一种气基竖炉用钒钛磁铁矿氧化球团的制备方法与流程

文档序号:11506773阅读:437来源:国知局

本发明涉及炼铁领域,具体涉及一种气基竖炉用钒钛磁铁矿氧化球团的制备方法。



背景技术:

目前,在我国攀枝花、承德等地区,蕴藏着丰富的钒钛磁铁矿资源,其中的钒和钛是重要的战略资源,但是并没有得到有效的利用。近年来,随着煤气化技术的进步,有效的促进了利用气基竖炉直接还原钒钛磁铁矿球团的技术。与传统的高炉、转底炉、隧道窑生产工艺相比,气基竖炉还原技术在节能环保、单机产能、产品质量等发面,都具有突出的优势。同时,气基竖炉还原技术还可避免还原剂灰分对还原产品的污染,从而减少产品熔化分离时的渣量,大幅提高产品熔化分离后tio2的品位和活性,并提高其中有价组元的回收率。

钒钛磁铁矿成分及结构复杂、亲水性差,并且难成球、难焙烧。其中铁氧化物的还原需要提供较高的还原温度和较长的还原时间,并且,在还原过程中容易出现膨胀、粉化、粘结等问题。

因此,需要制备出能够满足气基竖炉工艺要求的钒钛磁铁矿氧化球团,并有效克服钒钛磁铁矿球团在还原过程中出现的膨胀、粉化、粘结等问题。



技术实现要素:

本发明旨在提供一种气基竖炉用钒钛磁铁矿氧化球团的制备方法。利用本发明的方法制备的钒钛磁铁矿氧化球团品位高、抗压强度高、冶金性能优良,应用于气基竖炉中,可提高钒钛磁铁矿氧化球团中钛的回收率。

本发明提供了一种气基竖炉用钒钛磁铁矿氧化球团的制备方法,包括步骤:

a、准备钒钛磁铁矿和复合添加剂;

b、向所述钒钛磁铁矿中配加0.8~1.5wt%的所述复合添加剂,均匀混合得到混合物料;

c、将所述混合物料润磨、造球,得到钒钛磁铁矿生球;

d、所述钒钛磁铁矿生球经干燥、预热、焙烧处理后,得到钒钛磁铁矿氧化球团。

作为本发明优选的方案,所述复合添加剂的粒径≤0.074㎜。

进一步的,所述复合添加剂包括粘结剂和镁质添加剂。

所述粘结剂由10~20wt%的羧甲基纤维素钠和80~90wt%的腐殖酸钠混合而成。所述镁质添加剂中包括50~90wt%的轻烧氧化镁、5~30wt%的菱镁石、5~20wt%的白云石。

进一步的,所述复合添加剂中,所述粘结剂和镁质添加剂的比例为:20~30wt%:70~80wt%。

优选的,所述钒钛磁铁矿的tfe≥50wt%。所述钒钛磁铁矿中,80wt%以上所述钒钛磁铁矿的粒径≤0.074㎜。

进一步的,所述钒钛磁铁矿生球的粒径为9~16㎜,抗压强度≥10n/个。

上述气基竖炉用钒钛磁铁矿氧化球团的制备方法中,所述干燥过程中,控制干燥温度为200~400℃,控制干燥时间为8~12min。

上述气基竖炉用钒钛磁铁矿氧化球团的制备方法中,所述预热过程中,控制预热温度为900~1000℃,控制预热时间为15~20min。

上述气基竖炉用钒钛磁铁矿氧化球团的制备方法中,所述焙烧过程中,控制焙烧温度为1200~1300℃,控制焙烧时间为15~25min。

本发明在制备气基竖炉用钒钛磁铁矿氧化球团时,采用本发明制备的复合添加剂代替腐殖酸钠,用量少,产生的渣量少。并且,本发明制备的复合添加剂能够提高氧化球团的品位,改善其还原性、低温还原粉化、还原膨胀等热态冶金性能,提高钒钛磁铁矿中有价元素的回收率。

采用本发明的方法制备的钒钛磁铁矿氧化球团在进入气基竖炉中进行还原的过程中,能够发挥消胀提钛的作用,在钒钛磁铁矿氧化球团中钛的利用上具有明显的优势。钒钛磁铁矿氧化球团在气基竖炉中还原后,得到的熔分渣中tio2的含量较传统的煤基直接还原技术要高出4.5~6个百分点,即钛的回收率大大提高。

本发明的方法制备的钒钛磁铁矿氧化球团,在气基竖炉中进行还原冶炼时,可有效解决气基竖炉中料层透气性差、生产效率低的问题。

具体实施方式

以下结合实施例,对本发明的具体实施方式进行更加详细的说明,以便能够更好地理解本发明的方案以及其各个方面的优点。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本发明的限制。

本发明提出了一种钒钛磁铁矿氧化球团的制备方法,该钒钛磁铁矿氧化球团可应用于气基竖炉进行球团的冶炼。本发明的方法包括如下步骤:

(1)原料的混合

将钒钛磁铁矿和复合添加剂均匀混合,得到混合物料。其中,在混合物料中,复合添加剂的占比为0.8~1.5wt%(wt%为质量百分数)。

本发明选用的钒钛磁铁矿的全铁含量tfe≥50wt%。并且,80wt%以上钒钛磁铁矿的粒径≤0.074㎜。

本发明中,复合添加剂由粘结剂和镁质添加剂按20~30wt%:70~80wt%的比例复合而成。

其中,粘结剂由羧甲基纤维素钠和腐殖酸钠混合而成。粘结剂的粒径≤0.074㎜。并且,粘结剂中,羧甲基纤维素钠和腐殖酸钠的比例为:10~20wt%:80~90wt%。

镁质添加剂由轻烧氧化镁、菱镁石、白云石混合而成。其中,轻烧氧化镁、菱镁石、白云石的比例为:50~90wt%:5~30wt%:5~20wt%。

(2)制备钒钛磁铁矿生球

上述步骤得到的混合物料进行润磨、造球处理后,得到钒钛磁铁矿生球。

本发明制备得到的钒钛磁铁矿生球粒径为9~16㎜,抗压强度≥10n/个。并且,钒钛磁铁矿生球的落下强度≥4次/个。

(3)制备钒钛磁铁矿氧化球团

得到的钒钛磁铁矿生球经干燥、预热、焙烧处理后,可得钒钛磁铁矿氧化球团。本发明制备的钒钛磁铁矿氧化球团可满足气基竖炉冶炼球团的要求。

其中,干燥过程中,控制干燥温度为200~400℃,干燥时间为8~12min。

预热过程中,控制预热温度为900~1000℃,预热时间为15~20min。

焙烧过程中,控制焙烧温度为1200~1300℃,焙烧时间为15~25min。本发明选用的焙烧设备为:马弗炉、竖炉、链篦机-回转窑、带式焙烧机以及其它可满足本发明焙烧要求的焙烧装置。

实施例1

本实施例选用的钒钛磁铁矿的主要化学成分为:

tfe59.32wt%、feo28.66wt%、cao1.03wt%、mgo2.95wt%、sio23.89wt%、al2o31.17wt%、tio212.94wt%、v2o50.65wt%。

并且,83wt%的钒钛磁铁矿的粒径在0.074㎜以下。向该钒钛磁铁矿中配加1.2wt%的复合添加剂。其中,复合添加剂的配方为:20wt%的粘结剂(20wt%羧甲基纤维素钠+80wt%腐殖酸钠)、80wt%的镁质添加剂(60wt%轻烧氧化镁+25wt%菱镁石+15wt%白云石)。钒钛磁铁矿与复合添加剂混合均匀后,进行造球处理,得到钒钛磁铁矿生球。

钒钛磁铁矿生球进行干燥、预热、焙烧,得到钒钛磁铁矿氧化球团。控制干燥温度为200℃,干燥时间为10min;预热温度为1000℃,预热时间为20min;焙烧温度为1200℃,焙烧时间为25min。

本实施例制备的钒钛磁铁矿氧化球团的抗压强度为2312n/个,还原度r90为75.4%,低温还原粉化率rdi-3.15mm为2.5%,还原膨胀率为10.5%,粘结性指数为10.4%。该钒钛磁铁矿氧化球团在气基竖炉中直接还原后,熔分所得钛渣中tio2的含量为59.67wt%,而煤基直接还原熔分渣中tio2的含量为54.18wt%。本实施例所得的钛渣中tio2的含量比煤基直接还原技术高5.49个百分点。

实施例2

本实施例选用的钒钛磁铁矿的主要化学成分为:

tfe57.18wt%、feo16.67wt%、cao0.16wt%、mgo1.98wt%、sio21.16wt%、al2o32.69wt%、tio29.12wt%、v2o50.46wt%。

并且,87wt%的钒钛磁铁矿的粒径在0.074㎜以下。向该钒钛磁铁矿中配加1.5wt%的复合添加剂。其中,复合添加剂的配方为:30wt%粘结剂(10wt%羧甲基纤维素钠+90wt%腐殖酸钠)、70wt%镁质添加剂(75wt%轻烧氧化镁+15wt%菱镁石+10wt%白云石)。钒钛磁铁矿与复合添加剂混合均匀后,进行造球处理,得到钒钛磁铁矿生球。

钒钛磁铁矿生球进行干燥、预热、焙烧,得到钒钛磁铁矿氧化球团。控制干燥温度为300℃,干燥时间为12min;预热温度为900℃,预热时间为18min;焙烧温度为1230℃,焙烧时间为18min。

本实施例制备的钒钛磁铁矿氧化球团的抗压强度为2768n/个,还原度r90为73.1%,低温还原粉化率rdi-3.15mm为2.6%,还原膨胀率为12.1%,粘结性指数为9.7%。该钒钛磁铁矿氧化球团在气基竖炉中直接还原后,熔分所得钛渣中tio2的含量为45.83wt%,而煤基直接还原熔分渣中tio2的含量为41.36wt%。本实施例所得的钛渣中tio2的含量比煤基直接还原技术高4.47个百分点。

实施例3

本实施例选用的钒钛磁铁矿的主要化学成分为:

tfe57.18wt%、feo16.67wt%、cao0.16wt%、mgo1.98wt%、sio21.16wt%、al2o32.69wt%、tio212.94wt%、v2o50.65wt%。

并且,87wt%的钒钛磁铁矿的粒径在0.074㎜以下。向该钒钛磁铁矿中配加0.8wt%的复合添加剂。其中,复合添加剂的配方为:25wt%粘结剂(12wt%羧甲基纤维素钠+88wt%腐殖酸钠)、75wt%镁质添加剂(80wt%轻烧氧化镁+12wt%菱镁石+8wt%白云石)。钒钛磁铁矿与复合添加剂混合均匀后,进行造球处理,得到钒钛磁铁矿生球。

钒钛磁铁矿生球进行干燥、预热、焙烧,得到钒钛磁铁矿氧化球团。控制干燥温度为400℃,干燥时间为8min;预热温度为1000℃,预热时间为15min;焙烧温度为1300℃,焙烧时间为15min。

本实施例制备的钒钛磁铁矿氧化球团的抗压强度为3129n/个,还原度r90为74.8%,低温还原粉化率rdi-3.15mm为2.6%,还原膨胀率为9.8%,粘结性指数为11.0%。该钒钛磁铁矿氧化球团在气基竖炉中直接还原后,熔分所得钛渣中tio2的含量为59.91wt%,而煤基直接还原熔分渣中tio2的含量为54.18wt%。本实施例所得的钛渣中tio2的含量比煤基直接还原技术高5.73个百分点。

最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1