含有金属纤维的烧结的多孔层压件的制作方法

文档序号:3391820阅读:528来源:国知局
专利名称:含有金属纤维的烧结的多孔层压件的制作方法
技术领域
本发明涉及一种多孔的烧结层压件,它含有一个金属丝网,通过烧结处理将一个非编织的金属纤维网与与它连接起来。本发明还涉及制造这种层压件的方法。
由一个或多个金属丝网增强的多孔烧结金属纤维层压件是众所周知的。例如,美国专利3,437,457公开过一种层式的多孔构件,这种构件是将一金属纤维网通过烧结至少将它的一个平的侧面与一编织的丝网连接起来。为此,将金属纤维网在低压下到丝网上,并且加热,从而使纤维互相间的接触点以及与丝网间的接触点形成扩散连接。德国专利2,720,278公开过一种具有均匀孔隙率的烧结滤网构件。为了生产这种构件,将编织的和/或具有多边形横截面的不锈钢纤维的非编织薄层彼此叠合铺放,然后在一个炉子内同时加压和加热,使它们彼此烧结在一起。这种多孔层压件特别适用于纵深过滤器,因此,其纤维的百分含量很高。另外,美国专利4,126,560也可视为是现有技术的一个实例。
本发明的一个目的在于提供一种多孔层压件,该层压件同时兼有较低的孔隙率和满意的过滤能力。具体说来,本发明提供的多孔层压件,其所含纤维的体积百分数比金属丝网小,因此仍保持足够的过滤能力。这就意味着,尽管这种层压件每平方米所含纤维重量较低,但是仍然可以达到足够低的孔隙率和适度的透气率,特别是在面对着丝网眼的过滤表面区更是这样。
本发明的另一目的提供含有金属纤维的过滤层压件,特别是较薄的过滤层压件,这种层压件能够抗高的压降,尤其是抗高的压力脉冲。
本发明力图使所提供的过滤层压件中纤维与丝网之间极其牢固地连接在一起,以致使纤维层实际上不能再从丝网拉开。
此外,本发明的一个目的是提供一种特定的连续烧结工艺,这种工艺无需采用加热炉,这与按照现有技术在加热炉内进行连续烧结的工艺是不同的。具体说来,本发明采用这种特定的连续烧结工艺是为了提供一种经济、灵活而通用的制造方法。这种方法从原理上看有可能采用较简单而且较便宜的烧结设备。更具体地说,这种新的连续烧结方法应能够制得具有特定过滤性能的新型特定过滤构件,包括由本发明着意提供的含有金属纤维的层压件。
按照本发明,上述各项目的通过一种多孔的层压件来达到,这种层压件含有一个金属丝2相交织的网,并有一个在压力下使金属纤维彼此烧结在一起的非编织的金属纤维网与上述金属丝网连在一起,在该层压件中,丝网接点区中网的孔隙率最大为上述接点间的网眼中央区的孔隙率的40%,最好不大于25%,对于特殊的用途,该孔隙率比甚至可选用低于15%。
由本发明设计的制造多孔层压件的经济合算的方法有如下的工序将一金属丝网与一放在该网上的金属纤维网一起连续地推进到两个转动着的压辊之间,该两压辊带有不同的电势,以便有一电流流过层压件的与压辊接触部分的横截面,从而使纤维在它们的互相接触点处彼此烧结在一起,并与金属丝网烧结在一起。
下面将结合具体实施例参考附图来说明上述内容,并且还说明另外的特征和优点,附图中

图1是本发明的多孔层压件的横截面剖视图;
图2是图1的层压件的顶视图;
图3是图1的横截面的放大图;
图4是现有技术的多孔层压件的横截面放大图;
图5是本发明的层压件组成部分之一的纤维网中的纤维表面形貌的放大图;
图6示出现有技术的多孔层压件中纤维的类似的形貌;
图7是连续地制造本发明的多孔层压件的一种装置的横截面示意图。
图1示出的多孔层压件1包含一个由经线和纬线交织而成的金属丝织网2,通过烧结法将一个非编织网3与上述金属丝网2连接在一起。所述的金属丝网2的丝可以是例如拉拔法制成的不锈钢丝。非编织网3含有例如不锈钢丝5之类的金属纤维,是通过束捆拉丝法或切削加工法制成的。众所周知,这些纤维的表面通常是不规则的,带有若干外廓尖锐之凹凸不平处10、沟槽和由多边形横截面形成的尖锐棱边等。这类纤维5的应用和干法制网法本来就是大家共知的,例如美国专利3,469,297或3,505,038已阐述过。上述纤维的横截面积为3×106~1.8×102毫米2,较合适为1.2×10-5~3×10-3毫米2,最好为5×10-5~7.5×10-4毫米2。
将金属丝网2与非编织网3固结在一起的新的特殊方法包括一个在高压下的烧结操作。这在下面说明。按照本发明,上述烧结操作形成一种层压组织,这种组织在图2所示的网的连接点区4处有明显的压缩区。在这些压缩区4之间,特别是网孔的中心区6,有多个多孔区。这一特征在图3所示的横截面图上也可以看出。而且图3也清楚地示出了纤维5的不规则横截面。由于层压件在烧结过程中强烈受压,金属网2的丝常常形成一种压平区8,而在从网3向外的外侧上的其他部位中,至少在接点区4被压平。在该区中的被压紧的纤维也呈现出稍为压扁的横截面。
按照本发明,烧结过程不会引起钢丝网或纤维的明显再结晶。烧结后仍然完好地保留着拉丝过程中形成的线性取向的金相组织7(见图3),这与分级烧结工艺有所不同,在分级烧结中会发生明显的再结晶,如图4所示。采用分级工艺,金属丝网结点区4处非编织网纤维的受压情况很不明显,甚至没有。而按照本发明,烧结后的纤维仍然完好地保留着它们的带有尖锐轮廓的凹凸不平处或条纹状10的粗织而不平坦的表面,如图5所示。但是,采用分级烧结工艺会使许多原有的表面沟槽,或者棱边消失,而使纤维表面形成一种竹状组织9,如图6所示。从图5也可看出,由于高压的结果,纤维在相互交叉点处互相缠绕和粘接得更加牢固。然后,由于烧结过程引起的进一步固结,使纤维相互之间以及与金属网之间十分牢固地连接在一起,以致不可能将它们扯开。
按照本发明,连续制造层压件的工序如下。将一块带有很多孔的金属纤维网11铺在一块金属丝网2上,用辊子12随意轻轻地预压处理后,将该成层的结构连续地送到一个通过真正固结装置的送料台13上(图7),该固结装置基本上由金属压辊14和15组成,在该两个压辊之间,形成来自电源“E”的电位差,因此有一电流在与压辊接触的狭小条形区16中流过层压件的横截面,该截面垂直于层压件的移动方向。
如果需要的话,上述的电位差可以根据层压件的性质和特征加以调节。事实上,上述电流,无论是直流还是交流,都具有电阻加热效应,这就使纤维在它们的接触点处烧结在一起,但是,由于接触时间较短,故需要很高的压力。这种高的压力使纤维严重受压而局部变平,而且使接点区4的纤维和网丝间彼此压入或者说紧缩,见图5。结果,在丝网2的外侧常有一个局部变平区8。在实践中,采用在一个烧结内的分级烧结工艺时,由于无法对大的表面施加很高的压力,故不可能达到与上述同样的烧结连接特性。而且,采用通常用来对分级烧结处理后的多孔烧结纤维构件进行加压处理的冷轧法,无论是连续的工艺还是不连续的工艺,也不可能达到与上述同样的烧结连接特性和低的孔隙率。冷轧压力必须高到使多孔纤维网结构在其金属丝网接点区处被压扁。
按照本发明将若干重量规格为300克/米2或600克/米2、由316L型不锈钢纤维(这种纤维由束捆拉丝法制得)制成的非编织网与各种编织的丝网相结合,两者的厚度均为0.5毫米,(亦即其网丝直径为0.25毫米)。在下表中列出了上述情况下各种编织丝网的网眼尺寸。所用纤维的当量直径分别为8、12和22微米。
层压件以合适的速度例如0.1-5米/分送入图7所述装置的压辊14和15之间。施加到通过压辊间的层压件上的压力约为10-30牛顿/毫米2,所产生的拉伸使通过正在运行的宽度为40毫米的层压件的横截面中的电流达到25000安培。上述装置带有电流控制器,以避免电流密集或短路。
表中列出了压力差为200巴时记录的平均透气率(AP)。在各次试验中,试件的表面积为0.62厘米2。为了进行比较,在No13试件中,对采用常规方法(不连续的)在真空炉内烧结的一种同类层压构件(参看图4)进行了试验。这种层压件比较厚(0.82毫米),故其透气率比No.3试件约高3倍。表中也列出孔隙尺寸MFP(即平均流通孔眼尺寸)。
试验中也发现,按照本发明烧结的层压件中,不可能将非编织纤维网从金属丝网拉开或扯开,而采用分级烧结工艺的层压件(如No.13试件)则有可能将它们拉开或扯开。
从上表很容易推论出,对于同样的丝网孔眼和同样的纤维网重规格,层压件的透气率随纤维直径的增大而明显提高。另一方面,对于同样的网眼尺寸,增加纤维网重将使透气率自然地降低。就绝对值来说,较厚的纤维网的透气率将比较薄的纤维网降低得多些。最后,在纤维网重和纤维直径恒定的情况下,透气率将随网眼尺寸的减小而降低。但是,网眼尺寸的影响没有纤维网重或纤维直径变化的影响那么重要。
另外,从No.10试验可以推论出,当纤维网重量小而网眼尺寸同时又较大时,所形成的纤维互相之间和丝网邻近接点之间的连桥可能不足以提供可再现的过滤特性。
可以不采用上面所述的由盘结拉丝法制的纤维,而采用刨削法或切割法制的钢纤维或其他金属纤维(如欧洲专利319,959所述),它们被加工成非编织纤维网后,可以同合适的金属丝网结构结合起来。用这种方法制成的纤维和网在例如美国专利3,505,038中已叙述过。还可以采用直接由熔融金属制成的金属纤维(如美国专利3,845,805和英国专利1,455,705所述),或者采用通过还原金属氧化物混合物方法制得的金属纤维(如美国专利3,671,228和4,312,670所述)。纤维网的成形也可按照一种湿法来进行,如美国专利3,127,668以及类似专利所叙述的那样。
如果需要的话,也可采用一种编织构件作为丝网,该网丝的横截面不一定是圆的,可以是例如矩形的。在某些情况下,也可将金属纤维丝网作为一个中央过滤层夹在两个丝网之间纤维网的两侧面与丝网烧结在一起,在纤维网的一个侧面上的丝网的丝可以细些(例如,直径0.1毫米),在另一侧面的可以粗些(例如直径0.2毫米)。另外,比如,纤维网层可与丝网一个叠一个地烧结在一起,每一纤维网层的纤维直径互不相同。纤维网重规格可在100克/米2至4千克/米2之间变化。如果需要的话,具有较小网眼的编织网可以互相交叉叠合堆积并按照本发明的方法互相烧结在一起。
所用的金属纤维合金不必限于各种不锈钢。也可以考虑采用镍、铬镍铁合金和耐盐酸镍基合金纤维以及耐腐蚀、耐磨和/或耐高温的金属纤维(例如铁铬合金制的纤维)。
本发明的层压件具有十分广阔的用途,例如,可用作过滤介质。首先,可考虑用作设在某些汽车的置身柱内或操纵盘内的气袋的过滤器,该气袋在迎面碰撞的情况下用作乘员与方向盘或称操纵盘之间的缓冲垫。现在,烧结的金属网过滤器常常与上述气袋安装在一起,用于过滤在发生撞击时释放出来的快速吹胀气袋的突然膨胀气体,这种纤维网过滤器当然必须十分耐压力波和冲击。本发明的紧凑的过滤器结构十分适合于上述用途。
一般来说,也可以利用具有很低孔隙度的较薄过滤网构件的特性,将它们用作表面过滤网。也可在这些过滤网构件中沉积一层溶胶-凝胶悬浮体(例如ZrO2)或金刚石状的涂层,这样它们便可用作一种微米级或具有超细过滤作用的无机薄膜过滤网,不管是过滤切向流(横向流)或者交叉(“死端”)流都可用。
如果采用耐高温的金属纤维例如铁铬合金纤维,那么按本发明烧结的层压件也可作成平面的或管状的隔膜用在例如表面辐射燃烧器,或者用在例如回收来自柴油机废气中的烟尘粒子的过滤网。
制作层压件的纤维可在烧结前或者烧结后涂上一层例如催化性的活性物质,使这种层压件用作一种催化剂。为了容易去除柴油机废气中的烟尘粒子,最好选用在纤维上涂有含氧化催化剂的层压件,在低温下,烟尘粒子可被捕获或吸引在柴油机废气过滤网上。本发明的含有镍或镍合金纤维的层压件也可用作电极。
根据本发明可设计出常用的过滤系统,在该系统中将一个或多个本发明的层压件按平面状或管状组合设置,它们可以同其他的过滤介质结合使用,也可以单独使用。
权利要求
1.一种多孔的层压件(1),含有一个非编织的金属纤维(5)的网(3),该金属纤维(5)在压力下互相烧结并连接到一种金属丝交织的网(2)上,其特征在于,在上述金属丝网的接点区(4)内,层压件薄片的孔隙率最大为上述接点间网眼中央区(6)的孔隙率的40%。
2.根据权利要求1的多孔层压件,其特征在于,所述的孔隙率最大为所述网眼中央区的孔隙率的25%。
3.根据权利要求1的多孔层压件,其特征在于,所述的孔隙率比值小于15%。
4.根据权利要求1的多孔层压件,其特征在于,上述纤维(5)的表面是不平的,带有尖锐轮廓的凹凸不平处或条纹(10)。
5.根据权利要求1的多孔层压件,其特征在于,在丝网接点区(4)中的纤维的横截面稍稍被压扁。
6.根据权利要求1的多孔层压件,其特征在于,上述纤维的横截面积为3×10-6~1.8×10-2毫米2。
7.根据权利要求6的多孔层压件,其特征在于,上述的纤维横截面积为1.2×10-5~3×10-3毫米2。
8.根据权利要求7的多孔层压件,其特征在于,上述的纤维横截面积为5×10-5~7.5×10-4毫米2。
9.根据权利要求1的多孔层压件,其特征在于,在上述结点区(4)内的金属网丝在其背离纤维网的外侧有一个压平区(8)。
10.根据权利要求1的多孔层压件,其特征在于,上述金属丝网(2)的丝具有非再结晶的组织。
11.根据权利要求1的多孔层压件,其特征在于,它可用作一种过滤介质。
12.制造按权利要求1的多孔层压件的方法,其特征在于,将金属丝网(2)与置于它上面的金属纤维网(11)一起连续地推进到转动着的压辊(14,15)之间;该两压辊具有不同的电势,故有电流流过与压辊接触区(16)中层压件的横截面,从而使纤维(5)在它们的相互接触点处烧结在一起,并烧结到金属丝网(2)上。
全文摘要
一种多孔的层压件(1)含有一种金属丝交织的网(2),该网与一种在压力下互相烧结在一起的金属纤维(5)的非编织网(3)相连接。所述层压件在其金属丝网接点区(4)的薄片孔隙率最大为上述接点间网眼中央区(6)的孔隙率的40%。本发明还提供了制造上述层压件的方法。
文档编号B22F3/00GK1089548SQ9311283
公开日1994年7月20日 申请日期1993年12月17日 优先权日1992年12月18日
发明者约翰·赛伦斯, 罗格·德·布鲁因, 罗尼·洛斯费尔德 申请人:贝克特股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1