一种碳纤维增强石墨接地网导体材料及其制备方法与流程

文档序号:11243915阅读:789来源:国知局

本发明属于石墨接地网电极材料技术领域,尤其涉及一种碳纤维增强的石墨接地网导体材料及其制备方法。



背景技术:

变电站接地网是用来连接电气设备和大地的大型接地系统,用于工作接地、防雷接地、确保人身和设备安全,是不可缺少的重要设施。我国有关交直流方式输送电能的需求正在渐渐地靠近于大容量、特高压以及远距离的标准。全球能源互联网概念的提出,又对接地网提出了绿色环保的新要求。保障变电站长期稳定运行的主要推动力是良好的接地网系统,接地网安全运行需要通过接地材料将闪电等电流传给大地,接地材料直接掌握着接地网的命脉。目前国内外输变电系统接地网材料通常采用铜和钢等金属,铜和钢材料在生产过程中产生废气、废液、废渣,对环境造成严重的破坏。在土壤环境较差的条件下,材料的腐蚀性问题突出。随着使用年限的增长,腐蚀严重导致材料断裂,大大降低了接地网的安全性能,对设备和人身安全构成隐患。

采用导电性强、耐腐蚀性好的非金属材料替换现在的金属材料,是现在解决金属材料腐蚀性问题的重要途径之一。石墨材料具有导热以及导电性能优良,耐受腐蚀能力强等特点,成为了非金属用料的首选。石墨具有良好的吸水性和保湿性,与土壤的贴合度较高,本身具有散发性的电解质离子,可扩散石墨材料周围3-5m的土壤中,能够提高材料与土壤、岩石间的导电性,从而使得接触电阻变小。作为耐高温、耐腐蚀、导电良好的石墨电极材料已在输变电接地系统中应用。然而,石墨材料属于脆性材料,抗压强度高、抗拉强度和抗弯强度低,在实际运行后易断裂。传统的挤出石墨电极材料石墨粉与沥青粘结剂的重量组分分别为85%和15%,所制备的石墨材料抗弯强度仅为63mpa,电导率仅为224.52s/cm。



技术实现要素:

本发明的目的是提供一种碳纤维增强石墨接地网导体材料及其制备方法,解决石墨电极材料易断裂、抗拉和抗弯强度低的问题。

为实现上述目的,本发明提供了一种碳纤维增强石墨接地网导体材料,包括2-11%重量组分的碳纤维、74-83%重量组分的石墨粉和15%重量组分的粘结剂。

优选的,所述碳纤维为400目的磨碎碳纤维或3mm的短切碳纤维。

优选的,所述石墨粉为80-120目石墨,碳含量≥99%,灰分≤0.02%。

优选的,所述粘结剂为中温沥青,软化点为75-85℃,灰分≤0.05%。

本发明还提供一种碳纤维增强石墨接地网导体材料的制备方法,包括以下步骤:

(1)材料准备,将石墨粉进行研磨,经80-120目筛子过滤,再经风旋机除尘;

将沥青加热熔化,在90℃温度下保温;

将12k的短切碳纤维或磨碎碳纤维在丙酮溶液中浸泡,进行表面处理;

(2)配料,将经步骤(1)处理后的石墨粉和碳纤维按照一定的比例加入搅拌锅中,在搅拌锅中混合均匀;

(3)混捏,将经步骤(2)处理后的石墨粉和碳纤维放入混捏机中,进行预热,然后与液态沥青在混捏机中进行搅拌混捏,混捏均匀后使用对辊机将其压制成片,在对辊机的中间孔隙中加入加热管对其进行加热,防止因对辊机表面的温度低造成碳纤维增强石墨接地网导体材料变硬,不易压型;

(4)压型,将经步骤(3)处理过的复合材料加入压型机内压型,采用挤出的成型方法成型;

(5)焙烧,将步骤(4)中挤出的碳纤维增强石墨接地网导体材料裁剪、校直,在无氧的焙烧窑中进行焙烧,自然冷却到室温,获得最终的碳纤维增强石墨接地网导体材料。

优选的,所述步骤(2)中搅拌锅的转速为40次/分钟,搅拌时间为30分钟。

优选的,所述步骤(3)中混捏机的预热时间为3分钟,混捏机的转速为40次/分钟,混捏温度为80℃,对辊机的转速为50次/分钟。

优选的,所述步骤(5)中焙烧温度为900℃或1200℃,焙烧时间对应的为7天或9天。

采用上述碳纤维增强石墨接地网导体材料及其制备方法制备的碳纤维增强石墨接地网导体材料的抗弯强度可达到107mpa,电导率可以达到314.27s/cm。

本发明的有益效果是:在传统的石墨材料中加入粒径较小的磨碎碳纤维或长度较短的短切碳纤维,经充分的搅拌后,碳纤维能够均匀、弥散的分布在石墨材料中,从而显著改善石墨材料脆性大易断裂的问题,提高石墨材料的抗弯性能和电学性能。

下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。

附图说明

图1为本发明一种碳纤维增强石墨接地网导体材料及其制备方法实施例的工艺流程图。

具体实施方式

以下将结合附图对本发明作进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围并不限于本实施例。

实施例一

如图1所示,本发明提供一种碳纤维增强石墨接地网导体材料,包括2%重量组分的磨碎碳纤维,83%重量组分的石墨粉和15%重量组分的沥青粘结剂。

碳纤维增强石墨接地网导体材料制备方法为:

材料准备:将石墨粉进行研磨,经80-120目筛子过滤,再经风旋机除尘,备用;将沥青熔化加热呈液体状态,温度为90℃,备用;将12k的400目磨碎碳纤维进行丙酮溶液浸泡表面处理,备用。

配料:将处理过的磨碎碳纤维和石墨粉在搅拌锅中进行充分混合,搅拌锅的转速为40次/分钟,搅拌时间为30分钟。

混捏:将搅拌均匀的石墨粉和磨碎碳纤维放入在混捏机中,与沥青粘结剂进行搅拌混捏,混捏时先要对混捏机进行预热,预热时间为3分钟,保持混捏机机底温度为300℃,混捏机的转速为40次/分钟,混捏温度为80℃。混捏均匀后的材料经对辊机压制成片,以压实复合材料、增加密度,对辊机上设置有为对辊机加热的1000w的加热管,防止混合料接触到温度较低的辊子时变硬,不易于成型,对辊时保持材料的温度为50℃,对辊机的转速为50次/分钟。

压型:将混捏对辊后的磨碎碳纤维、石墨粉和粘结剂的复合材料加入500吨压力压型机内压型,以挤出型为成型方式。

焙烧:将挤出的碳纤维增强石墨材料经裁剪、校直后,在900℃条件下进行焙烧,焙烧时间为7天,然后自然冷却到室温。

最终获得的碳纤维增强石墨接地网导体材料的抗弯强度为78mpa,电导率为263.37s/cm。

实施例二

本实施例与实施例一的区别在于:磨碎碳纤维的重量组分为5%,石墨粉的重量组分为80%,沥青粘结剂的重量组分为15%。

碳纤维增强石墨接地网导体材料的焙烧温度为1200℃,焙烧时间为9天。

最终获得的碳纤维增强石墨接地网导体材料的抗弯强度为78mpa,电导率为276.63s/cm。

实施例三

本实施例与实施例一的区别在于:磨碎碳纤维的重量组分为8%,石墨粉的重量组分为77%,沥青粘结剂的重量组分为15%。

碳纤维增强石墨接地网导体材料的焙烧温度为1200℃,焙烧时间为9天。

最终获得的碳纤维增强石墨接地网导体材料的抗弯强度为65mpa,电导率为314.27s/cm。

实施例四

本实施例与实施例一的区别在于:磨碎碳纤维的重量组分为11%,石墨粉的重量组分为74%,沥青粘结剂的重量组分为15%。

碳纤维增强石墨接地网导体材料的焙烧温度为900℃,焙烧时间为7天。

最终获得的碳纤维增强石墨接地网导体材料的抗弯强度为107mpa,电导率为188.79s/cm。

实施例五

本实施例与实施例一的区别在于:12k的3mm短切碳纤维的重量组分为2%,石墨粉的重量组分为83%,沥青粘结剂的重量组分为15%。

碳纤维增强石墨接地网导体材料的焙烧温度为1200℃,焙烧时间为9天。

最终获得的碳纤维增强石墨接地网导体材料的抗弯强度为81mpa,电导率为290.95s/cm。

实施例六

本实施例与实施例一的区别在于:12k的3mm短切碳纤维的重量组分为5%,石墨粉的重量组分为80%,沥青粘结剂的重量组分为15%。

碳纤维增强石墨接地网导体材料的焙烧温度为900℃,焙烧时间为7天。

最终获得的碳纤维增强石墨接地网导体材料的抗弯强度为87mpa,电导率为207.13s/cm。

实施例七

本实施例与实施例一的区别在于:12k的3mm短切碳纤维的重量组分为8%,石墨粉的重量组分为77%,沥青粘结剂的重量组分为15%。

碳纤维增强石墨接地网导体材料的焙烧温度为900℃,焙烧时间为7天。

最终获得的碳纤维增强石墨接地网导体材料的抗弯强度为98mpa,电导率为192.16s/cm。

实施例八

本实施例与实施例一的区别在于:12k的3mm短切碳纤维的重量组分为11%,石墨粉的重量组分为74%,沥青粘结剂的重量组分为15%。

碳纤维增强石墨接地网导体材料的焙烧温度为1200℃,焙烧时间为9天。

最终获得的碳纤维增强石墨接地网导体材料的抗弯强度为43mpa,电导率为285.63s/cm。

采用本发明实施例四中的11%重量组分的磨碎碳纤维,74%重量组分的石墨粉和15%重量组分的沥青粘结剂,在900℃的温度下焙烧7天,制备的碳纤维增强石墨接地网导体材料抗弯强度性能最优,抗弯强度为107mpa。

本发明在传统的石墨材料中加入粒径较小的磨碎碳纤维或长度较短的短切碳纤维,经充分的搅拌后,碳纤维能够均匀、弥散的分布在石墨材料中,从而改善石墨材料脆性大的问题,提高石墨材料的抗弯性能和电学性能。碳纤维增强石墨接地网导体材料的抗弯强度可以达到107mpa,电导率可以达到314.27s/cm。本发明所述的碳纤维增强石墨接地网导体材料具有抗弯强度高、电学性能优异、耐腐蚀性能好和耐高温的特点,完全能够替代传统的石墨材料作为接地网材料使用。

最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1