仿生骨替代物的制备方法及其用途的制作方法

文档序号:3433680阅读:247来源:国知局

专利名称::仿生骨替代物的制备方法及其用途的制作方法仿生骨替代物的制备方法及其用途本发明的目的是用于获得具有给定化学和物理性质的骨替代物的方法,所述给定化学和物理性质完全类似于天然骨组织的矿物部分。人骨的无机成分主要由钙、磷酸盐离子(形成磷灰石相的Ca2+、P04"、碳酸盐离子(C03"和少量的其它离子(特别是例如Mg"和Na+)构成。碳酸盐使得类骨组织更加"动态,,(即化学计量上不稳定),因此更容易被破骨细胞再吸收。镁含量进而有利于骨整体(osteointegration)的动力学,这可能是通过对成骨细胞的增加、并因此对能产生骨基质的蛋白质的分泌的促进作用。现代外科中最为广泛使用的类骨替代物之一是以合成羟基磷灰石(HA)为代表,其化学式在本发明上下文中表示为Ca1()(P04)6(OH)2。然而,这种合成羟基磷灰石并不是天然骨组织的完美仿生替代物。实际上,它并不具有与有机体(organism)原位生成的羟基磷灰石相同的结构和构象特征,因为胶原原纤维上的矿化具有相同羟基磷灰石在位置B上的同时、优先的部分碳酸盐化。正如所知,羟基磷灰石结构中的位置B对应于由磷酸根基团占据的位置。Ca10(P04)6(OH)2位置B位置A因此,位置B中的碳酸盐化涉及碳酸根基团取代部分磷酸根基团,从而促进形成相对于非碳酸盐化的羟基磷灰石更为仿生的材料。然而,甚至碳酸化的羟基磷灰石(为简单起见,下文称为碳酸盐-羟基磷灰石或CHA)也不具备作为天然骨组织矿物部分的完美仿生替代物的所有必要性能,因为其结构缺少或最终仅含有可忽略的、无论如何也不足必要量的Mg"离子。用于制备能够产生各种仿生度的骨替代物的化合物的方法是已知的。例如美国专利4,481,175描述了如何获得粉末状羟基磷灰石组合物,该组合物适用于通过湿法、干法和/或溶胶凝胶化学方法产生骨替代物。也可以由海洋珊瑚或具有CaC03基骨骼的腔肠动物,通过在大大超过水沸点的温度下并在大大高于大气压水平的压力下用合适的酸和/或盐溶液对它们进行处理来获得羟基磷灰石和碳酸盐-羟基磷灰石。在所述处理的过程中,上述珊瑚和腔肠动物与(NH4)2HP04溶液或与(NH4)2HP04在NH4F中的溶液(20ppm)接触;溶液pH值保持在8.5-9.0范围内(必要时,用NH40H调节)。上述混合物承受平均为0.1千巴-约5千巴的压力及相当高的温度(至多600'C);在以上条件下的处理时间的平均值在24-48小时之间变化,但也可延长至约两周,这取决于使用的温度和压力水平。所述处理之后,获得的样品在约80。C下干燥约30小时。其它磷酸钓基结构可通过用磷酸盐离子溶液(P04"处理海洋腔肠动物的含钓骨骼得以实现。例如,在磷酸盐溶液的沸腾温度及大气压力下进行的阴离子交换过程提供了方解石和羟基磷灰石的混合多孔复合物。在如上文所述的高的压力和温度条件下进行的相同过程仅导致多孔幾基磷灰石的形成。然而,上文提及的方法都不允许获得具有与人骨结构性质相似的仿生材料。因此,需要能够获得具有与人骨相似的孔隙率并且还含有必要量Mg"离子的仿生骨替代物。本发明的一个目的在于提供上文所强调的需求的适当解决。申请人:已经实现了这个和其它目的,这通过下面的详细描述将变得显而易见,申请人意外发现能够在基于羟基磷灰石(HA)或碳酸盐-幾基砩灰石(CHA)的多孔基质中通过用包含有效量Mg2+离子的盐水溶液处理所述基质使Mg"离子适当替代Ca"离子的方法来制备仿生人骨替代物。在一个优选的实施方案中,所述多孔基质是固体三维预成形的支架。本发明的一个目的是在上述多孔基质中用M^+离子替代Ca"离子的方法,如在所附的独立权利要求中所述。本发明的另一个目的是能够通过上述方法获得的多孔基质,如在所附独立权利要求中所述。本发明的又一个目的是能够通过上述方法获得的多孔基质在制备仿生骨替代物中的用途,如在所附独立权利要求中所述。在所附从属权利要求中概述了本发明实施方案的优选形式。附图显示了通过本发明方法实现的一些优选产品的形貌特征。图l显示了在根据本发明方法使用Mg^离子的盐水溶液处理之前的主要为CHA的支架样品的通过电子扫描显微镜(SEM)揭示的显微结构形貌。图2显示了根据本发明方法用Mg"的盐水溶液处理的主要为CHA支架的样品的通过电子扫描显微镜(SEM)揭示的显微结构形貌。图3显示了在根据本发明方法使用Mg^的盐水溶液处理之前的主要为HA的支架样品的通过电子扫描显微镜(SEM)揭示的显微结构形貌。图4显示了根据本发明方法使用0.2MMg"离子的盐水溶液处理的主要为HA的支架样品的通过电子扫描显微镜(SEM)揭示的显微结构形貌。根据本发明的方法是在主要为羟基磷灰石(HA)或碳酸盐-羟基磷灰石(CHA)的多孔基质中用Mg"离子替代Ca"离子的方法,包括至少一个如下阶段在约等于大气压力(随所处位置的海拔高度变化)或者在^1巴压力下和在〈或aOO'C温度下,使所述基质与包含有效量Mg"离子的盐水溶液进行接触。在优选的实施方案中,所述多孔基质是三维固体(solid)支架。在特别优选的实施方案中,所述多孔支架是具有确定孔隙率和结构的主要为化学计量羟基磷灰石(HA)或碳酸盐-羟基磷灰石(CHA)的预制合成结构。所述基质或所述支架的总孔隙率平均为50%-卯%(体积%,相对于基质总体积),且优选为75%-85%。所述基质或支架的孔隙范围,对于细孔磷灰石,平均为0-500微米(>95体积%);对于中孔磷灰石,为100-500微米(>80体积%);对于大孔磷灰石,为200-500微米(>80体积%)。在特别优选的实施方案中,孔隙率与人骨的孔隙率相似,这意味着平均为200-500微米(松质骨的总孔隙率,60-90体积%)。所述基质或支架中存在的碳酸盐量尽可能优选近似于人骨中的天然存在量。例如,对于支架总重量,碳酸盐的量平均为0.1%-12重量%,且优选约2%-约8重量%。为了举例说明且非限制的目的,用于本发明目的的特别优选的实施方案形式是EP1411035中描述的多孔支架,特别是依照实施例形式1-5中所述的制备方法而获得的多孔支架。优选地,用含MgCh作为M^+离子源的盐水溶液处理多孔支架。在特别优选的实施方案中,所述盐溶液是MgCl2水溶液。所述溶液中的Mg"离子浓度在0.1M-4M范围内;优选为0.2M-3M;且更优选为0.5M-2.5M。在特别优选的实施方案中,所述浓度是2M。多孔基质或三维支架与所述Mg"离子盐水溶液相互间的重量比为1/3000-1/50;所述比例优选约1/1000,且更优选约1/500。在特别优选的实施方案中,所述比率是约1/200。在>1巴-5巴,优选1.5巴-3.5巴,且更优选2巴的压力下进^f亍用Mg2+离子替代Ca2+离子的反应,温度在>100°。-150"的范围内,优选12(TC-140'C,且更优选130°C-138。C。在特别优选的实施方案中,温度是约134'C。优选地,在高压釜中进行使用所述Mg^离子水溶液的对所述多孔基质或支架的所述至少一个处理阶段,并持续需要的时间以获得期望程度的Mg"离子/Ca"离子替换。处理的持续时间取决于支架类型和使用的操作条件;平均的,10分钟-80分钟的时间是足够的;优选地,15分钟-60分钟;更优选地,20分钟-40分钟。在优选的实施方案中,时间是约20分钟。调节上述替代反应的条件使得替代C^+离子的M^+离子的量尽可能地近似于或者高于天然骨中的存在量(0.47重量%,相对于骨总重量)。通过本发明方法获得的最终产物是主要为镁-羟基磷灰石或镁-碳酸盐-羟基磷灰石的多孔基质,其Mg"离子量相对于基质重量为0.2%-1.5重量%,优选0.3%-1.0重量%,且更优选0.4%-0.7重量%。在特别优选的实施方案中,所述最终多孔基质是主要为具有上述M^+量的镁-羟基磷灰石或镁-碳酸盐-羟基磷灰石的固体多孔三维支架。令人意想不到的是,在总孔隙率和孔隙分布方面,主要为镁-羟基磷灰石或镁-碳酸盐-羟基磷灰石的最终产品已经显示出具有与相应源材料相同的孔隙特征。如附图所示,甚至初始合成支架孔隙的微观和宏观形貌也得以保留。因此作为本发明目的的该方法有利地允许获得具有完全合成性质并且主要为镁-羟基磷灰石(Mg-HA)或镁-碳酸盐-羟基磷灰石(Mg-CHA)的仿生骨替代物,其中初始合成支架孔隙的微观和宏观形貌得以保留。因此,本发明的又一个目的还在于通过本发明方法获得的主要为Mg-HA或Mg-CHA的固体多孔三维支架,其具有与初始支架相同的Mg2+离子含量和相同的孔隙率。已证实所述支架特别适用于制备仿生骨替代物。在特别优选的实施方案中,所述骨替代物的特征在于不但在B型碳酸盐化的程度方面即用适量Mg"离子部分替代Ca^离子方面而且在生产的材料的孔隙率方面,与人骨无机组成高度类似的化学组成。因此,所述骨替代物特点在于特别高的仿生程度。在优选的实施方案中,通过本发明方法可获得的骨替代物的化学式可表示为如下Ca10(x+z)NaxMgz(PO4)6-y(CO3)y(OH)2其中x-0隱0.6;优选0.1-0.5;更优选0.3;y=0-2;优选0.8-1.5;更优选1;z-0國1.5;优选0.1隱1;更优选0.5;其中Mg"量(以M^+的重量。/。表示,相对于支架重量)在0.2%-1.5%范围内,优选0.3%-1.0%,更优选0.4%-0.7%。在另一个优选的实施方案中,通过本发明方法可获得的骨替代物的化学式可表示为如下Ca10zMgz(PO4)6(OH)2其中z=0-1.5;优选0.1國1;更优选0.5;其中Mg"量(以Mg^的重量y。表示,相对于支架重量)在0.2%-1.5%范围内,优选0.3%-1.0%,更优选0.4%-0.7%。作为本发明目的的该方法已显示出具有大量优点。例如,通过从完全为合成来源的具有已知孔隙率和化学组成的结构开始,能够获得具有相对于初始人骨的仿生化学组成的骨替代物。此外,这有助于保护自然环境(不再需要使用珊瑚结构)。由于该方法在低温下进行并且持续有限量的时间,因此以低的能耗获得仿生骨替代物。预制支架中的Mg"/Ca"替代程度相对于通过由Mg-HA或Mg-CHA粉末开始制备骨替代物获得的Mg"/Ca"替代程度更为均匀。在这种情况下,所述粉末必须进行的以使其固结成多孔结构"吏用500。C-800。C的温度)的热处理引起Mg"离子从结构内部迁移到表面,由此获得具有不均匀镁含量的装置。特别是当对基于CHA的多孔结构进行操作时,这种负面效应更为显著。相反,如前所示,作为本发明目的的该方法不改变多孔支撑体的形貌特征,这意味着初始支架的微观和宏观孔隙并不发生改变。通过作为本发明目的的该方法可获得的骨替代物可用于制备能够在重建和再生外科(整形外科、牙科、神经外科等)的所有领域中再生和修复骨组织的装置。此外,可以使用所述产品本身或者将其与天然和/或合成来源的材料例如雄蕊细胞、血小板浓缩物、骨髄浓缩物、生长因子和能够实施其骨传导能力的其它活性成分结合使用。该产品还可以以各种形式进行使用,如小的预制块(bloc)、定制的形状和片,这取决于各种应用要求。下面的实验部分仅以非限制性的方式举例说明本发明的一些优选实施方案。实施例1在主要为碳酸盐化的羟基磷灰石的三维多孔支架中用Mg"离子部分替代Ca"离子。通过依照专利申请EP1411035A2实施例5中的实验过程制备3个在位置B处主要为碳酸盐-羟基磷灰石的合成骨替代物样品。将所述样品放入高压釜内的钢杯中,所述样品的特征在于中-大孔隙率为83体积%,且所述钢杯内注入有2MMgCh溶液。通过使用化合物MgC—6H2O(203.30g/摩尔)以所需浓度制备溶液。高压釜内的多孔样品与溶液的重量比约为0.5/100。一旦准备好包含溶液和多孔样品的高压釜,设置工艺参数如下压力为2巴且温度为134'C并持续20分钟的处理时间。在相同实验条件下,使用0.2MMgCl2溶液,对如上所述制备的另外三个样品重复相同实验。通过分析未处理的样品和使用本发明方法处理的样品,以比较的方式检验镁替代钙的量。将获得的数据与人骨来源的化学性质相联系。下表1汇报了通过ICP(感应耦合等离子体光镨)的样品化学分析而获得的处理样品相对于未处理样品的化学性质数据。表l<table>tableseeoriginaldocumentpage11</column></row><table>使用电子扫描显微镜(ESM)从形貌观点对用MgCl2处理之前和处理之后的相同样品进行分析(图l和2),同时通过EDS(能量色散镨)研究确定通过ESM分析的部分的化学组成的其它信息。EDS研究证实了处理的样品具有的以重量%计的Mg含量高于未处理样品(未处理样品为0.05-0.2重量%;用0.2MMgCh溶液处理的样品为0.78-0.98重量%;而用2MMgCl2溶液处理的样品为1.53-1.66重量%)。特别地,从EDS研究可以看出Mg含量在表面上稍微高于断面处(分别为0.98%和1.66%),或稍微高于材料中心的Mg含量(分别为0.78%和1.53%)。这种浓度的轻微差异是由于Mg"离子具有比Ca2+离子更小的尺寸,因此促使迁移到材料表面,并且由于这个原因发现在表面具有比断面上更高的浓度。然而,除这个微小的差异外,该研究证实总体上向羟基砩灰石结构中的Mg^离子引入在所分析样品各处基本上是均匀的。实施例2向基于合成羟基磷灰石的多孔支架的晶体结构中引入Mg"离子。通过依照专利申请EP1411035A2实施例4中的实验过程制备3个主要为羟基磷灰石的合成骨替代物样品。将所述样品放入高压釜内的钢杯中,所述样品的特征在于中孔隙率为约80体积%,而所述钢杯填充有2MMgCh溶液。通过使用化合物MgC1^6H2O(203.30g/摩尔)以所需浓度制备溶液。高压釜内的多孔样品与溶液的重量比约为0.5/100。一旦准备好含有溶液和多孔样品的高压釜,设置工艺参数如下压力为2巴且温度为134'C并持续20分钟的处理时间。通过分析未处理的样品和通过本发明方法处理的样品,以比较的方式检验替代的镁量。将获得的数据与人骨来源的化学性质相联系。下表2汇报了通过ICP(感应耦合等离子体光镨)的样品化学分析获得的处理样品相对于未处理样品的化学性质数据。表2<table>tableseeoriginaldocumentpage12</column></row><table>用电子扫描显微镜(ESM)从形貌观点对用MgCl2处理之前和处理之后的相同样品进行分析(图3和4),同时通过EDS(能量色散谱)研究确定通过ESM分析的部分的化学组成的其它信息。EDS研究证实了处理的样品具有的以重量y。计的Mg含量高于未处理样品(未处理样品为0.35-0.6重量%;用0.2MMgCl2溶液处理的样品为0.42-0.46重量%;用2MMgCl2溶液处理的样品高达1.28重量%)。权利要求1.在主要为羟基磷灰石或碳酸盐-羟基磷灰石的多孔基质中用Mg2+替代Ca2+离子的方法,包括至少一个如下阶段在≥1巴的压力以及<或≥100℃温度下使所述基质与包含有效量Mg2+离子的盐水溶液进行接触。2.根据权利要求l的方法,其中所述多孔基质具有相对于基质总体积为50-90体积%的总孔隙率;所述孔隙率优选为75%-85体积%。3.根据权利要求1和2的方法,其中所述多孔基质是固体三维支架。4.根据权利要求1的方法,其中所述盐水溶液包含浓度为0.1M-4M的所述Mg^离子;所述浓度优选为0.2M-3M;更优选为0.5M画2.5M。5.根据权利要求4的方法,其中所述Mg"离子以MgCh形式存在。6.根据权利要求l的方法,其中所述多孔基质与所述盐水溶液相互间的重量比为1/3000-1/50;所述比例优选约1/1000;更优选约1/500。7.根据权利要求1的方法,其中所述压力是^1巴-5巴;所述压力优选是1.5巴-3.5巴。8.根据权利要求1的方法,其中所述温度是^100。C-15(TC;所述温度优选是120'C-140'C,更优选是130。C-138°C。9.根据权利要求1-8的方法,其中在10分钟-80分钟的时间内在高压釜中进行所述的至少一个阶段;所述时间优选为15分钟-60分钟;更优选为20分钟-40分钟。10.根据任一在前权利要求的方法,其中最终产品是主要为镁羟基磷灰石或镁碳酸盐-羟基磷灰石的多孔基质,其Mg"离子量相对于基质为0.2%-1.5重量%;优选为0.3°/-1.0重量%;更优选为0.4%-0.7重量%。11.根据权利要求10的方法,其中所述最终多孔基质是固体三维支架。12.根椐权利要求11描述的主要为镁羟基磷灰石或镁碳酸盐-羟基磷灰石的固体三维多孔支架,其可以通过权利要求l-ll的方法获得。13.根据权利要求12的支架用于仿生骨替代物制备的用途。全文摘要本发明的目的是用于获得具有给定化学和物理性质并且与天然骨组织的矿物部分完全类似的骨替代物的方法。文档编号C01B25/32GK101223105SQ200680026192公开日2008年7月16日申请日期2006年7月12日优先权日2005年7月19日发明者D·普莱萨托,L·道尔西尼,R·马蒂纳提,S·迪费德申请人:法恩扎Fin-陶瓷股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1