酸浓度测定和自动控制的方法和装置的制作方法

文档序号:3397817阅读:511来源:国知局
专利名称:酸浓度测定和自动控制的方法和装置的制作方法
技术领域
本发明涉及能够在足够短的测定间隔内,测定在钢材等的连续酸洗设备的酸洗槽中容纳的酸洗液酸浓度用的酸浓度测定装置和酸浓度测定方法,以及使用这种酸浓度测定装置,对酸洗槽中容纳酸洗液的酸洗液的酸浓度进行自动控制的酸浓度自动控制装置,例如适于使容纳在下游侧酸洗槽中的酸洗液,依次溢流流入上游侧相邻设置的酸洗槽中的连续式酸洗设备用的酸浓度自动控制装置和酸浓度自动控制方法。
背景技术
酸洗是指,将例如冷轧钢板、作为冷轧钢板的轧制原料使用的热轧钢板或最终成品热轧钢板等所谓处理钢板,浸渍在盐酸和硫酸等酸洗液之中,或者向表面喷酸洗液而除去处理钢板表面上氧化铁皮的一种处理。这种酸洗,例如是使处理钢板沿板通过方向并排排列成数排,使之连续通过带容纳酸洗液的酸洗槽的连续式酸洗设备。使用这种连续式设备酸洗时,各酸洗槽,尤其是最终酸洗槽中的酸浓度,对氧化铁皮除去效果影响很大。因此,用这种酸洗设备进行酸洗,要求准确控制酸浓度。
带钢的连续酸洗设备中,过去用台式测定装置测定酸洗槽容纳酸洗液的酸浓度,根据这种测定结果对酸洗槽中手工供给酸洗液,或者将这种台式测定装置设置在连续式酸洗设备的酸洗槽上自动测定酸浓度,根据测定结果自动控制对酸洗槽的供酸量,以此方式对酸洗槽中容纳酸洗液酸浓度的酸洗液进行酸浓度测定和酸液供给。
但是,手工法对酸洗槽供给酸液时,酸洗槽中酸洗液的酸浓度不能准确地对应变化。因此,酸洗液的酸浓度容易有很大波动,而且为确保安全而容易使酸液供给量过剩。所以以手工方式对酸洗槽供酸液,酸液单耗大。
用设在酸洗槽上的台式测定装置对酸洗槽中酸洗液的酸浓度进行自动测定,采用滴定分析仪。用这种滴定分析仪测定时,依次向测定池中通入样品液、试剂和洗涤液。因此,测定池中样品液的流动呈间歇式,滞留的样品液因在配管内固化而会将配管堵塞,测定开始后短时间内就不再能继续测定。
而且用这种滴定式分析仪测定时,为配送微量样品液,会使配管系统中微细的管路堵塞。若设置防止堵塞用的过滤装置,则系统将成为带有切换机构的复杂配管系统。因此,这种切换机构切换次数的增加,能诱发配管的堵塞。
另外,滴定分析仪价格高。为此,在样品液有多种的情况下,是将各取样配管连接到一台滴定分析仪上,通过切换各取样配管而进行测定的。因此,这种配管切换导致配管频繁发生堵塞。
此外,使用滴定式分析仪测定时,从样品注入至数据输出的一次取样大约需要15分钟。为此,在进行多次取样的情况下,各数据的输出间隔每次至少也要15分钟,时间相当长。因此,连续酸洗设备的酸浓度控制系统中使用滴定式分析仪,事实上不可能在足够短的测定间隔内输出酸洗液酸浓度的测定值。
因此用滴定分析仪测定酸浓度,药液反应时间长,而且前处理装置中洗涤所需的切换时间和取样时间也长。所以测定时间比取样时间滞后是不可避免的。此外用滴定分析仪测定酸浓度时,数据是以相当长时间间隔断续式输出的。控制的应答性极低。所以用滴定分析仪很难高精度控制酸洗液的酸浓度。
综上所述,对酸洗槽中容纳的酸洗液酸浓度的测定需要很长时间。特别是对隔板分隔各酸洗槽,即容纳在下游侧酸洗槽中的酸洗液依次向上游侧酸洗槽溢流,同时向最终酸洗槽供给酸液类型的连续酸洗设备而言,通常只通过测定容纳在最终酸洗槽中酸洗液的酸浓度来确定酸液供给量,根据容纳在最终酸洗槽中的酸洗液的酸浓度调节酸液供给量。
但是在这种类型的连续酸洗设备中,酸洗液与带钢氧化铁皮层之间的有效反应,实际上发生在上游侧酸洗槽内而不是最终酸洗槽中。因此,当容纳在上游侧酸洗槽中酸洗液的酸浓度波动比最终酸洗槽中大的时,钢带上将会残留氧化铁皮。
带钢一旦残留氧化铁皮,就应将流水线速度减慢,因而需要使各酸洗槽中酸洗液的酸浓度稳定。为了防止残留氧化铁皮,还必须比平时更严格管理容各酸洗槽中酸洗液的酸浓度。因此,例如采用实时测量酸浓度的方法即使能控制酸液的供给量,也不可避免地使酸单耗即成本上升。
因此,过去的各种提案都以高应答性迅速控制酸洗液的酸浓度,以此弥补不能在酸洗槽中酸洗液处于流动的状态下连续测定酸浓度的缺点。
例如,特公昭57-2275号公报中公开了一种改善有关酸洗液酸浓度控制应答性的发明,其中对酸洗液的酸浓度作反馈控制后,增益(精度)增大会发生饱和(hatching),而增益减小会使检测器的精度降低不能使用,为此,用基于液温、酸浓度、酸反应时间和反应表面积之间关系式的前馈控制代替该反馈控制。
在特开平6-126322号公报中公开了一种控制各循环罐中容纳的酸洗液中各酸浓度的发明,其中在喷淋酸洗设备中,调整最上游循环罐中酸洗液的酸浓度,同时将与此时投入酸量相应数量的酸液供入一个下游循环罐中,依次对下游循环罐进行这种酸浓度调整和酸液供给。
特开平9-125270号公报中公开的发明,用配管连接循环罐,使酸洗液在酸洗槽中循环,从这种配管的一部分取出酸洗液,用酸浓度分析仪间歇测定取出酸洗液的酸浓度,同时测定容纳在循环罐中酸洗液的液面水平,当这些测定值超出目标值时进行排酸、给酸和给水。
特开平10-147895号公报中公开了一种酸洗槽中酸洗液的酸浓度的控制方法,该方法采用一种连续酸洗设备,对各酸洗槽均独立设置酸洗液循环装置,而且相邻酸洗槽间的酸洗液不伴随溢流。
特开平7-54175号公报中公开的控制方法,采用连续式酸洗设备,从酸洗前后处理钢板厚度差求出酸洗减量,根据酸洗减量控制酸供给量和酸浓度。
在特公昭57-2275号公报公开的发明中,作为必要条件的酸浓度测定并不是在酸洗液连续流动的条件下进行的。因此该发明不能高精度控制酸浓度。而且实施该发明时,一旦酸浓度测定时间加长就会使取样配管发生堵塞,降低测定装置的开工率。
按照特开平6-126322号公报中发明连续控制酸浓度时,必须在足够短的测定间隔内测定最终循环罐中酸洗液的酸浓度。但是,如上所述,在足够短的测定间隔内测定酸洗液的酸浓度是不可能的。因此该发明不能以高精度控制酸洗液的酸浓度。
此外,特开平9-125270号公报中发明所采用的酸浓度分析仪,在酸洗液返回配管分叉处设置的支管用开关阀连接。因此可知,这种酸浓度分析仪与上述的滴定式分析仪属于同类。所以该发明也不能在足够短的测定间隔内测定酸洗液的酸浓度。由于此原因,该发明难于高精度地控制酸洗液的酸浓度。此外该发明若给水会使废酸酸浓度降低,使回收废酸时酸的单耗增大。
特开平10-147895号公报公开的连续酸洗设备,能独立控制各酸洗槽中容纳的各酸洗液酸浓度,所以高精度控制酸洗液的酸浓度称为可能。但是,此提案中的这种控制不能对设备不加改造地用在发生相邻酸洗槽之间酸洗液溢流型的连续式酸洗设备上。也就是说,要将特开平10-147895号公报公开的方法,用于相邻的酸洗槽之间酸洗液溢流类型的连续式酸洗设备上,必须在每个酸洗槽上各设置酸液的循环罐、循环泵、废酸和给酸配管等。因此,需要相当数额的设备投资和设备设置空间,实际上极难实施该发明。
此外,酸洗时钢板的尺寸损失和钢板厚度也会波动,钢板厚度例如因热轧时材料缠卷温度不同而变化。因此特开平7-5417号公报中的发明,酸洗液中酸浓度的变化量和酸洗损失量不一定相等。所以仅由酸洗液中酸浓度的变化量和酸洗损失量间出现的偏差,就足以降低酸洗液中酸浓度的控制精度。
综上所述,已有技术无论如何都存在一个共同的致命缺点,即不能在足够短的测定间隔内测定酸洗槽中容纳酸洗液的酸浓度。因此,不仅是手工控制酸液供给量,而且即使在自动控制场合下,酸洗液酸浓度的控制都存在应答慢和精度低的问题。
第5175502号美国专利记载的发明,包括用水稀释从酸洗槽中取出的酸洗液以防止酸洗液堵塞,并根据稀释后酸洗液的密度、导电率和温度测定酸洗液中酸浓度。但是此发明因用水稀释酸洗液,因而使测定后的酸洗液成为废液。因此该发明的测定成本高。
发明的公开本发明目的在于提供一种能够在足够短的测定间隔内,测定酸洗槽中酸洗液酸浓度的酸浓度测定装置和酸浓度测定方法,以及使用这种测定装置,能在足够短的测定间隔内以高精度自动控制构成连续式酸洗设备的各酸洗槽中酸洗液酸浓度的酸浓度自动控制装置和酸浓度自动控制方法。
具体讲,本发明目的在于提供一种酸浓度测定装置和酸浓度测定方法,能在足够短的测定间隔内连续测定酸洗槽中酸洗液样品液,缩短非测定时间,同时还能实际上连续准确测定酸洗液酸浓度的波动和偏析,而且酸洗液取样方法简单、维护性能优良,以及使用这种酸浓度测定装置,实际上能连续而高精度地自动控制构成连续式酸洗设备的各酸洗槽中容纳的各酸洗液酸浓度的酸浓度自动控制装置和酸浓度自动控制方法。
更具体讲,本发明目的在于提供一种酸浓度自动控制装置和酸浓度自动控制方法,其中使用上述酸浓度测定装置,能在足够短的测定间隔内,对下游侧酸洗槽中酸洗液依次溢流流入上游测相邻酸洗槽中酸洗液的酸浓度进行测定,并将此测定结果反馈到酸液供给量,利用这种方法正确地保证各酸洗槽中酸洗液的酸浓度,同时还能够改善酸洗液的单耗。
本发明人等为此目的进行了各种研究。其中着眼于使酸洗槽中容纳的酸洗液连续流动,现场测定连续流动状态下这种酸洗液的酸浓度。过去认为,即使以这种方式使酸洗液连续流动,也必然产生流速低的部分,酸洗液在这种流速低部分内短时间内堵塞。因此,迄今为止尚未有人尝试对这种方式连续流动的酸洗液中酸浓度进行现场测定。
本发明人等研究结果发现,在酸洗液流通通路内设置对连续流动酸洗液中酸浓度以外的特性数值进行连续测定的测定装置,根据测定装置输出的测定数据进行计算,这种方法不仅事实上能消除酸洗液堵塞现象,而且还能在充分短测定间隔内实际上连续而准确地求出酸洗槽中容纳的酸洗液的酸浓度。
而且本发明人等还发现,根据这样求出的酸浓度计算值,通过对被供酸液酸洗槽中酸洗液的酸浓度进行反馈控制,或者组合进行反馈控制和前馈控制,能迅速而准确地与不断变化的酸浓度互相对应,因而能高精度地控制酸洗槽中容纳酸洗液的酸浓度。
本发明人等还发现,基于被供酸液酸洗槽中和被供酸液酸洗槽之外至少一个酸洗槽中酸洗液的各计算值,对被供酸液酸洗槽中的酸浓度进行反馈控制,即使是下游侧酸洗槽中酸洗液依次溢流流入上游测相邻酸洗槽中类型的连续酸洗设备,也能高精度地控制被供酸液酸洗槽中酸洗液的酸浓度。
本发明人等基于这些发现所做的反复研究结果,从而完成了本发明。
作为本发明的要点是酸浓度测定装置,其特征在于其中组合有与酸洗槽连接的本体,安置在从所说的酸洗槽中取出的酸洗液的流路的一部分上,测定流过所说本体内部的上述酸洗液密度用的密度计,测定流路或酸洗槽中酸洗液温度用的温度计,测定流路或酸洗槽中酸洗液电导率用的电导率计,以及根据密度计、温度计和电导率计各自测定结果计算流过所说的流路部分的酸洗液酸浓度的计算装置。以下将其称为“第一发明”。
第一发明中,温度计和/或电导率计最好设置在所说的本体上。
第一发明的这种酸浓度测定装置中,所说的密度计最好是至少有两个检出部分的压差传感式密度计。这种情况下,为了保持所需的测定精度,应当将两个检出部分相对于本体中流路形成方向设置为至少相距500毫米。
第一发明的这种酸浓度测定装置中,温度计和电导率计都应当设置在本体中流路的出口侧,以保持所需的测定精度。
第一发明的这些酸浓度测定装置中,为防止酸洗液堵塞现象发生,应当使本体中流路尽可能呈直线状,杜绝部分流速低的部分出现,或者在流路中流速低处酸洗液容易堵塞的部分事先设置抑制酸洗液滞留引起堵塞的堵塞防止机构。
从另一观点来看,本发明是一种酸浓度测定方法,其特征在于在与酸洗槽连接并在从酸洗槽中取出的酸洗液的流路的部分上设置有酸浓度测定装置本体的内部,对连续流过的上述酸洗液的密度进行测定,同时测定流路或酸洗槽中酸洗液的温度和电导率,根据密度、温度和电导率各自测定结果计算流过一部分流路的酸洗液中的酸浓度。以下将其称为“第二发明”。
从另一角度来看,本发明是一种酸浓度自动控制装置,其特征在于其中组合有在构成连续酸洗设备的多个酸洗槽中,在供酸液的酸洗槽中设置第一发明的酸浓度测定装置,以及根据此酸浓度测定装置得到酸浓度的计算值,调节被供酸液酸洗槽中酸洗液的酸浓度的反馈控制手段。以下称为“第三发明”。
从另一角度来看,本发明的另一种酸浓度自动控制装置,其特征在于其中组合有在构成连续酸洗设备的多个酸洗槽中,在供酸液酸洗槽和供酸液酸洗槽之外至少一个酸洗槽上设置的第一发明的酸浓度测定装置,以及根据多个酸浓度测定装置分别得到酸浓度的各计算值,调节容纳在被供酸液酸洗槽中酸洗液酸浓度用的反馈控制手段。以下称为“第四发明”。
上述第三发明或第四发明的酸浓度自动控制装置,优选包括前馈控制手段,该手段根据酸浓度测定装置得到的酸浓度计算值,调整被供酸液酸洗槽中酸洗液的酸浓度,目的在于进一步提高控制的应答性。以下称为“第五发明”。
作为第一~第五发明的这些酸浓度测定装置、酸浓度测定方法或酸浓度自动控制装置控制对象的酸洗槽,不仅可以用浸渍式,而且还可以用喷雾式酸洗槽。
在第三~第五发明的酸浓度测定装置中,举例说明的被供酸液酸洗槽,是最终酸洗槽。
采用第三~第五发明的酸浓度测定装置的连续酸洗设备,举例说明的是下游侧酸洗槽中的酸洗液依次溢流流入上游侧相邻酸洗槽的溢流型连续酸洗设备。
从其它观点来看,本发明是一种酸浓度自动控制方法,其特征在于在构成连续酸洗设备的多个酸洗槽中,至少在被供酸液的酸洗槽中设置第一发明的酸浓度测定装置,根据此酸浓度测定装置得到的计算值,进行反馈控制或反馈控制和前馈控制的组合控制,用这种方法调整被供酸液酸洗槽中酸洗液的酸浓度。以下称为“第六发明”。
第一发明的酸浓度测定装置或第二发明的酸浓度测定方法,可以在足够短的测定间隔内测定酸洗液的密度、温度和电导率,这种方法能够在足够短的测定间隔内,实际上连续地长时间测定酸洗液的酸浓度。而且酸洗液流过通路内的结构是酸洗液不会堵塞的结构,所以维护性能也好。因此可以用本发明的酸浓度测定装置,长时间地进行测定。
采用这种酸浓度测定装置的、属于第三~第五发明的酸浓度自动控制装置或属于第六发明的酸浓度自动控制方法,能够在高精度下稳定控制被供酸液酸洗槽中酸洗液的酸浓度。这种方法能够改善酸的单耗。
尤其是第五发明的酸浓度自动控制装置,以组合使用本发明第一发明的酸浓度测定装置连续测定酸浓度与酸浓度的反馈控制为基础,进而叠加酸浓度的前馈控制。因此按照第五发明的酸浓度自动控制装置,对酸洗槽容纳酸洗液的酸浓度控制精度和应答性都能得到显著提高。
不仅如此,第三~第五发明的酸浓度自动控制装置,使用第一发明的酸浓度测定装置,在足够短的测定间隔内,对下游侧酸洗槽中的酸洗液依次溢流流入上游侧相邻酸洗槽中类型的连续酸洗液设备的酸洗槽中各酸洗液的酸浓度进行测定,将此测定结果反馈到酸液供给量上。因此,在确保各酸洗槽中各酸洗液的酸浓度适当的同时,还能降低酸洗液的单耗。
附图的简要说明附

图1是显示属于第一种实施方式的酸浓度连续测定装置内部结构的示意图。
附图2是显示密度计设置部位附近结构的断面放大图。
附图3是在连续酸洗设备中使用第一种实施方式的酸浓度自动控制装置时,一种控制系统实例的示意说明图。
附图4是在本发明酸浓度自动控制装置中使用的最终酸洗槽结构的示意说明图。
附图5(a)和5(b)是分别表示盐酸浓度和氯化铁浓度的调整值B1、B2与其计算值C1、C2之间关系的工作曲线的曲线图。
附图6是表示对使用密度计、温度计和电导计得到的测定值进行处理情况的示意说明图。
附图7(a)是使容纳在下游侧酸洗槽中的酸洗液依次溢流流入上游侧相邻酸洗槽中类型连续酸洗设备的说明图;附图7(b)是这种连续酸洗设备中使用第二种实施方式酸浓度自动控制装置情况的示意说明图。
附图8是表示确定DDC装置中酸液供给量演算过程的流程图。
附图9是表示属于第一发明的第三种实施方式酸浓度连续测定装置内部结构的说明图。
附图10(a)、附图10(b)是表示本实施方式和以往例中最终酸洗槽内酸浓度D的经时变化对比曲线图。
附图11是表示本实施方式和以往例中各自酸单耗E的曲线图。
附图12是表示实施方式2中测定结果的曲线图;附图12(a)表示手工控制第五槽21e中酸浓度F的情况,附图12(b)表示根据第五槽21e中酸浓度的测定值进行反馈控制的情况,而且附图12(c)表示根据第五槽21e第四槽21d中各自酸浓度的测定值进行反馈控制的情况。
以上各图中,符号1表示酸浓度连续测定装置,符号2表示循环流通通路,符号3表示酸浓度连续测定装置本体,符号4表示密度计,符号4-1和4-2表示检出部分,符号5表示温度计,符号6表示电导率计,符号11表示酸洗槽,符号13表示泵,符号14表示计算装置。
发明的详细说明[第一种实施方式]以下以使用盐酸作酸洗液,同时向最终酸洗槽供给酸液的情况为例,就属于第一~第三发明以及第五~第六发明的酸浓度测定装置、酸浓度测定方法、酸浓度自动控制装置和酸浓度自动控制方法的一种实施方式进行详细说明。以下说明中,属于第一~第三发明的酸浓度测定装置和酸浓度测定方法,分别以实际上连续测定酸浓度的酸浓度连续测定装置和酸浓度连续测定方法的情况为例。(酸浓度连续测定装置)首先说明属于第一发明的本实施方式中酸浓度连续测定装置。附图1是表示本实施方式中酸浓度连续测定装置1内部结构的说明图。附图1中,虚线箭头表示酸洗液的流动方向。而附图2是表示设置密度计4附近结构的断面图。
如图1所示,这种酸浓度连续测定装置1具有酸浓度连续测定装置的筒状本体3,本体3中内藏通过泵13从酸洗槽11中输送的酸洗液连续向一个方向流动的循环通路2的一部分通路,实际上连续测定流经为流通通路2一部分的酸浓度连续测定装置本体3内部的密度计4,以及温度计5和电导率计6。
本实施方式中的酸浓度连续测定装置本体3,是筒状体。酸浓度连续测定装置本体3,只要是使作为样品液的酸洗液从酸洗槽11连续流动的结构即可,但是并不限于特定的结构上。
酸浓度连续测定装置本体3用材料,可以是具有耐酸性的不被酸洗液腐蚀的材料,本实施方式中是用聚丙烯材料制成的。而且在酸浓度连续测定装置本体3内部形成的循环流路2的一部分通路,弯头等降低流速的部分尽量少,应当呈直线状。这样,在酸浓度连续测定装置本体3的内部,可以最大限度地抑制因酸洗液流速低造成的堵塞现象。本实施方式中,循环流路2是使从酸洗槽流出的酸洗液直接流动的,对酸洗液不进行稀释。
此外,为了保持密度计4、温度计5和电导率计6各自测定精度,流经循环通路2一部分通路酸洗液的流速,应当处于2米/秒以下。本实施方式中,酸洗液的流速设定为1米/秒。
本实施方式中,密度计4采用具有两个检出器4-1和4-2的已知品压差传感式密度计。两个检出器4-1和4-2,应当设置在酸浓度连续测定装置本体3纵向近中央部位的体部,使之与循环通路2一部分通路形成方向相距的d1距离至少为500毫米,以便确保所需的测定精度。
本实施方式中,温度计5用公知的白金电阻式温度计。而且,电导率计6采用公知的电磁感应式电导率计。温度计5和电导率计6均设置在酸浓度连续测定装置本体3的端部,以便能够在循环通路2一部分通路的出口侧进行测定。
本实施方式中,温度计5和电导率计6均设置在酸浓度连续测定装置本体上。这是因为将温度计5和电导率计6均设置在密度计附近,可以尽量减小测定误差的缘故。但是,温度计5和电导率计6不一定非设置在酸浓度连续测定装置本体3上不可。也可以将温度计5和电导率计6设置在酸洗槽11的内部,或者设置在酸洗槽11和酸浓度连续测定装置本体3之间的循环通路2等处,测定循环酸洗液的温度和电导率。这种情况下,预先求出密度计4附近的温度和电导率数值,与温度计5和电导率计6设置处测定数据之间的偏差,用这些偏差校正温度计5和电导率计6设置处的测定数据。利用这种方法,即使没有将温度计5和电导率计6设置在密度计附近,也能尽量减小测定误差。
这种酸浓度连续测定装置1,如后面的附图4所示,本实施方式中被设置在酸洗槽11外壁表面附近。因此,在酸浓度连续测定装置1中,借助于设置在酸洗槽11附近的泵13,能够使容纳在酸洗槽11中的酸洗液向一个方向流动。这种设置可以使酸浓度连续测定装置1,在足够短的测定间隔内对酸洗液的密度、温度和电导率均进行测定。
如图2所示,在酸浓度连续测定装置1中,必然形成向密度计4的两个检测器4-1和4-2通导酸洗液的分流部分8。此分流部分8虽然构成循环通路2的一部分,但是却是因酸洗液流速低而容易使氯化铁结晶产生堆积和堵塞的部分。因此在本实施方式中,在分流部分8处设置一个喷吹管作为堵塞防止机构。使酸洗液经喷吹管9向分流部分喷出。这种方法可以抑制分流部分8处酸洗液的滞留,并能可靠地防止酸洗液的堵塞现象出现。
鉴于此,在本实施方式的酸浓度连续测定装置1中,密度计4、温度计5和电导率计6,均可以使用具有良好使用效果的公知工业仪表。因此,本实施方式的酸浓度连续测定装置1,能把以极高精度准确测定酸洗液的密度、温度和电导率。
此外,本实施方式的酸浓度连续测定装置1,可以设置计算酸洗液酸浓度的计算装置14,根据密度计4测定的密度、温度计5测定的温度和电导率计6测定的电导率进行计算。利用这种计算装置14可以计算酸洗液的酸浓度。用计算装置14计算酸浓度的内容,参照附图3和4说明于后。
在本实施方式的酸浓度连续测定装置1中,酸浓度连续测定装置本体3,如上所述,是筒状单管式本体。因此可以产生以下记(ⅰ)~(ⅶ)中记载的各项效果。(ⅰ)使循环通路2的各部分形状尽可能呈直线状,并将喷吹管9设置在分流部分8处。因此可以防止循环通路2内,特别是密度计4、温度计5和电导率计6各自附近的酸洗液滞留,能够使酸洗液连续流动。(ⅱ)酸洗液在循环通路2内连续流动。因此可以防止循环通路2内酸洗液的偏析,能够在同一条件下测定分别采取的多种酸洗液。(ⅲ)在用泵13使酸洗液常规流动的同时,在尽可能减少流速低部分的循环通路2的分流部分8处设置喷吹管9。因此酸浓度连续测定装置本体3的维护性能和内部清洗性能均得以显著提高。所以能够在消除酸洗液堵塞的条件下进行测定。(ⅳ)由于对酸洗液的密度、温度和电导率的全部测定,而能测定酸洗液的酸浓度。利用这种方法,例如通过调整连续酸洗设备最终酸洗槽11d中酸浓度用的反馈控制或者反馈控制和前馈控制的组合,使这种酸浓度连续测定装置1实际上可以连续而高精度地自动控制容纳在最终酸洗槽11d中酸洗液的酸浓度。(ⅴ)酸浓度连续测定装置1,如图1所示,具有极为简单的外部形状。因此,在连续酸洗设备上设置的自由度高。(ⅵ)酸浓度连续测定装置1的内部,如图1所示,具有简单的内部结构。因此,从密度计4、温度计5和电导率计6测定精度的角度来看,流过循环通路2的酸洗液的流速,优选处于2米/秒以下,所以容易设定和管理。因此容易维持酸浓度连续测定装置1的测定精度。(ⅶ)由于酸浓度连续测定装置1结构简单,所以容易设置在酸洗槽11附近。因此,能够尽可能缩短构成使来自酸洗槽11的酸洗液分流的循环通路2的配管长度。这样一来,可以尽可能缩短酸洗液从酸洗槽11排除后到达酸浓度连续测定装置1测定前这段期间延时。因此,可以抑制酸浓度连续测定装置1测定精度的降低。(酸浓度自动控制装置)其次说明属于本发明3的本实施方式的酸浓度自动控制装置。附图3是显示将本实施方式的酸浓度自动控制装置10用于连续酸洗设备12情况下一种控制系统实例的说明图。而且附图4是表示采用本发明酸浓度自动控制装置10的最终酸洗槽11d的示意说明图。
在此连续酸洗设备12中,将酸洗槽连续设置成四槽。第四槽11d是最终酸洗槽。从第四槽11d开始,在上游侧依次设置第三槽11c、第二槽11b和第一槽11a。被酸洗处理的带钢(本实施方式中是热轧带钢),图中没有示出,是从图面的右侧向左侧输送。用这种方法,带钢依次被浸渍在各槽11a~11d中得到酸洗。在附图3和4的说明中,附属于第一槽11a的设备附以符号a,以下同样,第二槽11b、第三槽11c和第四槽11d分别附以符号b、c和d。
对于这种连续酸洗设备12的各酸洗槽11a~11d而言,为了在实际上分别连续测定各酸洗槽11a~11d中酸洗液的密度、温度和电导率,通过泵13a~13d连接到上述本实施方式的酸浓度连续测定装置1a~1d上。酸洗液经泵13a~13d从各酸洗槽11a~11d抽出,经过循环通路2a~2d输送。被输送的酸洗液,流经在酸浓度连续测定装置1a~1d内部形成的循环通路2a~2d的一部分后,返回到各酸洗槽11a~11d内。循环的酸洗液,流经酸浓度连续测定装置1a~1d内部形成的循环通路2a~2d的一部分期间,可以被密度计4a~4d、温度计5a~5d和电导率计6a~6d实际上分别连续测定密度、温度和电导率。
其中如图3和4所示,没有在循环通路2a~2d内设置防止堵塞用的过滤装置。在本实施方式的酸浓度连续测定装置中,即使在循环通路2a~2d内不设置防止堵塞用的过滤装置,也不会发生因酸洗液的滞留引起的堵塞现象。因此,一旦在循环通路2a~2d内设置防止堵塞用的过滤装置,反而却有这种过滤装置堵塞之虞。
酸浓度连续测定装置1a~1d与计算装置DDC(直接数字控制)装置14相连。这种DDC装置14发出的控制信号,以调整向最终酸洗槽11d内酸液(盐酸)供给量用阀装置15的控制信号被发送。
这样一来,本实施方式的酸浓度自动控制装置10仅对作为最终酸洗槽的第四槽11d进行酸液的供给,而对第一槽11a~11c并不供给酸液。即,从第四槽11d、第三槽11c和第二槽11b中的酸洗液,分别依次向第三槽11c、第二槽11b和第一槽11a中溢流。因此,容纳在最终酸洗槽第四槽11d之外各酸洗槽11a~11c中各自的酸洗液浓度,即使不断反复上升和下降,也能大体上保持一定。
在本实施方式的酸浓度自动控制装置10中,由酸浓度连续测定装置1a~1d在足够短的测定间隔内得到的密度、温度和电导率测定值,以信号数据的形式被输送到DDC装置14中。而DDC装置14在被送来的数据中根据最终酸洗槽11d的数据,如后述那样,计算容纳在最终酸洗槽11d中的酸浓度。
其中在本实施方式的酸浓度自动控制装置10中,从最终酸洗槽11d之外各酸洗槽11a~11c得到的数据,用于调整容纳在最终酸洗槽11d中酸洗液的酸浓度的前馈控制。关于这种前馈控制详见后述。
DDC装置14,将对容纳在最终酸洗槽11d内酸洗液经计算得到的酸浓度,与预先确定的酸浓度目标值进行比较。而且,DDC装置14尽可能使二者的偏差为零,计算出向最终酸洗槽11d中酸液的供给量。计算得到的酸液供给量,作为酸量供给的控制信号从DDC装置14被送到阀装置15的开关装置中。这样一来,阀装置15的开关就得到控制,从而你个变更最终酸洗槽11d中酸液的供给量。以这种方法,可以使容纳在最终酸洗槽11d中酸液的酸浓度得到反馈控制。
也就是说,附图4中本实施方式的酸浓度自动控制装置10,是由最终酸洗槽11d、对最终酸洗槽11d的酸液供给系统15和具有运算器(数据处理用计算机)14的酸浓度连续测定装置1d组成。而且容纳在最终酸洗槽11d内酸洗液的酸浓度,是由运算器14根据酸浓度连续测定装置1d测得的酸洗液的密度、温度和电导率数据计算得出的。其中,附图4中的废酸罐16,是处理第一酸洗槽11a溢流出来的废酸用的处理罐,与第一酸洗槽11a连接。
附图5(a)和5(b)分别是表示盐酸浓度、氯化铁浓度的调整值B1、B2与各自的计算值C1、C2之间关系的工作曲线图。利用事先制作工作曲线的方法,能够容易求出盐酸浓度、氯化铁浓度的调整值B1、B2。
附图6是表示用密度计4d、温度计5d和电导率计6d得到测定值处理情况的示意说明图。如图6所示,密度计4d、温度计5d和电导率计6d的测定结果,经附图4中的放大板(转换板)18转变成模拟信号后,输入运算器14之中。
由运算器14计算盐酸浓度和氯化铁浓度时的计算式,例如如下所示。
SA=S-a(T-25)…(1)DA=D+b(T-25)…(2)盐酸浓度=c(d{e·SA+f·SA(DA-1)}-g{h·SA+i·SA(DA-1))+j)+k … (3)氯化铁浓度=m(n·DA-SA)-p…(4)式中,S表示电导率实测值,T表示温度实测值,SA表示电导率温度校正值,DA表示密度实测值,符号a~p表示常数。
通过将这样在足够短的测定间隔内测定的密度、温度和电导率值代入上述关系式(1)~(4)中后,可以求出各酸洗槽11a~11d中的全部氯化铁浓度和盐酸浓度。在本实施方式中,由容纳在最终酸洗槽11d中酸洗液的酸浓度测定值,可以求出最终酸洗槽11d中的酸浓度。
于是为了使这样得到的盐酸浓度与作为目标盐酸浓度值之间的偏差为零,运算器14向盐酸供给系统15发出决定酸液供给量的控制信号。
本实施方式的酸浓度自动测定装置10中,以这种方式由容纳在最终酸洗槽11d中酸洗液的密度、温度和电导率的各实测值,求出酸洗液的酸浓度,应当使求出的酸浓度与目标值一致,反馈控制容纳在最终酸洗槽11d中酸洗液的酸浓度。
也就是说,本实施方式中酸浓度自动控制装置10的第一个特征在于,为了仅使第四槽11d的酸液供给量的最佳化,组合使用了酸浓度连续测定装置1d和向第四槽11d作酸液供给量的反馈控制。按照这种方法,采用酸浓度的测定值,即在测定间隔实际上为零的条件下连续测定酸浓度得到的数值,可以对最终酸洗槽11d中的酸液供给量作反馈控制。因此,按照本实施方式中酸浓度自动控制装置10,能够显著提高控制酸浓度的应答性。按照这种方法,为了能够减小酸浓度的波动量,可以减小酸浓度处于高浓度侧的波动,能够及时抑制酸单耗的上升。
此外,在本实施方式中酸浓度自动控制装置10中,为了进一步提高酸浓度控制的应答性,采用最终酸洗槽11d之外各酸洗槽11a~11c内分别容纳的酸洗液中酸浓度的测定数据,对容纳在最终酸洗槽11d中酸洗液的酸浓度进行前馈控制。以下就属于第五和第六发明的本实施方式的前馈控制进行说明。
在附图3中,通过在最终酸洗槽11d之外各酸洗槽11a~11c内分别设置酸浓度连续测定装置1a~1c,可以对各酸洗槽11a~11c分别容纳的酸洗液中酸浓度进行测定。利用酸浓度连续测定装置1a~1c的测定,与酸浓度连续测定装置1d的测定相同。
根据酸浓度连续测定装置1a~1c的测定结果,可以求出酸洗槽11a~11c中单位时间内酸消耗量的实际值。进而根据单位时间内各酸洗槽11a~11c中酸消耗量实际值,预测单位时间内最终酸洗槽11d中的酸消耗量。
也就是说,单位时间内各酸洗槽11a~11d中酸消耗量,随带钢的带出量而急剧波动。这种带钢的带出量,大体与被酸洗处理钢板的厚度、宽度和流水线速度成正比。因此,利用酸浓度连续测定装置1a~1c预先测定酸洗槽11a~11c中酸浓度的变化,可以高精度预测容纳在最终酸洗槽11d中酸洗液的酸浓度变化,即酸消耗量。其中也可以不必采用单位时间内酸洗槽11a~11c所有酸消耗量的实测值,例如采用与最终酸洗槽11d相邻的第三酸洗槽11c的实测值,省略对其它酸洗槽的测定。
也就是说附图4中,当进行上述反馈控制时,可以将板厚、板宽和流水线速度的实际数值,输入连续酸洗设备的工艺计算机20内。因此,应当事先将连续酸洗设备的工艺计算机20连接到DDC装置19上,使DDC装置19能够读取这些数据。
也就是说,将利用反馈控制法计算出的酸液供给量,由运算器14输入DDC装置19中。而且将连续酸洗设备的工艺计算机20输出的板厚、板宽和流水线速度的实际值,与运算器14计算出的酸洗槽11a~11c中酸浓度的变化都输入DDC装置19之中。进而由DDC装置19,根据分别容纳在酸洗槽11a~11c中酸洗液酸浓度的降低比例,预测最终酸洗槽11d中酸消耗量,利用前馈控制进一步校正和变更因反馈控制计算出的酸液供给量。
由板厚、板宽和流水线速度的实际值预测盐酸浓度的降低程度时,可以按以下方式进行。
在附图3和4中,可以用上述(3)式和(4)式求出酸洗槽11a~11c中的盐酸浓度。对于这样求出的盐酸浓度而言,可以采用附图5(a)和5(b)所示的、以板厚、板宽和流水线速度为函数求出的有关关系式(标准曲线),预测盐酸消耗量,即降低的程度。其中,前馈控制函数FF,可以用下式(5)求出。
FF=KF·W·f(d)·g(Ls)…(5)在(5)式中,符号KF、W、f(d)和g(Ls)分别表示浓度波动系数、板宽、板厚和流水线速度。
也就是说,按照第五和第六发明,通过反馈控制的加减,来抑制容纳在最终酸洗槽11d中酸洗液的酸浓度相对于目标值的偏差。此外,按照第五和第六发明,利用前馈控制的相乘和相加作用预测出的酸液供给量,来校正反馈控制法求出的酸液供给量。这样,按照第五和第六发明,能够以极高精度控制在最终酸洗槽中的盐酸供给量。
因此在第五和第六发明中,根据对酸洗槽11a~11c中酸消耗量的实际值,在改变最终酸洗槽11d中酸液供给量的前馈控制上,再叠加以反馈控制。这种方法即使对于仅用最终酸洗槽11d中酸浓度进行反馈控制时不能迅速应答,因带钢带出而是最终酸洗槽11d中酸浓度急剧降低的情况而言,也能在极少延时下以高精度控制酸浓度。
如上所述,按照第三发明的酸浓度自动控制装置10,将酸浓度连续测定装置1d与采用容纳在最终酸洗槽11d中酸洗液酸浓度的连续测定值的反馈手段加以组合。因此,可以实际上连续求出向作为被供酸液的酸洗槽的最终酸洗槽11d中的酸液供给量,因而能够迅速而高精度地将容纳在最终酸洗槽11d中酸洗液的酸浓度控制在目标值上。
此外,第五发明通过采用分别容纳在酸洗槽11a~11c中酸洗液酸浓度的变动值,叠加预测最终酸洗槽11d中酸消耗量的前馈控制,即使对于因带钢带出而使容纳在最终酸洗槽11d中酸洗液的酸浓度急剧降低也能迅速应答,可以求出酸液的适当供给量。
因此,在分别属于第三和第五发明的本实施方式中酸浓度自动控制装置10中,组合有(ⅰ)酸浓度连续测定装置1d,用于实际上连续测定构成连续酸洗设备12的最终酸洗槽11d中酸洗液的密度、温度和电导率,(ⅱ)反馈控制手段,该手段利用得到的测定值根据预先求出的这些数值之间的关系式,导出最终酸洗槽11d中盐酸浓度和氯化铁浓度,即铁离子浓度,输出其结果,对容纳在最终酸洗槽11d中酸洗液的盐酸浓度值和目标值进行比较,并改变酸液向最终酸洗槽11d中供给量以使其差异为零,和(ⅲ)前馈控制手段,利用板厚、板宽和流水线速度,以及酸洗槽11a~11c中盐酸和氯化铁各浓度的测定结果,求出酸洗槽11a~11c中酸消耗量,基于此改酸液向最终酸洗槽11d中供给量。因此,自动控制最终酸洗槽11d中酸液供给量时酸浓度控制的应答迟缓和精度低的问题都能得到解决。[第二种实施方式]以下说明属于第四发明的本实施方式的酸浓度自动控制装置。
附图7(a)是表示容纳在下游侧酸洗槽中酸洗液依次溢流流入上游侧相邻酸洗槽中类型连续酸洗设备21的说明图。附图7(b)是表示在连续酸洗设备21中使用本实施方式酸浓度自动控制装置22状况的说明图。
如图7(a)所示,此连续酸洗设备21中,将酸洗槽连续设置成五槽。此连续酸洗设备21中,第五槽21e是最终酸洗槽。从第五槽21e开始,在上游侧依次设置第四槽21d、第三槽21c、第二槽21b和第一槽21a。被酸洗处理的带钢23(本实施方式中是热轧带钢),从面向图面的右侧向左侧输送。带钢23依次被浸渍在槽21a~21e中而得到酸洗。在附图7(a)和7(b)的说明中,属于第一槽21a的设备附以符号a,以下同样,第二槽21b、第三槽21c、第四槽11d,以及第五槽(最终酸洗槽)21e分别附以符号b、c、d和e。
如图7(b)所示,对于这种连续酸洗设备21的各酸洗槽21a~21e而言,为了测定各酸洗槽21a~21E中酸洗液的密度、温度和电导率,分别通过五台没有示出的泵,连接到上述附图1和2所示的酸浓度连续测定装置1a~1e上。酸洗液经五台泵从各酸洗槽21a~21e抽出输送。被输送的酸洗液,经过循环通路2a~2e,流经在酸浓度连续测定装置1a~1e内部形成的循环通路2a~2e的一部分后,返回到各酸洗槽21a~21e内。酸洗液流经循环通路2a~2e一部分的期间,密度、温度和电导率实际上分别被密度计4a~4e、温度计5a~5e和电导率计6a~6e连续测定。
酸浓度连续测定装置1a~1e与作为计算装置的DDC(直接数字控制)装置24相连。这种DDC装置24发出的控制信号,以调整向最终酸洗槽21e内酸液(盐酸)供给量所用阀装置25的控制信号而发出。
这样一来,本实施方式的酸浓度自动控制装置22仅对作为最终酸洗槽的第五槽21e供酸,而对第一槽21a~第四槽21d并不供酸。在此连续酸洗设备21中,各槽中的酸洗液分别从第五槽21e溢流流入第四槽21d,从第四槽21d流入第三槽21c,从第三槽21c流入第二槽21b,从第二槽21b流入第一槽21a中。因此,容纳在酸浓度自动控制装置22中各酸洗槽21a~21d中的酸浓度,即使不断反复上升和下降,也能大体保持一定。
本实施方式的酸浓度自动控制装置22中,由酸浓度连续测定装置1a~1e得到的密度、温度和电导率测定值,以信号数据的形式被输送到DDC装置24中。而DDC装置24根据送来数据中最终酸洗槽21e和第四槽21d的数据,如后述那样,计算容纳在最终酸洗槽21e中的酸浓度。
DDC装置24,对计算出分别容纳在最终酸洗槽21e、第四槽21d中酸洗液的酸浓度,和预先确定的各目标值进行比较。于是,DDC装置24将计算出对最终酸洗槽21e的酸液供给量。
附图8是表示由DDC装置24确定酸液供给量的计算流程图。以下参照附图8的流程图,说明由DDC装置24确定酸液供给量的计算程序。
步骤(以下记作“S”)1启动DDC装置24,开始反馈控制。DDC装置24启动后进入S2。
在S2中,利用各酸浓度连续测定装置1a~1e,分别对各酸洗槽21a~21e中容纳的酸洗液的密度、温度和电导率进行测定。测定开始后进入S3。
在S3中,基于由各酸浓度连续测定装置1a~1e各自测得酸洗液的密度、温度和电导率数值,用上述公式(1)~(3)计算各酸洗槽21a~21e中各自容纳酸洗液的酸浓度。计算酸浓度后进入S4。
在S4中,对第一次浓度测定结果进行判定。也就是说,判断(1)作为最终酸洗槽第五槽21e容纳酸洗液的酸浓度计算值C5,是否小于第五槽21e容纳酸洗液的酸浓度管理下限值C5min,以及(2)第四槽21d容纳酸洗液的酸浓度计算值C4,是否小于第四槽21d容纳酸洗液的酸浓度管理下限值C4min。小于的情况下进入S5,不小于的情况下进入S6。
在S5中,将阀装置25对第五槽212e的酸液供给量,从W增加到W+δW(其中δW表示酸液供给量的校正值),进入S2。
在S6中,对第二次浓度测定结果进行判断。也就是说判断(1)作为最终酸洗槽第五槽21e容纳酸洗液的酸浓度计算值C5,是否大于第五槽21e容纳酸洗液的酸浓度管理上限值C5max,以及(2)第四槽21d容纳酸洗液的酸浓度计算值C4,是否大于第四槽21d容纳酸洗液的酸浓度管理下限值C4max。大于的情况下进入S7,不大于的情况下进入S8。
在S7中,将阀装置25对第五槽21e的酸液供给量,从W减少到W-δW,进入S2。
在S8中,可以以W形式确定阀装置25对第五槽21e的酸液供给量。此后,进入S1,以下重复S1~S8。
在DDC装置24确定酸液供给量的计算过程中,以此方式对分别由酸浓度连续测定装置1d、1e得到的酸浓度测定结果,与有关第四槽21d和第五槽21e预先设定的管理上限和管理下限进行比较。
当分别由酸浓度连续测定装置1d、1e得到的酸浓度测定结果,均低于管理下限的情况下,对预先设定的酸液供给量W补加校正值δW。反之,当测定结果均高于管理下上限时,扣除校正值δW。以这种方式可以改变阀装置25对第五槽21e的酸液供给量,使被供酸液的流量变化。
计算后的酸液供给量W,以给酸量控制信号形式由DDC装置24送到阀装置25的开关机构,控制阀装置25的开关。这种方法可以变更对最终酸洗槽21e的酸液供给量,进行反馈控制。因此,对于采用酸浓度测定值的第五槽21e和第四槽21d之外的第三槽21c~第一槽21a而言,分别容纳在其中的酸洗液酸浓度将稳定化,整体酸浓度也低。
因此按照本实施方式,可以将各酸洗槽21a~21e分别容纳酸洗液酸浓度的测定结果,反馈到酸液供给量的确定上。
此外,本实施方式中不仅对作为最终酸洗槽的第五槽21e,而且对与第五槽21e相邻的第四槽中容纳酸洗液的酸浓度也进行反馈控制。因此,与仅用第五槽21e容纳酸洗液的酸浓度测定结果的场合相比,能够更稳定地自动控制各酸洗槽21a~21e分别容纳的酸洗液的酸浓度。
本实施方式的酸浓度自动控制装置22,由分别容纳在最终酸洗槽第五槽21e和第四槽21d中各酸洗液的密度、温度和电导率测定结果求出酸浓度,使求出的酸浓度与目标值一致,以这种方式对酸液供给量进行反馈控制。
也就是说,本实施方式酸浓度自动控制装置22的特征在于,若按照第一实施方式,将仅对第五槽21e的酸液供给量进一步最佳化处理,与用酸浓度连续测定装置1e、1d分别对第五槽21e和第四槽21d进行酸浓度的连续测定,对第五槽21e的酸液供给量的反馈控制互相组合这一点。这种方法采用酸浓度测定值,即测定间隔接近零且实际上连续测得的测定值,可以对容纳在最终酸洗槽21e中酸洗液的酸浓度作反馈控制,能够显著提高酸浓度控制的应答性。而且用这种方法时,由于能够减小酸浓度的波动量,使酸浓度的高浓度侧波动小,所以可以最大限度抑制酸单耗的上升。
在附图8所示的确定酸液供给量的计算步骤S4和S6中,可以进一步细化判断第五槽21e和第四槽21d各自的浓度范围。
而且,如上述第五发明所示,确定酸液的供给量W时,还可以用管理酸洗流水线的工艺计算机等,根据今后待处理的带钢信息预先进行前馈控制,以此方式进一步酸液的供给量。
此外,在本实施方式中,也可以同样将第一槽21a~第二槽21c各自测定值的计算值加以组合后进行反馈控制。但是,当下游侧酸洗槽容纳的酸洗液依次溢流入上游侧相邻的酸洗槽中并向最终酸洗槽供酸的情况下,对于由酸液供给量作浓度控制而言,由于与第四槽21d相比,对第一槽21a~第二槽21c极为困难,所以对其反馈控制的意义不大。因此,对第一槽21a~第三槽21c可以不设酸浓度连续测定装置1a~1c。[第三种实施方式]附图9是表示属于第一发明的本实施方式的酸浓度连续测定装置内部结构的说明图。图中的虚线箭头表示酸洗液的流动方向。以下对本实施方式的说明中,只说明与第一种实施方式不同的部分,相同结构的部分用附以同一符号的方法省略重复说明。
本实施方式的酸浓度连续测定装置1-1,与第一种实施方式的酸浓度连续测定装置1之间的不同点,主要是在酸浓度连续测定装置本体3-1内部形成的一部分循环通路结构。
如图9所示,在本实施方式的酸浓度连续测定装置1-1的酸浓度连续测定装置本体3-1的内部,在与排出配管2’大体相同高度位置形成循环通路2-1的上部。这样一来,由泵13送来的酸洗液,如图中虚线箭头所示,在酸浓度连续测定装置本体3-1内部最上部附近一旦溢流,就会从排出配管2’流出。
因此,在本实施方式的酸浓度连续测定装置1-1中,能够容易地将流经循环通路2-1的酸洗液流速管理和设定在2米/秒以下,这是提高密度计4、温度计5和电导率计6的测定精度所需的。与第一种实施方式的酸浓度连续测定装置1-1相比,本实施方式的酸浓度连续测定装置1-1能进一步提高测定精度。
在本实施方式的酸浓度连续测定装置1-1中,对于分流部分8的设计而言,应当尽量减小分流部分8沿与酸洗液流动方向正交方向(附图9中左右方向)的突出量d2。这样可以抑制酸洗液在分流部分8处滞留,并可靠地防止酸洗液的堵塞。因此,在本实施方式中不设第一种实施方式中的那种喷吹管9。
以上对各实施方式的说明均是以盐酸作酸洗液为例加以说明的。但是本发明并不限于这样的实施方式。本发明也可以使用硫酸等其它酸。而且,本发明对于普通带钢之外的钢材,例如不锈钢带钢、合金钢带钢和各种金属合金带材来说也能适用。除了带钢以外,本发明也可以适用于例如线材等其它钢材。
以上各实施方式的说明,所说的被酸洗处理的带钢均以热轧带钢为例。但是本发明并不限于这些实施方式。对于冷轧带钢等而言,本发明也能适用。
以上各实施方式的说明,所说的通路均以在本发明的酸浓度连续测定装置和酸洗槽中循环的循环通路为例。但是本发明并不限于这些实施方式。本发明的通路,只要是使酸洗槽中容纳酸洗液的酸洗液连续流动的通路即可,其中也包括例如设置在酸洗槽和废酸罐和循环罐等贮酸罐之间的、使酸洗槽中容纳的酸洗液连续流入贮酸罐内的通路等。
此外,以上各实施方式的说明均以向最终酸洗槽供酸的情况为例。但是本发明并不限于这些实施方式。本发明也适用于向最终酸洗槽之外其它酸洗槽供酸等情况。
实施发明的最佳方式参照实施例对本发明作进一步详细说明。(实施例1)在附图3所示的连续酸洗设备12的各酸洗槽11a~11d上,设置有附图1所示的酸浓度连续测定装置1a~1d。而且用运算器14将酸浓度连续测定装置1a~1d输出的测定值转变成盐酸浓度和氯化铁浓度,同时用DDC装置19发出的信号对酸液(盐酸)的供给量进行反馈控制和前馈控制。以这种方式管理容纳在连续酸洗设备12的最终酸洗槽11d中酸洗液的酸浓度。
也就是说,把基于最终酸洗槽11d中酸洗液酸浓度的计算值反馈控制,与基于被酸洗带钢的板厚、板宽和流水线速度和分别容纳酸洗槽11a~11d中酸洗液酸浓度变化率的前馈控制组合起来,自动控制向最终酸洗槽11d中酸液的供给量。
其中如图1所示,即使在本例中,酸浓度连续测定装置1a~1d也可以内藏有市售的4a~4d、温度计5a~5d和电导率计6a~6d。利用它实际上连续测定了流经循环通路2a~2d的酸洗液的密度、温度和电导率。
本例中,分别利用附图5(a)和5(b)所示的盐酸浓度和氯化铁浓度的函数关系式(工作曲线),用运算器20计算各传感器的测定结果,连续输出。
而且如图4所示,将酸浓度连续测定装置1a~1d设置在酸洗槽11a~11d的侧壁附近。因此,用泵13a~13d驱使酸洗液沿一个方向以1米/秒流速连续流动,抑制了配管的堵塞。此外如图2所示,在密度计4a~4d的分流部分8a~8d处设置喷吹管9a~9d,定期洗涤容易堵塞的分流部分8a~8d。
另外如图4所示,在各酸洗槽11a~11d侧壁附近设置了酸浓度连续测定装置1a~1d,使酸洗液沿一个方向流动。这样防止了酸洗液在配管内的堵塞现象出现。而且考虑到洗涤性能和维护性能,使配管机构尽可能简单。本例中如图3和4所示,在各配管上没有设置防止堵塞用的过滤装置。
就采用酸浓度自动控制装置10的场合(本实施例)和手工供酸的场合(以往例),对比了最终酸洗槽11d中酸浓度的经时变化情况。本实施例和传统例的结果分别示于附图10(a)和附图10(b)之中。附图10(a)和附图10(b)中的三角符号表示对最终酸洗槽11d供酸的延时情况。
按照本实施例,能够根据实际上连续测定的酸浓度连续供酸并以模拟方式进行。因此,能够防止酸液的过量供给,而且还能完全防止因酸液供给不足出现的未处理现象。这种方法由于分别容纳在各酸洗槽中酸洗液的酸浓度D更接近于所需的设定值,所以能够及时抑制其波动。
在附图10(a)和附图10(b)的A点处,钢板通过速度由低到高上升。但是在本实施例中,由于同时进行了对最终酸洗槽11d的前馈控制,所以能及时抑制酸浓度D随钢板通过速度的上升而产生的急剧波动。
与此相反,在传统例中只能以大约15分钟一次的频率测定酸浓度D。因此控制滞后,酸液用量极大。而且对钢板通过速度上升时控制的应答性差,不能高精度地控制酸浓度D。
此外,传统例中由于酸浓度D的波动大,所以不得不以最小酸浓度D作为管理基准(附图10(a)和(b)中的虚线)。因此,结果酸液用量中无用的部分多。与此相比,按照本实施例由于能够减小酸浓度D的波动,所以酸液的用量能够大幅度减少。
附图11是表示本实施例和传统例中酸单耗E的曲线图。正如附图11所示的那样,与传统例相比,本实施例中酸的单耗E能够下降大约2.5单位(ΔE)(实施例2)如图7(a)所示,就下游侧酸洗槽容纳的酸洗液依次溢流流入相邻的上游侧酸洗槽的溢流型连续酸洗设备21,以及采用就附图7和8所示属于第四发明和第五发明的酸浓度自动控制装置22测定酸浓度并进行反馈控制的情况,和从酸洗槽取样用试剂以手工方式测定酸浓度后进行反馈控制的情况,测定了各酸洗槽中盐酸浓度F的变化。其中在测定各酸洗槽中盐酸浓度F时,使用了属于第一发明的酸浓度连续测定装置。
测定结果示于附图12之中。附图12(a)表示手工测定第五槽21e中酸浓度F的情况,附图12(b)表示根据第五槽21e中酸浓度F的连续测定值进行反馈控制的情况,而附图12(c)表示根据第五槽21e和第四槽21d中各自酸浓度F的连续测定值进行反馈控制的情况。
如图12(a)所示,若用手工方式测定酸浓度F,则各酸洗槽21a~21e中酸浓度F的波动大,难于进行一定管理。而且整体酸浓度F也增高。
如图12(b)所示,若根据第五槽21e中酸浓度F的连续测定值进行反馈控制,则由于对第五槽21e中酸浓度F进行管理,所以第五槽21e中酸浓度F稳定,而且全体的浓度也降低。但是第四槽21d以前各酸洗槽21c~21a中的酸浓度F依然有较大波动。
如图12(c)所示,一旦根据第五槽21e和第四槽21d中各自酸浓度F的连续测定值进行反馈控制,不仅第五槽21e和第四槽21d,就连其它酸洗槽21c~21a中的酸浓度F也将温度化,整体浓度也降低。
产业上利用的可能性按照属于第一发明的酸浓度测得装置或属于第二发明的酸浓度测定方法,可以实际上连续测定酸洗液的密度、温度和电导率,利用这种方法能够长时间测定酸浓度。而且由于采用酸洗液在酸洗液流经的通路内不堵塞的结构,所以维护性能也得到改善。因此,利用本发明的酸浓度测定装置,长时间连续测定称为可能。
而且按照使用这种酸浓度测定装置、属于第三发明~第五发明的酸浓度自动控制装置,能够以高精度稳定地测定容纳在被供酸液的酸洗槽中酸洗液的酸浓度。用这种方法能改善酸的单耗。
特别是按照属于第五发明的酸浓度自动控制装置,在酸浓度连续测定时并用反馈控制,以此为基础再进一步附加前馈控制。因此利用属于第五发明的酸浓度自动控制装置,能够显著提高控制精度和维护性能。
此外,按照属于第三~第五发明的酸浓度自动控制装置,利用属于第一发明的酸浓度测定装置,对下游侧酸洗槽中的酸洗液向上游侧相邻的酸洗槽中依次溢流型连续酸洗设备中酸洗槽内容纳的酸洗液酸浓度进行测定,将此测定结果反馈到酸液的供给量上。因此,不但能够保证各酸洗槽中分别容纳的酸洗液的酸浓度处于适当值,而且还能降低酸洗液的单耗。
权利要求
1.一种酸浓度测定装置,其特征在于其中组合有与酸洗槽连接并设在从所说的酸洗槽取出酸洗液的通路中一部分的本体,测定流经该本体内部的所说的酸洗液密度用的密度计,测定所说的通路或所说的酸洗槽中酸洗液温度用的温度计,测定所说的通路或所说的酸洗槽中酸洗液电导率用的电导率计,和根据所说的密度计、所说的温度计和所说的电导率计各自的测定结果,计算流经所说的通路中一部分的酸洗液的酸浓度用计算装置。
2.按照权利要求1所述的酸浓度测定装置,其中将所说的温度计和/或所说的电导率计设置在所说的的本体上。
3.一种酸浓度测定方法,其特征在于对于连续流过与酸洗槽连接并设置有从所说的酸洗槽取出酸洗液的通路中一部分的本体的所说的酸洗液密度进行测定,同时对所说的通路或所说的酸洗槽中的酸洗液的温度和电导率进行测定,根据所说的密度、所说的温度和所说的电导率各自的测定结果,计算流经所说的通路中一部分的酸洗液的酸浓度。
4.一种酸浓度自动控制装置,其特征在于其中组合有在构成连续酸洗设备的多个酸洗槽中,在被供酸液的酸洗槽上设置有按照权利要求1所述的酸浓度测定装置,和根据所说的酸浓度测定装置得到的酸浓度的计算值,对被供所说的酸液的酸洗槽中容纳的酸洗液的酸浓度进行调整的反馈控制手段。
5.一种酸浓度自动控制装置,其特征在于其中组合有在构成连续酸洗设备的数个酸洗槽中,在被供酸液的酸洗槽上和被供所说的酸液的酸洗槽之外至少一个酸洗槽上设置有按照权利要求1所述的酸浓度测定装置,和根据所说的多个酸浓度测定装置各自得到的酸浓度的计算值,对被供所说的酸液的酸洗槽中容纳的酸洗液的酸浓度进行调整的反馈控制手段。
6.按照权利要求4所述的酸浓度自动控制装置,其特征在于其中还有根据所说的酸浓度测定装置得到的酸浓度的计算值,对被供所说的酸液酸洗槽中容纳的酸洗液的所说的酸浓度进行调整用的前馈控制手段。
7.按照权利要求4所述的酸浓度自动控制装置,其中被供所说的酸液的酸洗槽是最终酸洗槽。
8.按照权利要求4所述的酸浓度自动控制装置,其中所说的连续酸洗设备,是下游侧酸洗槽中容纳的酸洗液依次溢流流入上游侧相邻酸洗槽内类型的连续酸洗设备。
9.一种酸浓度自动控制方法,其特征在于在构成连续酸洗设备的数个酸洗槽中至少被供酸液的酸洗槽上,设置权利要求1所述的酸浓度测定装置,根据所说的酸浓度测定装置得到的酸浓度计算值,进行反馈控制或进行反馈控制和前馈控制的组合控制,用这种方法调整被供所说的酸液的酸洗槽中容纳的酸洗液的酸浓度。
全文摘要
公开了一种酸浓度连续测定装置,其中组合有设有能使酸洗槽中容纳酸洗液的酸洗液连续沿一个方向通过通路的本体,设置在本体上并以实际上连续测定流经通路的酸洗液用的密度计、温度计和电导率计,以及根据这些测定结果计算酸洗液酸浓度用的计算装置。使用这种酸浓度连续测定装置,反馈控制构成连续酸洗设备的数个酸洗槽中最终酸洗槽内的盐酸浓度。
文档编号C23G1/02GK1280633SQ9881162
公开日2001年1月17日 申请日期1998年11月6日 优先权日1997年11月6日
发明者野中俊彦, 片冈武雄, 江崎员人 申请人:住友金属工业株式会社, 株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1