一种耐高温腐蚀耐磨损的非晶态热喷涂材料的制作方法

文档序号:18168252发布日期:2019-07-13 09:44阅读:584来源:国知局

本发明涉及材料技术领域,具体涉及一种耐高温腐蚀耐磨损的非晶态热喷涂材料。



背景技术:

高温腐蚀和磨损都是材料损伤的主要原因。高温腐蚀是指在高温下,金属材料与环境气氛中的氧、硫、碳、氮等元素发生化学或电化学反应,导致材料的变质或破坏。燃烧锅炉受热面,特别是水冷壁高温腐蚀严重,并伴有高温冲蚀。燃烧锅炉水冷壁上发生的高温腐蚀通常属于硫化物型高温腐蚀,主要由烟气中的硫化氢气体造成。燃烧区域产生的腐蚀性较强的酸性气体,与管壁金属氧化膜发生腐蚀反应,使金属表面的保护膜遭到破坏。在运行过程中引爆管停炉现象时有发生,严重影响安全生产。

热喷涂是一种表面强化技术,是表面工程技术的重要组成部分,通过在被加工工件表面制备一层耐磨涂层,使工件的耐磨性能、耐腐蚀性能获得大幅提高。已广泛应用的碳化钨-钴、和碳化钨-钴-铬系列的热喷涂粉末,由于其高的硬度、良好的韧性和耐磨耐蚀性,广泛地应用于航空航天、冶金、机械等领域。

现有技术中应用热喷涂技术解决燃烧锅炉水冷壁高温腐蚀和磨损的方法有:热喷涂镍铬钼铌合金(如inconel625)、镍铬钛合金(如45ct)、仿搪瓷类涂料。然而,传统耐高温腐蚀合金材料由于主要成分为铌、钼、钛、镍等造成成本很高,且耐磨损性能并不优秀;仿搪瓷类涂料普遍存在施工厚度控制和应升温曲线不合理造成应力开裂、长时使用因基体材料损失而粉化的现象。

因而,开发一种耐高温腐蚀耐磨损的非晶态热喷涂材料是非常有必要的。



技术实现要素:

本发明的目的在于克服现有技术的不足,提供一种耐高温腐蚀耐磨损的非晶态热喷涂材料。

本发明所采取的技术方案是:

一种非晶态合金粉末,由以下重量百分比的原料组成:mo:5~30份、b:2~18份、c:0.5~25份、ni:0.1~3份、cr:5~50份、si:0.1~5份、fe:0.3~20份、re:0.01~0.05份、其他杂质元素≤0.05份。

作为上述一种非晶态合金粉末的进一步改进,由以下重量百分比的原料组成:mo:10~25份、b:8~12份、c:5~15份、ni:1~3份、cr:15~40份、si:1~4份、fe:8~15份、re:0.02~0.04份、其他杂质元素≤0.05份。

作为上述一种非晶态合金粉末的进一步改进,由以下重量百分比的原料组成:mo:22份、b:8份、c:10份、ni:2份、cr:32份、si:2份、fe:12份、re:0.03份、其他杂质元素合计≤0.05份。

作为上述一种非晶态合金粉末的进一步改进,re为la、ce、sc中的至少一种。

一种包含耐高温腐蚀耐磨损涂层的制品,该涂层由上述非晶态合金粉末喷涂于镍基或铁基合金表面而形成,涂层厚度30μm-2mm,喷涂后涂层非晶比例≥90%。

作为上述一种包含耐高温腐蚀耐磨损涂层的制品的进一步改进,喷涂方式选自等离子喷涂、激光熔敷或超音速火焰喷涂的其中一种。

一种热喷涂粉芯丝材,由药芯和外皮组成,其中,药芯为上述非晶态合金粉末。

作为上述一种热喷涂粉芯丝材的进一步改进,外皮为h08a低碳钢钢带或430不锈钢钢带。

作为上述一种热喷涂粉芯丝材的进一步改进,丝材中药芯的填充率为35~60%。

作为上述一种热喷涂粉芯丝材的进一步改进,其制备步骤为:

1)将药芯各组分按照配方混合并充分搅拌,混合后放入烘干机中350~500℃烘干,150~200℃保温2h,得到药芯粉末;

2)将外皮放置在药芯焊丝成型机的放带机上,通过成型机将外皮钢带轧制成u型槽,然后向u型槽中添加药芯粉末,控制药芯粉末的填充率为35~60%,再通过成型机将u型槽碾压闭合,并将其拉拔至直径1.6~3.2mm,得到热喷涂粉芯丝材。

本发明的有益效果是:

本发明提供了一种耐高温腐蚀耐磨损的非晶态热喷涂材料,该材料主要由成本相对低廉的钼、铬、铁组成,并通过添加微量稀土元素来对合金进行改性,其结合强度高,至少达到50mpa,耐腐蚀性能优于传统高温合金材料,耐磨损性能优于q235材料20倍以上。本发明的非晶态热喷涂材料与其他材料相比,成本低廉,耐高温腐蚀和耐磨损性能优异,因此适用于广泛工业化生产。

具体实施方式

以下通过具体实施方式对本发明进行说明:

实施例1

一种非晶态合金粉末,由以下重量百分比的原料按常规方法制得:mo:22份、b:8份、c:10份、ni:2份、cr:32份、si:2份、fe:12份、re:0.03份、其他杂质元素合计≤0.05份。

本实施例采用制备非晶态合金粉末的常规方法为氮气雾化法(冷却速率为500~1000℃/s)。

稀土元素re能提高熔敷金属的伸长率和断面收缩率,能显著提高熔敷金属的抗硫化腐蚀性能。其中,la、ce、sc能改善钼铬铁合金的热塑性。本实施例中,re为la和ce的组合。

合金粉末中的杂质是制备工艺和选材配合过程中难以避免掺杂其中的成分,包括mn、s、p等。

本实施例的一种包含耐高温腐蚀耐磨损涂层的制品,该涂层由上述非晶态合金粉末用超音速火焰装置喷涂于镍基合金表面而形成。其中,镍基合金为inconel625;涂层厚度为500μm。表面结合强度为55.8mpa。

实施例2

一种非晶态合金粉末,由以下重量百分比的原料按常规方法制得:mo:5份、b:2份、c:0.5份、ni:0.1份、cr:5份、si:0.1份、fe:0.3份、re:0.01份、其他杂质元素合计≤0.05份。其中,re为la和sc的组合。

本实施例的一种包含耐高温腐蚀耐磨损涂层的制品,该涂层由上述非晶态合金粉末用等离子喷涂装置喷涂于镍基合金表面而形成。其中,镍基合金为inconel625;涂层厚度为400μm。表面结合强度为52.1mpa。

实施例3

一种非晶态合金粉末,由以下重量百分比的原料按常规方法制得:mo:30份、b:18份、c:25份、ni:3份、cr:50份、si:5份、fe:20份、re:0.05份、其他杂质元素合计≤0.05份。其中,re为ce。

本实施例的一种包含耐高温腐蚀耐磨损涂层的制品,该涂层由上述非晶态合金粉末用激光熔敷装置喷涂于镍基合金表面而形成。其中,镍基合金为inconel625;涂层厚度为700μm。表面结合强度为55.2mpa。

对比例1

本实施例与实施例1相比,其区别仅在于,本实施例中的非晶态合金粉末中不含有re。

本实施例制得的制品的表面结合强度为45.1mpa,通过显微维氏硬度试验检测得,该制品涂层上检测点1#、2#、3#、4#、5#的显微维氏硬度均小于800hv0.1。

实施例4

产品耐磨损性测试:

以gb/t4340.1-2009《金属材料维氏硬度试验第1部分:试验方法》和gb/t13298-2015《金属显微组织检测方法》为检测依据,对实施例1~3制得的制品涂层进行耐磨性测试。其测试结果如表1所示。

表1、耐磨损性测试数据

由表1可知,实施例1~3的非晶态合金粉末制得的涂层具有较高的强度,能够较好地满足高强耐磨的需要。

产品耐高温腐蚀性测试:

将实施例1~3制得的制品和样品,以市售镍铬钛喷涂样品为对照组,通过熔盐腐蚀试验检测耐高温腐蚀性,其试验步骤为:1)将样品表面经180#/400#/1200#砂纸打磨后,放入直径50mm的坩埚;2)再在坩埚中放入40g硫酸钠+氯化钾(质量比1:1混合);3)将坩埚放入马弗炉中,在550℃温度条件下保温48h;4)取出用纯水超声波清洗样品表面后观察表面腐蚀情况。其试验结果如表2所示。

表2、耐高温腐蚀性测试数据

由表1可知,实施例1~3的非晶态合金粉末喷涂样品的耐熔盐腐蚀性能优于镍铬钛喷涂样品的耐熔盐腐蚀性能,能够较好地满足耐高温腐蚀的需要。

对于本领域技术人员而言,本发明显然不限于上述示范性实施例的细节。在不背离本发明的精神或基本特征的情况下,本领域技术人员能够以其他的具体形式实现本发明。但应当注意的是,以上实施例的列举是为了让本领域技术人员更加清楚明白本发明所述技术方案,并不对本发明所要求的保护范围构成限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1