一种透水砖及其制备方法与流程

文档序号:12089340阅读:204来源:国知局

本发明涉及透水建筑材料技术领域,尤其是一种透水砖及其制备方法。



背景技术:

随着城市居民居住地方的环境改善,对于在城市居民居住的地方,不仅仅局限于传统的表面生活环境质量的改善,更加程度的进入到了实质上的环境质量的改善,因此,使得传统对城市建设过程中,采用花岗岩、大理石、釉面砖、水泥、柏油等不透水的材质铺设城市广场、街道、社区活动中心、停车场等技术,逐渐遭受到了淘汰,使得透水砖技术得到了较大程度的发展。而且透水材料在城市街道、社区活动中心、广场等的铺设,其不仅缓解了城市排水系统的压力,而且还能够使得城市地下水能够快速回升,确保城市地表植物的水分需求,在一定程度上改善了人类生存环境。

目前,对于透水材料的制作,主要集中在透水砖、透水路面的设置,而透水砖、透水路面等材料的主要原料是采用陶瓷、混凝土,这不仅使得透水砖、透水材料的制备受到材料的局限性,而且还使得大量的矿土资源遭受到浪费,容易造成生态环境的破坏;陶瓷型透水砖的生产工艺较为复杂,需要较大的能耗将原料烧制成陶瓷后,再将其制作成陶瓷砖,不仅造成了透水砖的制作成本较高,而且还导致了能耗较大。基于此,有大量的研究者对透水砖的结构进行改进,使得透水砖克服上述缺陷;如北京仁创科技集团有限公司对于透水砖做出的一系列的研究和技术文献报道,其大多是将透水砖设置成双层结构,使得复合而成透水砖,有效的改善透水砖的透水性能,降低透水砖的制备成本。

尽管如此,对于透水砖品质的追求,依然是透水建筑材料领用的研究者不断追求的方向,而且现有技术中,大多数的透水砖采用的表面颗粒粗大,一般在1mm以上,促使表面的孔隙较大,使得孔隙率在20%以上,容易导致孔被堵死,造成透水性能难以长期维持,并且孔隙率较大,造成水过滤效果也较差;除此之外,对于透水砖中的表面颗粒或者下层颗粒,有部分颗粒度极小,达到了0.3mm以下,造成成型之后的孔隙较小,使得在上层透水下来的水分难以被广泛的透出,造成拥堵,使得单位时间透水效果较差,降低了透水系数。



技术实现要素:

为了解决现有技术中存在的上述技术问题,本发明提供一种透水砖及其制备方法。

具体是通过以下技术方案得以实现的:

将透水砖分为两层,分别为透水基层和透水表层,其中透水基层与透水表层为紧密结合为一体的,具体如专利号为200610140628.7的复合透水砖一样,其中在设置过程中,依然是将透水表层和透水基层中的骨料和包覆骨料的粘结剂,而本发明创造的是将透水表层和透水基层的骨料颗粒度分别采用如下的材质:

透水表层,其骨料是颗粒度为0.4~0.9mm的砂;所述的透水基层,其骨料是颗粒度为0.4-1mm的砂。

相对于专利号为200610140628.7的复合透水砖中采用透视表层为0.05-2mm和透水基层中采用2-10mm的骨料颗粒来说,其能够有效的增强保水性,使得保水性达到0.8g/cm2,并且还改善了透水砖的其他性能。

使得在透水砖的透水表层和透水基层之间能够形成恰当的孔隙,并且能够确保孔隙率合理,确保透水砖的整体密度达到1830kg/m3;常温水的透水系数达到6.8╳10-2cm/s以上,抗折强度为6-9MPa,抗压强度为43.7MPa以上;保水性为0.8g/cm2;磨坑长度为18-24.6mm。

对于透水砖中的骨料,其在外表面至少有一部分为圆弧形,使得在骨料颗粒与颗粒之间能够形成一定密度的沙漏状孔隙,实现对地表水的过滤处理,降低地下水的污染,同时能够快速促使地表水渗透,避免长期使用的拥堵,优选在骨料颗粒外表面上的圆弧形占三分之二表面积,更优选采用完整的圆形骨料颗粒,能够使得在透水砖中形成完全沙漏状的孔隙,提高对地表水的过滤效率,避免大量污染物流入地下水中,改善了环境质量,而且能够避免污垢造成堵塞,提高透水砖透水性能的维持性。

对于上述的沙漏状孔隙是在骨料颗粒与颗粒相切的一面形成的,有效的确保了透水砖表层的渗水性能,提高透水系数,而且能够确保透水砖的耐磨性能、抗折强度、抗压强度,增强了透水砖的保水性能。

具体在上述的各项性能实现是:在骨料颗粒相切形成沙漏状,不仅能够确保颗粒相互之间具有明显的接触部位,促使在折和挤压的过程中,颗粒与颗粒之间相互作用,达到增强抗折强度和抗压强度,而且在颗粒与颗粒之间还能够形成较多的孔隙,有效的提高了透水率,而且还能够使得地下水在形成蒸汽散发的过程中,其能够与颗粒表面接触,实现了保水性能,提高了透水砖的保水性质。

通过上述对骨料采用外表面选定的圆弧形设置,相对现有技术中的透水砖,如专利号为200610140628.7的复合透水砖、专利号为201110347973.9的透水砖及其制备方法、专利号201110378930.7的透水砖,其在保水性能上相对较优,并且还综合性的改善了抗折、抗压强度,提高了透水系数。

在透水砖制备过程中,需要采用粘结剂来对骨料进行粘结成型处理,而传统的均是将粘结剂加入与骨料混合后,再向其中加入水分调整,而对于粘结剂的性能,其依然也会造成透水砖各项性能的变化,造成透水砖的综合性能较差,极大程度的影响透水砖的透水性能,同时还会为透水砖制备工艺造成复杂,造成制备成本较高;而本发明创造通过对粘土的含水率进行限定为40%,不仅使得避免了对粘土处理过程中的复杂工艺,而且还避免了对骨料、粘接剂混合处理成型制备透水砖时工艺复杂,使得能够直接将骨料、粘接剂混合后,将其挤压成型,使得粘结剂的粘接性能更加稳定,避免了不断加水或者其他液体,导致粘结剂粘结性能变化导致透水砖品质不稳定的缺陷。

在粘结剂粘结骨料后,其必然会造成骨料颗粒与颗粒之间的缝隙被部分填充,造成透水性能下降,为此,对于粘结剂的透水性能要求,依然是当前透水砖性能变化的一个重要因素,但是对于粘结剂的透水性能,其又会影响粘结剂的粘接性能,鉴于此,本发明创造的研究者通过不断的尝试和探索,将粘土改性处理,使得该改性粘土采用氮吸附分析,孔体积为2.5~3.17mL/g;BET比表面为356~416m2/g。有效的使得粘结剂在粘结骨料之后,能够在颗粒与颗粒之间形成海绵钛的透水部分,有效的提高了透水砖的透水性能,而且还增强了对地表水的过滤,降低了污染物对地下水的污染。

优选,粘土是通过以下方法改性处理后的:

a、将粘土制备成悬浮液,质量浓度为5-15%;加入占悬浮液质量0.2-0.7%的十二烷基磺酸钠和占悬浮液质量0.5-3.1%的硅油,搅拌混合均匀后,沉降,固液分离,除去水相成分,洗涤烘干,研磨成粉末A;

b、粉末A与水制备成质量浓度为4%的悬浮液,与摩尔浓度为1-2mol/L的2-羟基丙二酸亚铁溶液按照体积比为0.5:0.7-1.5混合,搅拌均匀后,沉降,固液分离,除去水相成分,直接烘干,研磨成粉末B,即得。

通过该方法改性处理后的粘土,不仅其粘结性能得到增强,而且其还使得地表水渗透过程中的含有的重金属源被部分吸收,甚至能够实现对部分重金属离子转化,使得其从高价转化为低价,有效的降低了重金属离子的毒性,如粘结剂采用上述的羟基亚铁溶液进行改性处理,使得其能够将五价铬离子在一定程度上转化成三价铬离子,降低重金属毒性。除此之外,通过硅油、十二烷基苯磺酸钠的改性处理,不仅能够增强粘结剂的粘结性能,而且还能增强粘结之后,透水砖的抗折、抗压强度,提高透水砖的性能。

上述的羟基亚铁溶液为2-羟基丙二酸亚铁溶液、柠檬酸亚铁溶液、酒石酸亚铁溶液或草酸亚铁溶液。

本发明创造的透水砖不仅可以参考现有技术中的制备方法进行制备,如专利号为201010165049.4的透水砖的制备方法中介绍的包括制备透水砖预制件并使该透水砖预制件在60-200℃下加热1-4小时,然后以1-15℃/小时的速度冷却至40℃以下。在该制备方法中,能够有效的促使透水砖的保水性能达到0.8g/cm2;但其容易导致本发明创造产品制备过程中的合格率较低。

基于此,本发明创造研究了透水砖的制备方法,具体是采用以下工艺步骤来完成的:

(1)岩石破碎,分选,加入粘土,搅拌均匀,常温发酵,挤压成型,采用红外线照射干燥9-15min,温度为190-210℃,得初品;

(2)将步骤(1)的初品置于烧制炉,并在1h升温至1180℃,保温10min,再将其在10min降温至700℃,再在50min降温至30-60℃,再常温冷却,得到成品。

通过将岩石破碎后,分选,使得确保骨料的规格复合要求,并且加入粘土,搅拌均匀,常温下发酵,成型,并用红外线照射干燥,有效的增强了透水砖的初品的强度,使得在进入干燥工序时,避免了透水砖撕裂,提高了成品率,并且结合在烧制炉中烧制时,采用逐渐升温的方式升温处理,并短时间的保温后,进行降温处理,有效了增强了透水砖的强度,提高了抗折、抗压强度,改善了透水砖的性能。

具体实施方式

下面结合具体的实施方式来对本发明的技术方案做进一步的限定,但要求保护的范围不仅局限于所作的描述。

实施例1

透水砖,包括透水表层和透水基层,透水表层原料是采用颗粒度为0.4~0.9mm的石英砂100g,粘结剂5g;透水基层的原料采用颗粒度为0.4~1mm的石英砂100g,粘结剂5g;制得的透水砖的表层和基层的厚度比为1.3:3,粘结剂为粘土。测试其性能指标,如表1所示。

实施例2

透水砖,包括透水表层和透水基层,透水表层原料采用颗粒度为0.4~0.9mm的花岗岩砂100g,粘结剂4.5g;透水基层的原料采用颗粒度为0.4~1mm的石英砂100g,粘结剂5.5g;制得的透水砖的表层和基层的厚度比为1.9:2.8,粘结剂为氢化双酚A型环氧树脂与含羟基的丙烯酸树脂按照质量比为1:3混合的混合物。测试其性能指标,如表1所示。

实施例3

透水砖,包括透水表层和透水基层,透水表层原料采用颗粒度为0.4~0.9mm的含钾页岩砂100g,粘结剂5.5g;透水基层的原料采用颗粒度为0.4~1mm的大理石砂100g,粘结剂3.5g;制得的透水砖的表层和基层的厚度比为3:2,粘结剂为含水率为40%的粘土;骨料为至少一部分为圆弧形颗粒,骨料颗粒与颗粒之间的接触能够形成一定的沙漏状孔隙。测试其性能指标,如表1所示。

实施例4

透水砖,包括透水表层和透水基层,透水表层原料采用颗粒度为0.4~0.9mm的含钾页岩砂100g,粘结剂2.5g;透水基层的原料采用颗粒度为0.4~1mm的大理石砂100g,粘结剂4.5g;制得的透水砖的表层和基层的厚度比为1:2,粘结剂为含水率为40%的粘土;粘土是通过改性后,采用氮吸附分析,其孔体积为2.5~3.17mL/g;BET比表面为356~416m2/g的改性粘土;并且骨料颗粒外表面有三分之二的面积为圆弧形,骨料颗粒与颗粒之间的接触能够形成沙漏型的孔隙。测试其性能指标,如表1所示。

实施例5

透水砖,包括透水表层和透水基层,透水表层原料采用颗粒度为0.4~0.9mm的含钾页岩砂80g,粘结剂3.5g;透水基层的原料采用颗粒度为0.4~1mm的大理石砂90g,粘结剂3.5g;制得的透水砖的表层和基层的厚度比为1:3,粘结剂为改性粘土,改性是通过以下方法改性处理的:

a、将粘土制备成悬浮液,质量浓度为5-15%;加入占悬浮液质量0.2-0.7%的十二烷基磺酸钠和占悬浮液质量0.5-3.1%的硅油,搅拌混合均匀后,沉降,固液分离,除去水相成分,洗涤烘干,研磨成粉末A;

b、粉末A与水制备成质量浓度为4%的悬浮液,与摩尔浓度为1-2mol/L的2-羟基丙二酸亚铁溶液按照体积比为0.5:0.7-1.5混合,搅拌均匀后,沉降,固液分离,除去水相成分,直接烘干,研磨成粉末B,即得。

在某些实施例中,粘土改性处理的方法中的2-羟基丙二酸亚铁溶液采用柠檬酸亚铁溶液、酒石酸亚铁溶液或草酸亚铁溶液代替。对该透水砖的产品的性能指标检测,如表1所示。

实施例6

在实施例1~5中,透水砖的制备方法分别可以采用以下方法制备:

(1)岩石破碎,分选,加入粘土,搅拌均匀,常温发酵,挤压成型,采用红外线照射干燥9-15min,温度为190-210℃,得初品;

(2)将步骤(1)的初品置于烧制炉,并在1h升温至1180℃,保温10min,再将其在10min降温至700℃,再在50min降温至30-60℃,再常温冷却,得到成品。

在具体处理过程中,时间、温度选取在上述范围值内操作即可实现。

除此之外,在某些优选的实施例中,对于透水砖的骨料采用圆形的颗粒较优,完全的圆形颗粒能够使得骨料颗粒与骨料颗粒之间完全相切,形成类似于沙漏状的孔隙,能够实现对地表水过滤处理的同时,降低堵塞率,提高透水持续性,而且能够确保抗折、抗压强度均较优,有效的改善了透水砖的品质和性能。

实质上,本发明创造是能够使得透水砖的保水性能提高,能够实现地下水蒸发散失过程中,与透水砖形成的沙漏状的倒口相互接触冷却,被回流到地下,有效的提高了透水砖的保水性能。

基于此,本发明创造的研究者通过采用传统的两层结构的透水砖作为对照组,如专利号为200610140628.7的复合透水砖。

采用本发明创造实施例3制备的透水砖作为实验组。

将上述对照组和实验组按照以下方法进行试验处理:

选取大小一样的碗,并将碗中装满水,采用对照组和实验组的透水砖盖在碗上,并置于阳光下照射,每隔三天检测一下碗中水的含量,直至9天后,得出,实验组碗中的水明显的比对照组的碗,具体多的水的体积占比为,实验组碗中的水/对照组碗中的水≥125%。

表1

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1