由冲压成型硬化的铝基涂层钢板制成的部件和生产该部件的方法与流程

文档序号:17119841发布日期:2019-03-15 23:41阅读:239来源:国知局
由冲压成型硬化的铝基涂层钢板制成的部件和生产该部件的方法与流程

众所周知,热成型钢板被越来越频繁地使用,尤其是在汽车工程中。通过定义为冲压硬化(press-hardening)的工艺,可以生产主要用在车身制造领域的高强度部件。冲压硬化基本上能够通过两种不同的方法变型来实施,也就是通过直接法或间接法。然而,在间接法中,成型和硬化的方法步骤是彼此分开执行的,在直接法中,它们在一个设备(tool)中一起进行。在下文中将只考虑直接法。

在直接法中,将钢板加热至超过所谓的奥氏体化温度(ac3)。然后,将加热钢板转移至成型设备中并且在单级成型步骤中成型以制造成品部件,在这种情况下,同时由冷却成型设备以大于钢板的临界冷却速度的速度对成品部件进行冷却,以便生产硬化部件。钢板本身通常会从缠绕成卷的钢带上切割下来,然后进一步加工。待成型的钢板经常被称作板材(plate)。

该应用领域已知的热成型钢例如是锰硼钢“22mnb5”和近来根据欧洲专利ep2449138b1的气硬钢。

除了未经涂布的钢板之外,包括针对冲压硬化的防锈皮的钢板也被使用(例如,用于车身构建)。这方面的优势是:除了成品部件耐腐蚀性增强之外,板材或部件在熔炉内不会产生锈皮,借此,剥落的锈皮对冲压设备造成的磨损会降低并且部件在进一步加工之前通常不需要进行昂贵的喷射处理(blasting)。

目前,热浸采用的下述(合金)涂层对冲压硬化来说是已知的:铝-硅(as)、锌-铝(z)、锌-铝-铁(zf/镀层退火)、锌-镁-铝(zm)以及锌-镍或锌的电解沉积涂层,其中后者在热成型之前会转变为铁-锌合金层。这些防腐蚀涂层按照惯例会在连续进料过程中应用于热轧或冷轧带材。

通过由在成型设备中热成型的冲压硬化钢构成的预制品的淬火(quenching)而生产的部件从德国专利de60119826t2知晓。在这种情况下,将钢板预先加热至超过奥氏体化温度至800-1200℃并且可能被提供有锌或基于锌的金属涂覆层,然后在间或冷却设备中通过热成型来成型钢板以生产部件,其中,在成型过程中,由于快速排热的原因,成型设备中的钢板或部件经过淬火硬化(冲压硬化)并且由于产生的马氏体硬度结构而得到需要的强度性能。

通过涂覆有铝合金并且由在成型设备中热成型的冲压硬化钢构成的预制品的淬火而生产的部件从德国专利de69933751t2知晓。在这种情况下,在成型之前将涂覆有铝合金的钢板加热至700℃以上,其中基于铁、铝和硅的金属间化合物在钢板表面生成,随后将钢板成型并以超过临界冷却速度的速度冷却。

公开文献us2011/0300407a1公开了一种用于汽车工业的冲压成型硬化钢板的生产方法。在热浸工艺中,向钢板提供层支撑物(layersupport)是20至80g/m2的铝-硅(as)涂覆层,将钢板加热至超过820℃的温度并在该温度下保持一段时间(大约3分钟)。从而在涂覆层中形成不同的金属间相,例如fe3al、feal或fe-al2o3。通过使用冲压机热成型之后,产品仍在冲压机中时冷却。

欧洲专利申请ep2312011a1也描述了一种用于汽车工业的铸造模塑件上金属涂层的生产方法。为了该目的,在熔池中向铸造模塑件提供铝合金,然后在氧化气氛中对铸造模塑件进行热处理以产生耐高温氧化铝层。在热处理之后,提供阳极氧化。

德国专利文献de19853285c1提出了马氏体钢的保护层的生产方法。在保护性气氛(有5%h2的氩)中,待涂覆的钢板浸入铝或铝合金的熔融物中,冷却,然后在奥氏体化温度下进行热等静压。因此,生产的铝保护层具有100至200μm的厚度,该文献记载钢板表面具有大约1μm厚的氧化铝层,但是没有提供如何生产或得到的该层的进一步细节。

欧洲专利申请ep2017074a2公开了由具有通过热浸镀涂覆的铝层的钢管构成的机动车管道。在涂覆过程中通过铝的温度和氧浓度来调整氧化铝层的厚度;厚度是4至30nm。

相比于锌基涂覆层,铝基涂覆层的优点在于如下事实:除了较大的工艺窗口(例如,在加热参数方面)外,成品部件在进一步加工之前不需要进行喷射处理。此外,对于铝基涂覆层,不存在液态金属脆化的风险,并且在前奥氏体晶界的近表面基底区域不会形成微裂纹,微裂纹深度大于10μm就会对疲劳强度产生不利影响。

然而,使用铝基涂覆层(例如由铝-硅(as)构成)的缺点是:当冲压硬化已采用了过短的加热时间时,阴极浸涂(ktl)中(通常用于汽车)成型部件的漆粘合不足。加热时间短时,表面粗糙度不足,所以无法实现足够的漆粘合。

与锌基涂覆层相反,铝基涂覆层不能磷化或不能充分地磷化,因此磷化步骤不能实现对漆粘合的改善。由于这些原因,至今,当加工具有铝基涂覆层的板材时,必须保持最小的加热时间,借此,涂覆层与铁完全合金化并形成粗糙的表面形貌,这在对成型部件上漆时可产生足够的漆粘合。

然而,涂覆层与铁完全合金化并形成能够上漆的表面形貌需要在通常使用的辊底式炉中有相应长的停留时间,这极大的延长了周期时间并降低了冲压成型硬化工艺的经济可行性。因此,最小保压时间由涂覆层而非由主要材料来决定,主要材料只是实现需要的奥氏体化温度所必需的。此外,与铁的较大合金化会降低耐腐蚀性,这是因为在炉内停留时间期间合金层中的铝含量降低且铁含量增加。对于as板材,不管需要的炉内停留时间如何,通常采用较长的炉来实现高周期率。然而,这些长炉的购买和运行费用更高,并且还需要非常大的空间。as涂覆层的另一缺点在于如下事实:在退火时间非常短时,点焊过程中焊接性能极其差。这例如仅在非常小的焊接区显现。其原因尤其是伴随短退火时间的非常低的过渡电阻。

因此,本发明的目的是提供一种由具有铝基涂层的冲压成型硬化钢板构成的部件,该钢板的生产成本低廉并具有极好的上漆性能和焊接性能,尤其是电阻点焊性能。此外,本发明还提供了生产该部件的方法。

本发明的教导包括由具有铝基涂层的冲压成型硬化钢板构成的部件,其中涂层包括应用于热浸工艺并且含有铝和硅的涂覆层,其特征是冲压成型硬化部件在介于钢板和涂覆层之间的过渡区中具有互扩散区i,其中,取决于在加热和冲压硬化之前涂覆层的层支撑物,互扩散区i的厚度满足如下公式:

在互扩散区i上形成具有不同金属间相、平均总厚度是8至80μm的区域,所述区域上又布置有含有氧化铝和/或氢氧化铝、平均厚度是最小0.05μm至最大5μm的覆盖层。

在下文中将铝基涂覆层理解为金属涂覆层,其中铝是主要成分(以质量百分比表示)。可用的铝基涂覆层的例子是铝-硅(as)、铝-锌-硅(az)和具有添加元素外加剂的相同涂层,添加元素例如是镁,过渡金属诸如锰、钛和稀土元素。根据本发明的钢板的涂覆层可在si含量是8wt%至12wt%、fe含量是1wt%至4wt%、余量为铝的熔池中生产。

在钢板或钢带的铝基涂层上形成的含有氧化铝和/或氢氧化铝的定义的覆盖层能够极大地减小或者甚至完全防止前述的铝基涂层的不利方面。

含有氧化铝和/或氢氧化铝的覆盖层会对冲压成型硬化形成的部件起作用,原因是它们的网格状结构是随后上漆,尤其是阴极浸涂(ktl)的理想的粘附促进剂。因此,不再需要在炉中对铝基涂层进行与铁的持久完全的合金化,所以将钢板加热至成型温度的通过炉的通过时间能够被极大地缩短。然而,在以前,对于厚度为1.5mm的钢板,为了使涂层与铁完全合金化并形成能够被上漆的表面形貌,在辊底式炉中在950℃的炉温下需要至少4分钟的退火时间,在根据本发明的方法中,对于厚度为1.5mm的钢板,只需要2-3分钟的退火时间,因此退火时间显著缩短。含有氧化铝和/或氢氧化铝的覆盖层不会改变最大可能的炉内时间。因此,以较短炉内时间加热的工艺窗口被极大地扩展。

对于较厚的钢板,炉内时间相应地延长,这归因于钢材升温速率较低。在此也应该保持介于900℃至950℃的通常的炉内温度。对于高周期时间,介于930℃至950℃的炉内温度是有益的。

此外,根据本发明的由氧化铝和/或氢氧化铝构成的覆盖层对炉内时间短的电阻点焊性能具有有益影响,这是因为过渡电阻增大并因此实现了有效电阻加热。因此已经证明该覆盖层的厚度至少为0.05μm对于短加热时间之后的良好的焊接性能是有益的。

实验已经表明,含有氧化铝和/或氢氧化铝的覆盖层越厚,漆粘合就越好,腐蚀作用引起的涂层剥落就越少。另一方面,当该覆盖层太厚时,电阻点焊的过渡电阻会太高,由此焊接性能会再次受损。因此,不应超过5μm的覆盖层的最大厚度。

为了实现焊接适应性和漆粘合之间的良好折中,覆盖层应当具有介于0.10μm至3μm的厚度。

平均厚度是0.15μm至1μm的覆盖层对于卓越焊接适应性以及有效漆粘合是特别有利的。

根据本发明,本发明同样包括由尤其适合上漆和电阻点焊的、具有铝基涂层的冲压成型硬化钢板来生产部件(尤其是如权利要求1所要求保护的部件)的方法,其中在热浸工艺中将铝基涂覆层的涂层涂于钢板上,特征是:

-在热浸工艺之后且在成型工艺之前,使具有涂覆层的钢板或钢带进行阳极氧化处理和/或等离子体氧化处理和/或热水处理和/或在含有至少可变比例的氧气、蒸汽的气氛中的处理,

-在至少90℃、优选至少95℃的温度下进行热水处理或采用蒸汽的处理,

-在通过形成氧化物或氢氧化物对涂覆层的表面进行处理的过程中,形成了含有氧化铝和/或氢氧化铝并且厚度是最小0.05μm至最大5μm的覆盖层,

-将钢板或钢带至少分段加热至奥氏体化温度以上的温度,

-然后,使加热的钢板或钢带成型,随后以至少分段在临界冷却速度以上的速度冷却。

结合本发明,表述“至少分段”(atleastinsections)应根据经处理的钢板或钢带的局部部分来理解,所以能够生产具有以有针对性的方式而彼此局部分离的微观结构和性质的钢板或钢带。

覆盖层优选在连续过程中应用于涂覆层的表面。

以有利的方式,优选在还含有一定比例的如下碱性组分的气氛中进行处理:一级脂肪胺、二级脂肪胺或三级脂肪胺(nh2r、nhr2、nr3),优选是氨(nh3)。

就工艺技术而言,薄的氧化物覆盖层能够有益地由阳极氧化(薄层阳极氧化法)、等离子体氧化来生产,含有氢氧化物的覆盖层能够通过在至少90℃(有益地是至少95℃)的温度下热水处理铝基涂层和/或在至少90℃(有益地是至少95℃)的温度下的蒸汽中处理来生产。

作为阳极氧化的替代方式,as表面的气相处理也能实现相同的目的。对于该目的,用如下气氛处理as表面:该气氛可含有至少可变比例的氧、蒸汽,可选地还含有一定比例的碱性组分:一级、二级或三级脂肪胺,尤其是氨。该处理的结果是时间控制或温度控制含有氧化铝和/或氢氧化铝的覆盖层的生长。此外,气相的组成能够用来控制该覆盖层的层厚度增长。在40℃至100℃,优选90℃至100℃的温度下进行处理。较低的处理温度会延长处理持续时间,超过100℃的处理温度可能需要压力容器。

阳极氧化和气相处理产生含有氧化铝和/或氢氧化铝、表面具有网格状或针状结构的覆盖层。由此相关的表面积增大改善了随后的阴极浸涂的粘附力。

由于不再需要较长的加热时间来形成能够上漆的表面形貌,因此也提高了涂层的腐蚀防护。这可以这样来解释:辊底式炉中只需要短的退火时间,铝和铁的扩散较少。这还尤其造成相对小的互扩散区。举例来说,对于150g/m2的起始材料的as支撑物(as150),互扩散区小于7μm。

在实验中,在使用具有150g/m2的as支撑物的板材时,根据炉内停留时间,也能够实现在成品部件上厚度小于5μm、甚至小于4μm的扩散区。

当使用具有80g/m2的as支撑物(as80)的板材时,已知在这种情况下,对于并非根据本发明的涂覆层,炉内时间也能够稍微减小,甚至因此导致例如5μm的较薄的扩散层。实验已经表明:通过使用根据本发明的方案,炉内时间在这种情况下甚至还能够进一步减小,并且结果是能够实现在成品部件上的厚度小于5μm的扩散层。在其它实验中,通过进一步减小炉内加热时间,能够实现在成品部件上的厚度进一步减小至小于3μm、甚至小于2μm的扩散层。

当使用具有介于as80与as150之间的层支撑物的板材和具有小于as80或大于as150的层支撑物的板材时,在冲压硬化之后,根据本发明的、起始材料的层支撑物的互扩散层i的厚度由针对取决于钢板厚度的不同加热时间、根据如下公式的线性相关性来得到:

根据本发明,炉内所需的加热时间只基于钢板厚度,因为根据本发明的涂覆层不需要任何炉内停留时间以生产能够上漆的表面。因此,较厚的钢板比较薄的钢板需要更长的加热时间来加热。

举例来说,对于厚度为1.5mm的钢板,表1列出了与辊底式炉内的通常的加热时间(360秒)相比的短加热时间(220秒)、非常短的加热时间(180秒)和极其短的加热时间(150秒)。

短加热时间的另一个有益效果是合金层中和扩散区中的孔隙度极大降低。孔在较长的退火时间内产生,例如通过柯肯德尔(kirkendall)效应。实验已经表明:由于退火时间短,总孔隙度能够降低至小于6%的值,甚至是小于4%或2%的值。这例如对于焊接适应性具有有益效果。

对于具有铝-硅涂层的板材的冲压成型硬化,现在不再需要遵从钢板在炉内长时间停留。钢板仍只需加热至需要的成型温度,并且一旦达到成型温度,就能够立即将钢板供应至压型机,成型并淬火。

结果,能够使用比以前采用的辊底式炉更短的辊底式炉。此外,也可以使用其它类型的炉,例如用于感应式快速加热或导电式快速加热的炉,不需要将加热的板材保持在形成能够上漆的表面形貌的温度下。

此外,现在可以仅部分加热和硬化板材,借此,即使在低热效应的区域中也实现了良好的点焊性能和阴极浸涂。

在下文中借助说明性的附图对本发明作更详细的描述。

图1示意性地说明了根据现有技术的冲压成型硬化部件上的涂层的层结构,该冲压成型硬化部件具有由as构成的涂层,采用通常的长加热时间来实现涂覆层与铁的完全合金化。对于该部件,采用了具有由as150(即具有150g/m2涂覆层的层支撑物)构成的涂覆层的钢板。在马氏体钢基材料上形成的是厚度为7μm至14μm的互扩散区fe(al,si),在其上面形成了具有不同金属间相(例如fe2sial2和feal2)的区域,其中该区域中的各个相能够以线性或成簇的形式分布。通过炉内的氧化作用并在转至冲压机的过程中,仅形成了厚度小于0.05μm的非常薄的氧化铝层。也能够看见在不同区域中形成的孔。

相比之下,图2说明了在冲压成型硬化部件上的根据本发明的涂层的层结构,该冲压成型硬化部件具有as涂层,在该as涂层上形成了根据本发明的含有氧化铝和/或氢氧化铝的至少0.05μm的覆盖层,并且该as涂层相比于现有技术采用减小了的加热时间来生产。在钢板和涂层之间的过渡区中形成了互扩散区,互扩散区中铝和硅已扩散进钢中fe(al,si)。由于炉内至奥氏体化温度需要的加热时间非常短,因此例如对于as150,该层的平均厚度小于7μm。在加热过程中在该层上形成了具有不同金属间相(例如fe2sial2和feal2)的其它层,其中该区域中的各个相能够以线性或成簇的形式分布,其上布置有含氧化铝和/或氢氧化铝、平均厚度为最少0.05μm至最多5μm的覆盖层。

图3显示了按照如下关系、针对介于50g/m2至180g/m2之间的起始材料的层支撑物的根据本发明的互扩散区的厚度i的曲线:

表1概括了针对在940℃熔炉温度和不同加热时间下的冲压硬化as150样品的漆粘合(磷化处理(通常用于汽车)和阴极浸涂;按照dineniso6270-2:2005ch,72小时之后测试恒定冷凝水气氛)和焊接适应性(电阻点焊)的实验。样品的板厚是1.5mm。可以看出,如果提供根据本发明的含有氧化铝和/或氢氧化铝的覆盖层,则仅在220s或更低的加热时间下产生良好的漆粘合和焊接适应性。在220s或更低的的短加热时间下,在冲压硬化部件上还产生小于7μm的互扩散层。相反,在360s的长加热时间(是现有技术的一部分,并非根据本发明)下,在没有根据本发明的含有氧化铝和/或氢氧化铝的覆盖层的样品中也产生了良好的漆粘合和焊接适应性,原因是涂覆层与铁的完全合金化。360s加热时间之后,互扩散层的厚度明显大于7μm。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1