一种镁锂合金及其制备方法与流程

文档序号:11672895阅读:568来源:国知局

本发明属于本发明涉及一种镁锂合金的制备方法,尤其涉及一种添加zn、gd和ca元素的具有高耐热性能的镁锂合金的制备方法,属于金属材料技术领域。



背景技术:

镁合金具有密度低、来源广泛、比强度和比刚度高等优点,被誉为“21世纪的绿色工程材料”。通过向镁合金中添加li进行合金化,能够进一步降低其密度,并改善镁合金的塑性,因此,镁锂合金在航空航天等对轻量化要求很高的领域有着广泛的潜在应用前景。目前来看,限制镁锂合金应用的一大难题是其强度偏低,难以满足工程应用的要求。尤其是随着使用温度的升高,镁锂合金的力学性能严重恶化。因此,开发具有高耐热性能的镁锂合金具有非常重要的价值。

镁锂合金中常用的合金元素包括al、zn、si等,但是之前的研究表明,这些元素对于镁锂合金强度的提升幅度非常有限。稀土是镁合金有效的强化元素,研究表明,la、ce等轻稀土单独添加或混合添加对于镁锂合金强度有一定的提升作用。与轻稀土相比,gd、y等重稀土对镁合金的强化作用体现得更为突出,研究者们已开发出一系列以gd、y为主要合金元素的具有高耐热性能的镁合金。许道奎等人发明了《一种具有高抗蠕变能力的含准晶双相镁锂合金》(zl201310133100.7),通过控制zn和y的配比,在合金中形成准晶作为高温强化相,获得一种具有高抗蠕变能力的镁锂合金。

但是目前市场上出现的镁锂合金,其耐热性能还不够理想。



技术实现要素:

为解决现有技术存中镁锂合金耐热性能不高的缺陷,在本发明提供一种具有高耐热性能的mg–li–zn–gd–ca镁锂合金,其通过向镁锂合金中加入一定质量比的zn和gd元素,在镁锂合金凝固组织中引入准晶作为高温强化相,同时加入ca元素促进具有高热稳定性的mg2ca相形成,而且通过之后相应的塑性变形和热处理工艺,使得该合金拥有较低的密度和优良的耐热性能。

随着镁锂合金中li含量的变化,镁锂合金的基体相组成会发生变化。当li含量低于5.7wt.%时,其基体相为li固溶于mg中形成的六排密方α-mg固溶体;当li含量高于10.3wt.%时,其基体相为mg固溶于li中形成的体心立方β-li固溶体;当li含量介于两者之间时,形成的是α-mg固溶体和β-li固溶体共存的双相结构。基体为α-mg固溶体时,li元素添加带来的减重效果不明显,同时对塑性变形能力的改善也不明显;基体为β-li固溶体时,基体塑性变形能力很强,但强度过低。因此,α-mg固溶体和β-li固溶体共存的双相结构是镁锂合金中兼具强度和塑性的基体选择。

本发明一方面公开了一种镁锂合金,所述镁锂合金的组分及其质量百分比为:6~10wt.%li,2.5~7.5wt.%zn,1~3wt.%gd,0.5~1.5wt.%ca,杂质元素总量小于0.02wt.%,余量为mg。

优选地,所述zn和gd质量比为2.5:1。

优选地,所述杂质元素si、fe、cu和ni的总量小于0.02wt.%,

本发明的另一方面提供了上述镁锂合金的制备方法,所述制备方法至少包括熔炼、塑性变形和热处理三个工艺;

其中,所述的熔炼工艺至少包括如下步骤:

(1)烘料:按比例取mg、zn、mg–gd中间合金、mg–ca中间合金和li并烘干,按照制备镁锂合金质量的5~10%称取锂盐熔剂;

优选地,上述所有原料烘干达到180℃~250℃;

优选地,所述mg为纯mg(含镁99.85%~99.95%的镁)、zn为纯zn(纯度为98.7%~99.99%的锌),所述mg–gd中间合金是将mg和gd单质做成合金,使其便于加入到合金中,解决烧损,高熔点合金不易熔入等问题同时对原材料影响不大,同样的,mg–ca中间合金是将mg和ca单质做成合金;

优选地,所述的中间合金mg–gd中gd占25wt.%。

优选地,所述的中间合金mg–ca中ca占20wt.%。

优选地,所述锂盐熔剂由质量比为3:1的licl和lif混合而成。

(2)熔mg:将烘干后的mg和熔剂熔化;

(3)加zn和gd:往镁液中加入zn,加入量根据zn所占镁锂合金质量百分比确定;待zn熔化后加入中间合金mg–gd,加入量根据该中间合金mg–gd中gd所占质量百分比确定;

优选地,zn熔化后温度回升至700℃~740℃时加入中间合金mg–gd

(4)加ca:待中间合金mg–gd熔化后,加入量根据该中间合金mg–ca中ca所占质量百分比确定;

优选地,待中间合金mg–gd熔化后,温度回升至700℃~740℃时加入中间合金mg–ca,

(5)加li:待中间合金mg–ca熔化后加li,

优选地,熔体温度降至670℃~680℃,用不锈钢钟罩将不锈钢丝网包覆的称量好的li压入熔体中,待li熔解后取出钟罩和不锈钢丝网;

(6)铸造:保温,向模具中浇铸制备镁锂合金锭,浇铸用钢制模具预先加热至180℃~250℃;

优选地,保温后撇去表面浮渣,向模具中浇铸制备镁锂合金锭。

优选地,待熔体温度回升至700℃~740℃时保温9~11min;

优选地,浇铸用钢制模具预先加热至180℃~250℃;

所述的塑性变形工艺至少包括:

将熔炼得到的镁锂合金锭在350℃~400℃均匀化处理6~10小时,然后进行塑性变形加工,

优选地,均匀化处理的合金在200℃~250℃进行塑性变形加工,塑性变形选自挤压、轧制、锻造等。

所述热处理工艺至少包括:

将塑性变形得到的镁锂合金在100℃~250℃温度中进行4~60小时的时效处理。

优选地,所述熔炼工艺是在保护气下进行的。

更优选地,所述保护气体是选自sf6和\或co2。

有益效果:

(1)本发明通过同时添加zn和gd两种元素,并且控制两种元素的添加比例,将含gd准晶相引入镁锂合金基体中,起到了强化作用;

(2)本发明通过加入ca元素,促进具有高热稳定性的mg2ca相形成,进一步提高合金的耐热性能;

(3)本发明获得了具有低密度、高耐热性能的双相镁锂合金,特别满足对于轻质高强材料的需求;

(4)本发明加工工艺操作简单、方便。

具体实施方式

本发明通过向mg–li合金中加入一定质量比的zn和gd元素,在镁锂合金凝固组织中引入准晶作为强化相,同时加入ca促进具有高热稳定性的mg2ca相形成,进一步提高合金的耐热性能,而且通过之后相应的塑性变形和热处理工艺,使得该合金拥有较低的密度和高耐热性能。

本发明所提供的一种具有高耐热性能的镁锂合金的组分及其质量百分比为:6~10wt.%li,2.5~7.5wt.%zn,1~3wt.%gd,0.5~1.5wt.%ca,杂质元素si、fe、cu和ni的总量小于0.02wt.%,余量为mg。其中,zn和gd质量比约为2.5:1。

所述的wt.%是指组分占所配制的合金总质量的百分比,该总质量为mg、li、zn和各种中间合金的质量和。

本发明采用li(锂)为第一组分,li的加入能够显著降低合金密度,同时改善合金塑性,当li含量为本发明所述的6~10wt.%时,合金组织为α-mg固溶体和β-li固溶体共存的双相结构,该结构能够兼具较好的塑性和强度;本发明采用zn(锌)为第二组分,zn元素的加入能够改善合金的铸造性能,同时与mg、li形成强化相;本发明采用gd(钆)为第三组分,gd的加入能够有效提高合金力学性能,当zn和gd质量比约为2.5:1时,能够形成准晶强化相;本发明采用ca(钙)为第四组分,ca是镁合金中重要的合金元素,加入0.5~1.5wt.%的ca能够促进具有高热稳定性的mg2ca相形成,进一步提高合金的耐热性能。

本发明所述的一种具有高耐热性能的镁锂合金的制备方法分为三个阶段,即熔炼、塑性变形和随后的热处理工艺工序;其中,

所述的熔炼工序在sf6和co2混合气体保护条件下进行,步骤如下:

(1)烘料:取纯mg、纯zn、mg–gd中间合金、mg–ca中间合金和li棒,并按照制备合金质量的5~10%称取锂盐熔剂,锂盐熔剂由质量比为3:1的licl和lif混合制备而成。然后,将上述所有原料预热3小时以上达到180℃~250℃;

(2)熔mg:采用坩埚电阻炉将烘干后的纯mg和熔剂熔化;

(3)加zn和gd:往700℃~740℃的镁液中加入纯zn,加入量根据zn所占质量百分比确定;待纯zn熔化后,熔体温度回升至700℃~740℃时加入中间合金mg–gd,加入量根据该中间合金mg–gd中gd所占质量百分比确定;

(4)加ca:待中间合金mg–gd完全熔化后,熔体温度回升至700℃~740℃时加入中间合金mg–ca,加入量根据该中间合金mg–ca中ca所占质量百分比确定;

(5)加li:待中间合金mg–ca完全熔化后,熔体温度降至670℃~680℃,用不锈钢钟罩将用不锈钢丝网包覆的称量好的li棒压入熔体中,待li完全熔解后取出钟罩和不锈钢丝网;加入锂的量为锂所占合金总质量的百分比减去锂盐熔剂中锂的质量。

(6)铸造:待熔体温度回升至700℃~740℃时保温9~11min,撇去表面浮渣并进行向模具中浇铸制备镁锂合金锭,浇铸用钢制模具预先加热至180℃~250℃;

所述的塑性变形工艺工序为:

将熔炼得到的镁锂合金锭在350℃~400℃均匀化处理6~10小时,然后将完成均匀化处理的合金在200℃~250℃进行塑性变形加工,塑性变形可分为挤压、轧制、锻造等。

所述的热处理工艺工序为:

将塑性变形得到的合金在100℃~250℃温度中进行4~60小时的时效处理。

下面结合实施例对本发明做详细的说明,所述实施例以本发明技术方案为前提下给出了详细的实施方式和具体的操作过程,但本发明的保护范围不仅限于下述的实施例。

以下所使用的原料和仪器均来自市购。

实施例1

一种具有高耐热性能的镁锂合金,100kg,其组分及其质量百分比为:10wt.%li,2.5wt.%zn,1wt.%gd,0.5wt.%ca,杂质元素si、fe、cu和ni的总量小于0.02wt.%,余量为mg。

该镁锂合金的制备方法包括熔炼、塑性变形和随后的热处理三个工艺工序。

其中,熔炼工艺工序在sf6和co2混合气体保护条件下进行,步骤如下:

(1)烘料:取纯mg、纯zn、mg–gd中间合金、mg–ca中间合金和li棒,并按照制备合金质量的5%称取锂盐熔剂,锂盐熔剂由质量比为3:1的licl和lif混合而成。然后,将上述所有原料预热3.5小时达到180℃;

(2)熔mg:将烘干后的纯mg和熔剂放入有sf6/co2气体保护的坩埚电阻炉中熔化;

(3)加zn和gd:当镁液温度达到700℃后,往镁液中直接加入纯zn,加入量根据zn所占质量百分比确定(即2.5wt.%);待纯zn熔化后,熔体温度回升至720℃时加入中间合金mg–gd,该中间合金为mg–25wt.%gd,即中间合金mg–gd中gd占25wt.%,加入量根据该中间合金mg–gd中gd所占质量百分比确定(即25wt.%)和所制备镁锂合金的总质量确定,使gd最后在制备的镁锂合金的总质量中占1wt.%;

(4)加ca:待中间合金mg–gd完全熔化后,熔体温度回升至740℃时加入中间合金mg–ca,该中间合金为mg–20wt.%ca,即中间合金mg–ca中ca占20wt.%,加入量根据该中间合金mg–ca中ca所占质量百分比确定(即20wt.%)和所制备镁锂合金的总质量确定,使ca最后在制备的镁锂合金的总质量中占0.5wt.%;

(5)加li:待中间合金mg–ca完全熔化后,熔体温度降至670℃时,用不锈钢钟罩将不锈钢丝网包覆的10wt.%的纯li加入熔体中,待li完全熔解后取出钟罩和不锈钢丝网;加入锂的量为锂所占合金总质量的百分比减去锂盐熔剂中锂的质量。

(6)铸造:待熔体温度回升至700℃时保温10min,撇去表面浮渣并进行浇铸模具中制备镁锂合金锭,浇铸用钢制模具预先加热至200℃;

随后的塑性变形工艺工序为:

将熔炼得到的镁锂合金锭在350℃均匀化处理8小时,然后将完成均匀化处理的合金在250℃进行挤压变形加工。

随后的热处理工艺工序为:

将制备得到的mg–li–zn–gd–ca合金在250℃温度中进行4小时的时效处理,最后得到具有高耐热性能的mg–li–zn–gd–ca镁锂合金。

该具有高耐热性能的mg–li–zn–gd–ca镁锂合金t5态的力学性能为:测试温度100℃,屈服强度:143mpa,抗拉强度:201mpa,延伸率:32.4%;测试温度200℃,屈服强度:101mpa,抗拉强度:165mpa,延伸率:45.8%。

实施例2

一种具有高耐热性能的镁锂合金,100kg,其组分及其质量百分比为:8wt.%li,5wt.%zn,2wt.%gd,1.0wt.%ca,杂质元素si、fe、cu和ni的总量小于0.02wt.%,余量为mg。

该镁锂合金的制备方法包括熔炼、塑性变形和随后的热处理三个工艺工序。

其中,在前的熔炼工艺工序在sf6和co2混合气体保护条件下进行,步骤如下:

(1)烘料:取纯mg、纯zn、mg–gd中间合金、mg–ca中间合金和li棒,并按照制备合金质量的5%称取锂盐熔剂,锂盐熔剂由质量比为3:1的licl和lif混合而成。然后,将上述所有原料预热4小时达到200℃;

(2)熔mg:将烘干后的纯mg和熔剂放入有sf6/co2气体保护的坩埚电阻炉中熔化;

(3)加zn和gd:当镁液温度达到740℃后,往镁液中直接加入纯zn,加入量根据zn所占质量百分比确定(即5wt.%);待纯zn熔化后,熔体温度回升至700℃时加入中间合金mg–gd,该中间合金为mg–25wt.%gd,即中间合金mg–gd中gd占25wt.%,加入量根据该中间合金mg–gd中gd所占质量百分比确定(即25wt.%)和所制备镁锂合金的总质量确定,使gd最后在制备的镁锂合金的总质量中占2wt.%;

(4)加ca:待中间合金mg–gd完全熔化后,熔体温度回升至700℃时加入中间合金mg–ca,该中间合金为mg–20wt.%ca,即中间合金mg–ca中ca占20wt.%,加入量根据该中间合金mg–ca中ca所占质量百分比确定(即20wt.%)和所制备镁锂合金的总质量确定,使ca最后在制备的镁锂合金的总质量中占1.0wt.%;

(5)加li:待中间合金mg–ca完全熔化后,熔体温度降至675℃时,用不锈钢钟罩将用不锈钢丝网包覆的8wt.%的纯li加入熔体中,待li完全熔解后取出钟罩和不锈钢丝网;加入锂的量为锂所占合金总质量的百分比减去锂盐熔剂中锂的质量。

(6)铸造:待熔体温度回升至720℃时保温10min,撇去表面浮渣并进行浇铸合金锭,浇铸用钢制模具预先加热至180℃;

随后的塑性变形工艺工序为:

将熔炼得到的镁锂合金锭在360℃均匀化处理10小时,然后将完成均匀化处理的合金在200℃进行挤压变形加工。

随后的热处理工艺工序为:

将制备得到的mg–li–zn–gd–ca合金在100℃温度中进行60小时的时效处理,最后得到具有高耐热性能的mg–li–zn–gd–ca镁锂合金。

该具有高耐热性能的mg–li–zn–gd–ca镁锂合金t5态的力学性能为:测试温度100℃,屈服强度:135mpa,抗拉强度:197mpa,延伸率:33.4%;测试温度200℃,屈服强度:98mpa,抗拉强度:157mpa,延伸率:48.8%。

实施例3

所述一种具有高耐热性能的镁锂合金,100kg,其组分及其质量百分比为:6wt.%li,7.5wt.%zn,3wt.%gd,1.5wt.%ca,杂质元素si、fe、cu和ni的总量小于0.02wt.%,余量为mg。

该镁锂合金的制备方法包括熔炼、塑性变形和随后的热处理三个工艺工序。

其中,在前的熔炼工艺工序在sf6和co2混合气体保护条件下进行,步骤如下:

(1)烘料:取纯mg、纯zn、mg–gd中间合金、mg–ca中间合金和li棒,并按照制备合金质量的5%称取锂盐熔剂,锂盐熔剂由质量比为3:1的licl和lif混合而成。然后,将上述所有原料预热4小时达到250℃;

(2)熔mg:将烘干后的纯mg和熔剂放入有sf6/co2气体保护的坩埚电阻炉中熔化;

(3)加zn和gd:当镁液温度达到740℃后,往镁液中直接加入纯zn,加入量根据zn所占质量百分比确定(即7.5wt.%);待纯zn熔化后,熔体温度回升至700℃时加入中间合金mg–gd,该中间合金为mg–25wt.%gd,即中间合金mg–gd中gd占25wt.%,加入量根据该中间合金mg–gd中gd所占质量百分比确定(即25wt.%)和所制备镁锂合金的总质量确定,使gd最后在制备的镁锂合金的总质量中占3wt.%;

(4)加ca:待中间合金mg–gd完全熔化后,熔体温度回升至720℃时加入中间合金mg–ca,该中间合金为mg–20wt.%ca,即中间合金mg–ca中ca占20wt.%,加入量根据该中间合金mg–ca中ca所占质量百分比确定(即20wt.%)和所制备镁锂合金的总质量确定,使ca最后在制备的镁锂合金的总质量中占1.5wt.%;

(5)加li:待中间合金mg–ca完全熔化后,熔体温度降至680℃时,用不锈钢钟罩将用不锈钢丝网包覆的6wt.%的纯li加入熔体中,待li完全熔解后取出钟罩和不锈钢丝网;加入锂的量为锂所占合金总质量的百分比减去锂盐熔剂中锂的质量。

(6)铸造:待熔体温度回升至740℃时保温10min,撇去表面浮渣并进行浇铸合金锭,浇铸用钢制模具预先加热至250℃;

随后的塑性变形工艺工序为:

将熔炼得到的镁锂合金锭在400℃均匀化处理6小时,然后将完成均匀化处理的合金在220℃进行挤压变形加工。

随后的热处理工艺工序为:

将制备得到的mg–li–zn–gd–ca合金在150℃温度中进行16小时的时效处理,最后得到具有高耐热性能的mg–li–zn–gd–ca镁锂合金。

该具有高耐热性能的mg–li–zn–gd–ca镁锂合金t5态的力学性能为:测试温度100℃,屈服强度:113mpa,抗拉强度:176mpa,延伸率:49.8%;测试温度200℃,屈服强度:82mpa,抗拉强度:142mpa,延伸率:65.1%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1