂直入射吸音率测定法中,在通过测定频率为1000hz至3150hz为止的吸音率,算出吸音率的平均吸音率(β)时,平均吸音率(β)的值满足下述式,

1.00≥β≥0.60。

[7]根据[1]~[6]中任一项所述的层叠吸音材料,其中在垂直入射吸音率测定法中,在通过测定频率为2000hz至5000hz为止的吸音率,算出吸音率的平均吸音率(γ)时,平均吸音率(γ)的值满足下述式,

1.00≥γ≥0.85。

[8]根据[1]~[7]中任一项所述的层叠吸音材料,其中在垂直入射吸音率测定法中,在通过测定频率为5000hz至12500hz为止的吸音率,算出吸音率的平均吸音率(η)时,平均吸音率(η)的值满足下述式,

1.00≥η≥0.90。

发明的效果

根据具有所述结构的本发明,可在层叠吸音材料中以较少的层数实现广泛的吸音性。根据本发明,除了汽车用的吸音材料以外,还提供可应对住宅相关原材料(建材)或隔音壁等广泛的应用的吸音材料。已知道路噪声或人的说话声、楼梯步行声等为400hz~1000hz左右的低频区域的音响,风噪声或换气扇等住宅设备、钢琴或音响机器等为1000hz~3150hz左右的中频区域的音响,风噪声、刹车噪声或电车的轨道滑行声等为2000hz~5000hz的高频区域的音响,高旋转马达声音或开关噪声是5000hz~12500hz的超高频区域的音响,本发明的层叠吸音材料对于此种噪音对策有用。

附图说明

图1是表示本发明的实施例(实施例4)及比较例(比较例1)的吸音特性的图表。

具体实施方式

以下,对本发明进行详细说明。

(层叠吸音材料的结构)

本发明的层叠吸音材料是包含多孔质层与基材层的层叠吸音材料,且多孔质层的平均流量细孔径为0.1μm~30μm,单位面积重量为0.1g/m2~200g/m2,所述基材层在1000hz至12500hz下的平均音响透过损失为2db以上,基材层配置在声音的入射侧,多孔质层配置在声音的透过侧。

本发明的层叠吸音材料通过规定声音的入射侧与透过侧,在入射侧配置平均音响透过损失高的材料,在透过侧配置平均流量细孔径小、致密且薄的材料,实现广泛且高的吸音性。本发明的层叠吸音材料优选为层叠一层基材层与一层多孔质层而成。多孔质层可包含一层,也可包含两层以上。基材层也同样,可包含一层,也可包含两层以上。

本发明的层叠吸音材料只要不损害本发明的效果,则也可包含多孔质层及基材层以外的结构。例如也可包含本发明中规定的范围外的其他多孔质层(可为一层,也可为两层以上)、保护层、印刷层、发泡体、筛状物、织布等。另外,也可含有用于连结各层间的粘接剂、夹子、缝合线等。

再者,在本说明书中,所谓“基材层为声音的入射侧,多孔质层为声音的透过侧”表示在层叠吸音材料中,基材层配置在与多孔质层相比更靠近声音的入射侧(换句话说,多孔质层配置在与基材层相比更靠近声音的透过侧)的相对位置关系。即,不仅包含(入射侧)基材层/多孔质层(透过侧)的典型的层叠形态,而且也包含(入射侧)基材层/其他层/基材层/多孔质层(透过侧)、(入射侧)基材层/多孔质层/其他层(透过侧)、(入射侧)其他层/基材层/多孔质层/其他层(透过侧)、(入射侧)基材层/其他层/多孔质层/其他层(透过层)的层叠形态等。

构成层叠吸音材料的各层可物理性和/或化学性地粘接,也可不粘接。也可为层叠吸音材料的层间的一部分被粘接、一部分未被粘接的形态。粘接也可以例如在多孔质层的形成步骤中或者作为后步骤进行加热,使构成多孔质层的材料的一部分熔解,使多孔质层熔接在其他层上,由此将多孔质层与其他层粘接。另外,也可在层的表面赋予粘接剂,从而将层间粘接。

只要可获得本发明的效果,则层叠吸音材料的厚度并无特别限制,例如可设为3mm~50mm,优选为设为5mm~30mm,若为5mm~20mm,则就省空间性的观点而言更优选。再者,所谓层叠吸音材料的厚度是指多孔质层及基材层的厚度的合计,在安装有卡盘或盖等外装体的情况下,不包含此部分的厚度。

(多孔质层)

本发明的层叠吸音材料中所含的多孔质层是纤维层或包含微多孔膜的层,平均流量细孔径为0.1μm~30μm,若为0.2μm~20μm,则更优选。若平均流量细孔径为0.2μm以上,则可抑制由声音的反射引起的吸音率的降低,若为20μm以下,则可控制流动阻力,因此可使吸音率上升。另外,多孔质层的单位面积重量可设为0.1g/m2~200g/m2。若单位面积重量为0.1g/m2以上,则可控制流动阻力,因此可使吸音率上升,若单位面积重量为200g/m2以下,则可将吸音材料的厚度保持得较薄。

作为同时满足所述平均流量细孔径与单位面积重量的具体的多孔质层,典型地可列举纤维层或微多孔膜。

本发明中使用的纤维层是大致包含平均纤维径小于500nm的纤维的纤维集合体。若平均纤维径小于500nm,则可获得高的吸音性,因此优选,若平均纤维径小于450nm,则可获得更高的吸音性,因此进而优选。平均纤维径的下限并无特别限定,若平均纤维径为10nm以上,则加工性优异,因此容易利用。平均纤维径的测定可利用公知的方法进行。平均纤维径例如是通过根据纤维层表面的放大照片测定或计算而获得的值,详细的测定方法在实施例中详述。

构成纤维层的纤维集合体优选为不织布,只要具有所述范围的纤维径及单位面积重量,则并无特别限制,优选为熔喷不织布、通过电场纺丝法形成的极细纤维的不织布等。根据电场纺丝法,可将极细纤维作为纤维集合体效率良好地层叠在基材层上。电场纺丝法的详细情况将在制造方法中详述。

在纤维层为熔喷不织布的情况下,只要可获得发明的效果,则作为构成纤维层的纤维的原材料的树脂并无特别限制,例如可列举聚烯烃系树脂、聚氨基甲酸酯、聚乳酸、丙烯酸树脂、聚对苯二甲酸乙二酯或聚对苯二甲酸丁二酯等聚酯类、尼龙6、尼龙6,6、尼龙1,2等尼龙(酰胺树脂)类、聚苯硫醚、聚乙烯醇、聚苯乙烯、聚砜、液晶聚合物类、聚乙烯-乙酸乙烯酯共聚物、聚丙烯腈、聚偏二氟乙烯、聚偏二氟乙烯-六氟丙烯等。作为聚烯烃系树脂,可例示聚乙烯、聚丙烯。作为聚乙烯,可列举低密度聚乙烯(low-densitypolyethylene,ldpe)、高密度聚乙烯(high-densitypolyethylene,hdpe)、直链状低密度聚乙烯(linearlowdensitypolyethylene,lldpe)等,作为聚丙烯,可列举丙烯的均聚物、或者丙烯与其他单量体、乙烯或丁烯等聚合而成的共聚聚丙烯等。纤维集合体优选为包含所述树脂中的一种,也可包含两种以上。

在纤维层为所述熔喷不织布的情况下,其单位面积重量尤其可设为50g/m2~200g/m2,若为60g/m2~150g/m2,则更优选。在使用熔喷不织布时,平均流量细孔径小,且与纳米纤维相比,可利用以往设备生产,就此方面而言,可实现比较廉价的层叠吸音材料,因此有利。

在纤维层为利用电场纺丝法所得的不织布的情况下,只要可获得发明的效果,则作为构成纤维层的纤维的原材料的树脂并无特别限制,例如可列举聚丙烯或聚乙烯等聚烯烃、聚氨基甲酸酯、聚乳酸、丙烯酸树脂、聚对苯二甲酸乙二酯或聚对苯二甲酸丁二酯等聚酯类、尼龙6、尼龙6,6、尼龙1,2等尼龙(酰胺树脂)类、聚苯硫醚、聚乙烯醇、聚苯乙烯、聚砜、液晶聚合物类、聚乙烯-乙酸乙烯酯共聚物、聚丙烯腈、聚偏二氟乙烯、聚偏二氟乙烯-六氟丙烯等聚偏二氟乙烯的共聚物。它们中,在电场纺丝法中,就可溶于各种溶剂的观点而言,更优选为聚偏二氟乙烯、聚偏二氟乙烯-六氟丙烯、尼龙6,6、聚丙烯腈、聚苯乙烯、聚氨基甲酸酯、聚砜及聚乙烯醇。

纤维优选为包含所述树脂中的一种,也可包含两种以上。

在纤维层为利用所述电场纺丝法所得的不织布的情况下,其单位面积重量尤其可设为0.1g/m2~10g/m2,若为0.1g/m2~5.0g/m2,则更优选。在使用利用电场纺丝法所得的不织布时,可形成平均流量细孔径小且单位面积重量小的不织布层,可实现厚度薄的层叠吸音材料,因此有利。

作为本发明中使用的微多孔膜,并不特别限定于微多孔膜的原料,例如可使用聚四氟乙烯、聚酰胺、聚酰亚胺、聚烯烃、聚碳酸酯等单体或它们的混合物等,就耐久性的观点而言,优选为包含聚四氟乙烯(polytetrafluoroethylene)(以下,也有时简称为“ptfe”),更优选为ptfe制品。优选使用的ptfe微多孔膜的制造方法并无特别限定,就抑制尺寸变化的观点而言,优选为延伸ptfe微多孔膜。

微多孔膜可利用公知的方法制造,也可适用市售品,例如可使用伯来龙(poreflon)(住友电工公司制造)、薄膜过滤器(爱多邦得科(advantec)公司制造)等。在不损害本发明的课题达成及效果的范围内,微多孔膜中可视需要含有非纤维化物(例如低分子量ptfe)、紫外线吸收剂、光稳定剂、抗静电剂、防雾剂、着色颜料等公知的添加剂。

另外,微多孔膜可为一层,也可为视需要将两层以上组合使用的结构。就即使在发生空隙或针孔等缺陷的情况下也不会传播缺陷的观点而言,优选为设为两层以上。

除所述以外,多孔质层中也可包含树脂以外的各种添加剂。作为可添加到树脂中的添加剂,例如可列举:填充剂、稳定化剂、塑化剂、粘合剂、粘接促进剂(例如硅烷及钛酸盐)、二氧化硅、玻璃、粘土、滑石、颜料、着色剂、抗氧化剂类、荧光增白剂类、抗菌剂类、表面活性剂类、阻燃剂类及氟化聚合物。使用所述添加物中的一种以上,可减少所得的纤维及层的重量和/或成本,也可调整粘度,或者也可对纤维的热特性进行改性,或者还可赋予包含电气特性、光学特性、与密度相关的特性、与液体阻挡或粘合性相关的特性的、来自添加物的特性的各种物理特性活性。

(基材层)

层叠吸音材料中的基材层具有吸音性,且具有支持多孔质层并保持吸音材料整体的形状的功能。在本发明的层叠吸音材料中,多孔质层是由极细的纤维径的纤维形成的纤维集合体、即纤维层,或者为微多孔膜,因此强度(刚性)低。因此,基材层实质上承担层叠吸音材料的强度。

基材层使用1000hz至12500hz下的平均音响透过损失为2db以上的基材层。在本发明中,通过使用平均音响透过损失为2db以上的基材层,在与多孔质层组合时,可意想不到地在广泛的频率区域中获得优异的吸音性能。作为基材层,典型而言可使用不织布、织物、发泡泡沫、蜂窝芯等结构体,只要是可在其至少一个表面上层叠多孔质层的基材层,则并无特别限制。尤其是优选为不织布、发泡泡沫中的任一种以上。层叠吸音材料中所含的基材层可为一种,也优选为包含两种以上的基材层。

基材层的平均音响透过损失的上限并无特别限制。一般而言,平均音响透过损失是表示隔音性能的参数,本发明中所使用的基材层具有一定以上的隔音性能。但是,即使基材层的平均音响透过损失超过2db,基材层单体也未必可在广泛的频率区域中显示出充分的吸音性。在本发明中,通过所述基材层与致密的多孔质层的组合,实现了意想不到的广泛的吸音性。

平均音响透过损失的测定方法可利用公知的方法进行。具体而言,在实施例中详述。

在基材层为不织布的情况下,可使用熔喷不织布、气流成网(airlaid)不织布、水刺不织布、纺粘不织布、热风不织布、热粘合不织布、针刺不织布等,可根据所希望的物性或功能适宜选择。

作为构成基材层的不织布的纤维的树脂,可使用热塑性树脂,例如可例示聚烯烃系树脂、聚对苯二甲酸乙二酯等聚酯系树脂、聚酰胺系树脂。作为聚烯烃系树脂,可列举乙烯、丙烯、丁烯-1或4-甲基戊烯-1等均聚物、以及它们与其他的α-烯烃、即乙烯、丙烯、丁烯-1、戊烯-1、己烯-1或4-甲基戊烯-1等中的一种以上的无规或嵌段共聚物或将它们组合的共聚物、或者它们的混合物等。作为聚酰胺系树脂,可列举尼龙4、尼龙6、尼龙7、尼龙11、尼龙12、尼龙6,6、尼龙6,10、聚己二酰间苯二甲胺、聚对苯二甲癸酰胺、聚双环己基甲烷癸酰胺或它们的共聚酰胺等。作为聚酯系树脂,除了聚对苯二甲酸乙二酯以外,还可列举聚对苯二甲酸四亚甲酯、聚对苯二甲酸丁酯、聚氧乙烯苯甲酸酯、聚(1,4-二甲基环己烷对苯二甲酸酯)或它们的共聚物。它们中,优选为使用聚对苯二甲酸乙二酯纤维、聚对苯二甲酸丁二酯纤维、聚乙烯纤维及聚丙烯纤维中的一种或者将两种以上组合使用。另外,也优选为使用玻璃纤维、碳纤维、金属纤维等。

在基材层为织布的情况下,也可使用包含同样的树脂的纤维。

作为构成基材层的不织布的纤维,也可使用仅包含一种成分的纤维,在考虑到纤维彼此的交点的熔接的效果时,也优选为使用包含低熔点树脂与高熔点树脂的复合成分的纤维、即、包含熔点不同的两种成分以上的复合纤维。复合形态例如可列举鞘芯型、偏心鞘芯型、并列型。另外,作为构成基材层的不织布的纤维,也优选为使用熔点不同的两种成分以上的混纤纤维。再者,所谓混纤纤维是指包含高熔点树脂的纤维与包含低熔点树脂的纤维独立存在并混合而成的纤维。在基材为织布的情况下,也可使用同样的纤维。

构成基材层的不织布的纤维的纤维径并无特别限制,可使用包含纤维径为500nm~1mm的纤维者。所谓纤维径为500nm~1mm是指平均纤维径为此数值范围内。若纤维径为500nm以上,则可控制由多孔质层与构成基材层的不织布的纤维的密度差引起的流动阻力,若小于1mm,则不丧失通用性,另外也容易获取。若纤维径为1.0μm~100μm,则可控制由多孔质层与构成基材层的不织布的纤维的密度差引起的流动阻力,也容易获取,因此更优选。纤维径的测定可利用与多孔质层的纤维径的测定同样的方法进行。在基材为织布的情况下,也可使用同样的纤维。

在基材层为织物的情况下,可使用利用平织、方平织、斜纹织、缎纹织、模纱织等织法获得的织物,可根据所希望的物性或功能适宜选择。作为织物,例如可利用使用玻璃纱制造的玻璃布、或者将金属线或包含树脂的纤维平织或斜纹织而成的筛状物。

在基材层为发泡泡沫的情况下,只要是使气体细微地分散在树脂中且成形为发泡状或多孔质形状的树脂发泡体,则可无特别限制地使用。作为树脂发泡体,例如可利用软质聚氨基甲酸酯泡沫、硬质聚氨基甲酸酯泡沫、三聚氰胺泡沫、聚苯乙烯泡沫、硅酮泡沫、聚氯乙烯泡沫、丙烯酸泡沫、尿素泡沫。发泡泡沫优选为具有连续气泡(连通孔)的发泡树脂。

作为构成所述发泡泡沫的树脂,具体而言,例如可例示聚烯烃系树脂、聚氨基甲酸酯系树脂、三聚氰胺系树脂。聚烯烃系树脂是乙烯、丙烯、丁烯-1或4-甲基戊烯-1等均聚物、以及它们与其他α-烯烃、即乙烯、丙烯、丁烯-1、戊烯-1、己烯-1或4-甲基戊烯-1等中的一种以上的无规或嵌段共聚物或者将它们组合而成的共聚物,或者可列举它们的混合物等。

基材层的单位面积重量只要为1g/m2以上即可,优选为1g/m2~300g/m2,更优选为15g/m2~300g/m2。若基材层的单位面积重量小于1g/m2,则有无法获得作为吸音材料的必要的强度的可能性。

在本发明中,基材层的厚度并无特别限制,但由于基材层的厚度成为层叠吸音材料的厚度的大部分,因此就省空间性的观点而言,优选为3mm~30mm,更优选为3mm~20mm。在基材层包含两个以上的结构体的情况下,每张的厚度例如可设为20μm~20mm,更优选为设为30μm~10mm。若每张的厚度为20μm以上,则未发生褶皱,操作容易,生产性良好,若每张的厚度为20mm以下,则不存在妨碍省空间性的可能性。

在不妨碍本发明的效果的范围内,基材层中可添加各种添加剂、例如着色剂、抗氧化剂、光稳定剂、紫外线吸收剂、中和剂、成核剂、润滑剂、抗菌剂、阻燃剂、塑化剂及其他热塑性树脂等。另外,也可利用各种整理加工试剂处理表面,由此可赋予防水性、制电性、表面平滑性、耐磨损性等功能。

(层叠吸音材料的吸音特性)

本发明的层叠吸音材料在400hz~1000hz的低频区域、1000hz~3150hz的中频区域、2000hz~5000hz的高频区域、另外5000hz~12500hz的超高频区域的所有区域中显示出高的吸音性能。不限于特定的理论,但认为本发明的层叠吸音材料通过在声音的入射侧配置音响透过损失高的材料,在透过侧配置平均流量细孔径小的材料,可控制流动阻力,从而获得高的吸音特性。

吸音性的评价方法在实施例中详述。

(层叠吸音材料的制造方法)

层叠吸音材料的制造方法并无特别限制,例如可利用在基材层上形成多孔质层的方法、或者在其他支持体上预先制作多孔质层且使基材层与支持体所支持的多孔质层一体化的方法等而获得。

在使用不织布作为基材层的情况下,可利用公知的方法制造不织布来使用,也可选择市售的不织布来使用。另外,在基材层上形成多孔质层的步骤优选为使用电场纺丝法。电场纺丝法为如下方法:喷出纺丝溶液且使电场作用,对喷出的纺丝溶液进行纤维化,在收集器上获得纤维的方法。例如,可列举:自喷嘴挤出纺丝溶液且使电场作用并进行纺丝的方法;使纺丝溶液起泡且使电场作用并进行纺丝的方法;将纺丝溶液导出至圆筒状电极的表面且使电场作用并进行纺丝的方法等。在本发明中,在收集器上插入作为基材层的不织布等,可使纤维聚集到基材层上而形成多孔质层。

作为纺丝溶液,若为具有牵丝性的溶液,则并无特别限定,优选为包含高分子的溶液,例如可使用使高分子树脂分散于溶媒中所得的溶液、使高分子树脂溶解于溶媒中所得的溶液、利用热或激光照射使高分子树脂熔融的溶液等。

作为使树脂分散或溶解的溶媒,例如可列举:水、甲醇、乙醇、丙醇、丙酮、n,n-二甲基甲酰胺、n,n-二甲基乙酰胺、二甲基亚砜、n-甲基-2-吡咯烷酮、甲苯、二甲苯、吡啶、甲酸、乙酸、四氢呋喃、二氯甲烷、氯仿、1,1,2,2-四氯乙烷、1,1,1,3,3,3-六氟异丙醇、三氟乙酸及它们的混合物等。混合使用时的混合率并无特别限定,可鉴于所要求的牵丝性或分散性、所得的纤维的物性适宜设定。

以提高电场纺丝的稳定性或纤维形成性为目的,也可在纺丝溶液中进一步含有表面活性剂。表面活性剂例如可列举十二烷基硫酸钠等阴离子性表面活性剂、溴化四丁基铵等阳离子表面活性剂、聚氧乙烯山梨醇酐单月桂酸酯等非离子性表面活性剂等。表面活性剂的浓度相对于纺丝溶液而言优选为5重量%以下的范围内。若为5重量%以下,则可获得与使用相符的效果的提高,因此优选。另外,只要为不显著损害本发明的效果的范围内,则也可包含所述以外的成分作为纺丝溶液的成分。

纺丝溶液的制备方法并无特别限定,可列举搅拌或超声波处理等方法。另外,混合的顺序也无特别限定,可同时混合,也可逐次混合。利用搅拌制备纺丝溶液时的搅拌时间只要树脂均匀地溶解或分散于溶媒中,则并无特别限定,例如可搅拌1小时~24小时左右。

为了利用电场纺丝获得纤维,优选为将纺丝溶液的粘度制备为10cp~10,000cp的范围内,更优选为50cp~8,000cp的范围内。若粘度为10cp以上,则可获得用以形成纤维的牵丝性,若为10,000cp以下,则喷出纺丝溶液变得容易。若粘度为50cp~8,000cp的范围内,则可在广泛的纺丝条件范围内获得良好的牵丝性,因此更优选。纺丝溶液的粘度可通过适宜变更树脂的分子量、浓度或溶媒的种类或混合率来进行调整。

关于纺丝溶液的温度,也可在常温下纺丝,还可进行加热或冷却而进行纺丝。作为喷出纺丝溶液的方法,例如可列举使用泵将填充于注射器中的纺丝溶液自喷嘴喷出的方法等。喷嘴的内径并无特别限定,优选为0.1mm~1.5mm的范围内。另外,喷出量并无特别限定,优选为0.1ml/hr~10ml/hr。

作为使电场作用于纺丝溶液的方法,只要可在喷嘴与收集器中形成电场,则并无特别限定,例如可对喷嘴施加高电压,并将收集器作为地线接地。只要可形成纤维,则施加的电压并无特别限定,优选为5kv~100kv的范围内。另外,只要可形成纤维,则喷嘴与收集器的距离并无特别限定,优选为5cm~50cm的范围内。

在将分别准备的多孔质层与基材层重叠而进行一体化的情况下,一体化的方法并无特别限定,可不进行粘接而仅重叠,另外,也可采用各种粘接方法、即、利用加热的平辊或压花辊进行的热压接、利用热熔剂或化学粘接剂进行的粘接、利用循环热风或辐射热进行的热粘接等。就抑制含有极细纤维的多孔质层的物性降低的观点而言,其中优选为利用循环热风或辐射热进行的热处理。在利用平辊或压花辊进行的热压接的情况下,需要调整加工温度,以便不会受到如下损伤:多孔质层熔融而成膜,或者在压花点周边部分发生破损等。另外,在利用热熔剂或化学粘接剂进行的粘接的情况下,由这些试剂填埋多孔质层的空隙,需要以不产生性能降低的方式进行加工。另一方面,在利用循环热风或辐射热进行的热处理进行一体化的情况下,对多孔质层的损伤少,且能够以充分的层间剥离强度进行一体化,因此优选。在通过利用循环热风或辐射热进行的热处理而进行一体化的情况下,并无特别限定,优选为使用包含热熔接性复合纤维的不织布及层叠体。

实施例

以下,利用实施例对本发明进行更详细的说明,以下的实施例仅以例示为目的。本发明的范围并不限定于本实施例。

以下示出实施例中使用的物性值的测定方法或定义。

<平均纤维径>

使用日立高新技术(hitachihigh-technologies)股份有限公司制造的扫描式电子显微镜su8020,观察纤维结构体(不织布),使用图像解析软件测定50根纤维的直径。将50根纤维的纤维径的平均值作为平均纤维径。

<平均流量细孔径>

使用多孔材料(porousmaterial)公司制造的毛细管流动气孔测定器(capillaryflowporometer)(cfp-1200-a),测定平均流量细孔径(日本工业标准(japaneseindustrialstandards,jis)k3822)。

<吸音率测定>

关于吸音率测定,从进行了各条件的层叠后的各纤维层叠体采集直径16.6mm的样品,使用垂直入射吸音率测定装置“日本音响工程公司制造的维恩杂特(winzacmtx)”,按照美国试验材料学会(americansocietyfortestingmaterial,astm)e1050对在频率400hz~12500hz的试验片上垂直入射平面声波时的垂直入射吸音率进行测定。

<低频区域的吸音性>

测定频率为400hz至1000hz为止的吸音率,并将所得的曲线设为f(x),利用下述数式1算出平均吸音率(α)。

平均吸音率(α)表示400hz~1000hz的频率区域的吸音性能,数值越高,则判断为吸音性越高。在α为0.23以上的情况下,将低频区域的吸音性评价为良好,在小于0.23的情况下,将吸音性评价为不良。

[数1]

<中频区域的吸音性>

测定频率为1000hz至3150hz为止的吸音率,并将所得的曲线设为f(x),利用下述数式2算出平均吸音率(β)。

平均吸音率(β)表示1000hz~3150hz的频率区域的吸音性能,数值越高,则判断为吸音性越高。在β为0.60以上的情况下,将中频区域的吸音性评价为良好,在小于0.60的情况下,将吸音性评价为不良。

[数2]

<高频区域的吸音性>

测定频率为2000hz至5000hz为止的吸音率,并将所得的曲线设为f(x),利用下述数式3算出平均吸音率(γ)。

平均吸音率(γ)表示2000hz~5000hz的频率区域的吸音性能,数值越高,则判断为吸音性越高。在γ为0.85以上的情况下,将高频区域的吸音性评价为良好,在小于0.85的情况下,将吸音性评价为不良。

[数3]

<超高频区域的吸音性>

测定频率为5000hz至12500hz为止的吸音率,并将所得的曲线设为f(x),利用下述数式4算出平均吸音率(η)。

平均吸音率(η)表示5000hz~12500hz的频率区域的吸音性能,数值越高,则判断为吸音性越高。在η为0.90以上的情况下,将超高频区域的吸音性评价为良好,在小于0.90的情况下,将吸音性评价为不良。

[数4]

<平均音响透过损失测定>

平均音响透过损失测定是从各基材层采集直径16.6mm的样品,使用垂直入射吸音率测定装置“日本音响工程公司制造的维恩杂特(winzacmtx)”进行测定。测定是按照astme1050,在垂直入射吸音率测定时使背后空间层(0mm与10mm)变化,在1000hz~12500hz之间测定音响透过损失的频率依存性,将所得的曲线作为g(x)。另外,利用下述数式5算出平均音响透过损失θ。

[数5]

<保护层的准备>

作为保护层,准备了市售的聚对苯二甲酸乙二酯制梳理法热风不织布(单位面积重量18g/m2、厚度60μm)。

<多孔质层的准备>

1)多孔质层a~多孔质层c(利用电场纺丝法所得的极细纤维不织布)

将阿科玛(arkema)制造的作为聚偏二氟乙烯-六氟丙烯(polyvinylidenefluoride-hexafluoropropylene)(以下简称为“pvdf”)的齐钠(kynar)(商品名)3120在n,n-二甲基乙酰胺与丙酮的共溶剂(60/40(w/w))中以15质量%的浓度溶解,制备电场纺丝溶液,添加0.01质量%作为导电助剂。在保护层上对所述pvdf-hfp溶液进行电场纺丝,制作包含保护层与pvdf-hfp极细纤维这两层的纤维层叠体。电场纺丝的条件使用24g针,单孔溶液供给量为3.0ml/h,施加电压为35kv,纺丝距离为17.5em。

对于纤维层叠体中的pvdf极细纤维层,此层的单位面积重量为0.6g/m2,平均纤维径为80nm,熔解温度为168℃。将其作为多孔质层a。对平均流量细孔径进行评价,结果为1.5μm。

另外,使保护层的搬运速度变化,以单位面积重量成为0.2g/m2的方式进行调节,将其作为多孔质层b。多孔质层b的平均纤维径为80nm,熔解温度为168℃,对平均流量细孔径进行评价,结果为5.8μm。另外,进而,以使单位面积重量成为6.0g/m2的方式进行调节,将其作为多孔质层c。多孔质层c的平均纤维径为80nm,熔解温度为168℃,对平均流量细孔径进行评价,结果为0.7μm。

2)多孔质层d~多孔质层f(微多孔膜)

对市售的爱多邦得科(advantec)制造的薄膜过滤器(membranefilter)t300a(孔径大小(poresize)3.0μm厚度75μm)的平均流量细孔径进行评价,结果为1.1μm。将其作为多孔质层d。同样地,对t100a(孔径大小1.0μm厚度77μm)的平均流量细孔径进行评价,结果为0.53μm。将其作为多孔质层e。同样地,对t010a(孔径大小0.1μm厚度80μm)的平均流量细孔径进行评价,结果为0.20μm。将其作为多孔质层f。

3)多孔质层j(熔喷不织布)

多孔质层的形成使用包括具有螺杆(50mm直径)、加热体及齿轮泵的两台挤出机、混纤用纺丝头(孔径0.3mm、自两台挤出机交替喷出树脂的孔数501孔排成一列、有效宽度500mm)、压缩空气产生装置及空气加热机、具备聚酯制网的捕集输送机以及卷绕机的不织布制造装置。

作为原料的聚丙烯,使用聚丙烯均聚物1(熔体流动速率(meltflowrate,mfr)=82g/10分钟)与聚丙烯均聚物2(乐天化学(lottechemical)公司制造的“fr-185”(mfr=1400g/10分钟)),在不织布制造装置的两台挤出机中投入所述两种聚丙烯,将挤出机在240℃下加热而使树脂熔融,将齿轮泵的质量比设定为50/50,从纺丝头以每单孔0.3g/min的纺丝速度喷出熔融树脂。利用加热至400℃的98kpa(表压)的压缩空气,将喷出的纤维以距纺丝头60cm的距离吹付到捕集输送机上,形成多孔质层。通过调整捕集输送机的速度,将单位面积重量设定为80g/m2。平均纤维径为1.3μm,将其作为多孔质层j。对平均流量细孔径进行评价,结果为9.4μm。

4)多孔质层r(熔喷不织布)

多孔质层的形成使用包括具有螺杆(50mm直径)、加热体及齿轮泵的两台挤出机、混纤用纺丝头(孔径0.3mm、自两台挤出机交替喷出树脂的孔数501孔排成一列、有效宽度500mm)、压缩空气产生装置及空气加热机、具备聚酯制网的捕集输送机以及卷绕机的不织布制造装置。

作为原料的聚丙烯,使用聚丙烯均聚物1(mfr=82g/10分钟)与聚丙烯均聚物2(乐天化学(lottechemical)公司制造的“fr-185”(mfr=1400g/10分钟)),在不织布制造装置的两台挤出机中投入所述两种聚丙烯,将挤出机在240℃下加热而使树脂熔融,将齿轮泵的质量比设定为50/50,从纺丝头以每单孔0.3g/min的纺丝速度喷出熔融树脂。利用加热至400℃的63kpa(表压)的压缩空气,将喷出的纤维以距纺丝头60cm的距离吹付到捕集输送机上,形成多孔质层。通过调整捕集输送机的速度,将单位面积重量设定为80g/m2。平均纤维径为1.9μm,将其作为多孔质层r。对平均流量细孔径进行评价,结果为12.6μm。

5)多孔质层p(熔喷不织布)

多孔质层的形成使用包括具有螺杆(50mm直径)、加热体及齿轮泵的两台挤出机、混纤用纺丝头(孔径0.3mm、自两台挤出机交替喷出树脂的孔数501孔排成一列、有效宽度500mm)、压缩空气产生装置及空气加热机、具备聚酯制网的捕集输送机以及卷绕机的不织布制造装置。

将聚丙烯均聚物1(mfr=82g/10分钟)的聚丙烯作为原料的聚丙烯投入至两台挤出机,将挤出机在240℃下加热而使树脂熔融,将齿轮泵的质量比设定为50/50,从纺丝头以每单孔0.3g/min的纺丝速度喷出熔融树脂。利用加热至400℃的63kpa(表压)的压缩空气,将喷出的纤维以距纺丝头30cm的距离吹付到捕集输送机上,形成多孔质层。通过调整捕集输送机的速度,将单位面积重量设定为60g/m2。平均纤维径为4.0μm,将其作为多孔质层p。对平均流量细孔径进行评价,结果为20μm。

6)膜(成为多孔质层的范围外的无孔的薄膜)

准备了市售的未延伸聚丙烯膜ojk股份有限公司制造的制品名“25ss”、厚度25μm。

7)多孔质层q(成为多孔质层的范围外的熔喷不织布)

多孔质层的形成使用包括具有螺杆(50mm直径)、加热体及齿轮泵的两台挤出机、混纤用纺丝头(孔径0.3mm、自两台挤出机交替喷出树脂的孔数501孔排成一列、有效宽度500mm)、压缩空气产生装置及空气加热机、具备聚酯制网的捕集输送机以及卷绕机的不织布制造装置。

将聚丙烯均聚物1(mfr=82g/10分钟)的聚丙烯作为原料的聚丙烯投入至两台挤出机,将挤出机在240℃下加热而使树脂熔融,将齿轮泵的质量比设定为50/50,从纺丝头以每单孔0.3g/min的纺丝速度喷出熔融树脂。利用加热至400℃的63kpa(表压)的压缩空气,将喷出的纤维以距纺丝头60cm的距离吹付到捕集输送机上,形成多孔质层。通过调整捕集输送机的速度,将单位面积重量设定为60g/m2。平均纤维径为4.0μm,将其作为多孔质层q。对平均流量细孔径进行评价,结果为34μm。

<基材层的准备>

1)基材层a~基材层c(气流成网不织布)

作为高密度聚乙烯,使用京叶聚乙烯制的高密度聚乙烯“m6900”(mfr17g/10分钟),作为聚丙烯,使用日本聚丙烯制的聚丙烯均聚物“sa3a”(mfr=11g/10分钟),通过热熔融纺丝法,制作纤维径16μm的鞘成分包含高密度聚乙烯、芯成分包含聚丙烯的鞘芯型热熔接性复合纤维。使用所得的鞘芯型热熔接性复合纤维,制作单位面积重量为200g/m2、厚度为5mm、宽度为1000mm的梳理法热风不织布。利用商研股份有限公司制造的单轴式粉碎机(es3280)将梳理法热风不织布粉碎至约6mm左右。

利用气流成网试验机,在设定温度142℃下加热此粉碎的不织布,获得单位面积重量160g/m2、厚度5mm、音响透过损失1.3db的基材层a、单位面积重量320g/m2、厚度10mm、音响透过损失2.4db的基材层b、单位面积重量480g/m2、厚度15mm、音响透过损失3.5db的基材层c。

2)基材层d~基材层h、基材层m(三聚氰胺发泡泡沫)

作为市售的三聚氰胺发泡树脂材料,将井上(inoac)公司制造的巴数特(basotect)baf-10g+(密度9.2kg/m3)中厚度10mm、音响透过损失2.5db作为基材层d,厚度15mm、音响透过损失3.0db作为基材层e,厚度5mm、音响透过损失1.1db作为基材层h,将baf-10w(密度9.0kg/m3)中厚度10mm、音响透过损失2.8db作为基材层f,厚度15mm、音响透过损失4.1db作为基材层g,厚度5mm、音响透过损失1.0db作为基材层m。

3)基材层i~基材层k(氨基甲酸酯发泡泡沫)

作为市售的氨基甲酸酯发泡树脂材料,将井上(inoac)公司制造的康美莱(calmflex)f-2(密度25kg/m3)中厚度10mm音响透过损失3.1db作为基材i,厚度15mm音响透过损失4.3db作为基材层j,厚度20mm音响透过损失6.1db作为基材层k。

4)基材层l(玻璃纤维垫)

作为市售的玻璃纤维材料,将旭光纤玻璃公司制造的透明垫厚度50mm加工成单位面积重量320g/m2、厚度20mm、音响透过损失6.6db,作为基材层l。

<实施例1~实施例17>

按照表1、表2所示的组合将基材层与多孔质层重叠,作为吸音率测定用样品。将基材层作为声音的入射侧,将多孔质层作为声音的透过侧,利用所述方法测定吸音率。低频区域、中频区域、高频区域、超高频区域各自的平均吸音率如表1、表2所示。再者,表中,层叠吸音材料的总厚度(mm)为基材层及多孔质层的厚度的合计,但由于多孔质层a~多孔质层c极薄,因此基材层的厚度与总厚度为相同的数值。

<比较例1>

将市售的聚丙烯树脂制不织布(3m公司制造的秦素特(thinsulate)t2203、纤维径0.7μm~4.0μm、厚度29mm)冲裁为圆形,作为吸音率测定用样品。

测定垂直入射吸音率,对低频区域的吸音性(400hz至1000hz为止的平均值α)进行评价,结果为0.157,对中频区域的吸音性(1000hz至3150hz为止的平均值β)进行评价,结果为0.519,对高频区域的吸音性(2000hz至5000hz为止的平均值γ)进行评价,结果为0.763,对超高频区域的吸音性(5000hz至12500hz为止的平均值η)进行评价,结果为0.953。

<比较例2~比较例9>

按照表3所示的组合将基材层与多孔质层重叠,或者将基材层单体作为吸音率测定用样品。将基材层作为声音的入射侧,将多孔质层作为声音的透过侧,利用所述方法测定吸音率。低频区域、中频区域、高频区域、超高频区域各自的平均吸音率如表3所示。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1