一种Mg助剂体系YAG基透明陶瓷的制备方法与流程

文档序号:11378074阅读:507来源:国知局
一种Mg助剂体系YAG基透明陶瓷的制备方法与流程

本发明属于先进陶瓷制备领域,涉及一种mg助剂体系yag基透明陶瓷的制备方法,具体涉及一种在非退火机制下基于少量mg单助剂体真空烧结制备钇铝石榴石(y3al5o12,yag)基透明陶瓷的方法。



背景技术:

固体激光器以其峰值功率高、效率高、寿命长、安全可靠等优点,在激光器应用领域中已处于主导地位,在国防军工、工业加工、和科研等领域应用广泛。目前欧、美等发达国家以国家之力大力支持发展固体激光技术,我国在《国家中长期科学与技术发展纲要(2006-2020年)》也将其列入8大前沿技术之中。固体激光器的核心部件是增益介质,其对激光输出性能的好坏起着决定性的作用,因此,对固体激光器增益介质进行深入研究具有十分重要的意义。目前固体激光器增益介质主要为单晶材料,然其具有成本高、生产周期长、工艺复杂、难以实现高浓度及均匀掺杂和大尺寸制备等缺陷,难以满足日新月异的激光技术发展的需求。

透明陶瓷作为一种全新的固体激光材料,其无论是制备技术还是材料性能等方面都具有传统单晶材料和玻璃材料无可比拟的优势,能够完全克服单晶材料的缺陷,发展极为迅速,已经成为激光材料研究的热点和重点,被认为是继单晶材料之后的下一代激光材料。目前,各种稀土离子掺杂激光透明陶瓷材料层出不穷,如钇铝石榴石(y3al5o12,yag)、倍半氧化物、尖晶石、氟化物等体系,各种陶瓷基激光输出也相继被报导,并已经在许多重要领域中获得初步应用,其取代单晶成为下一代激光增益介质正逐步成为现实。在所有的透明陶瓷材料体系中,yag基透明陶瓷以其易于制备和良好的物理化学性能等优势,是激光材料研究领域的热点和重点,目前已经成为研究成果最为丰硕、应用最为广泛的的透明陶瓷材料体系,发展前景十分广阔。

在yag透明陶瓷的制备方面,完全致密化是实现yag透明陶瓷良好光学质量的基本要求。因此为了进一步提升yag透明陶瓷的最终光学质量,通常会引入烧结添加剂,即烧结助剂。烧结助剂的目的是进一步促进陶瓷的致密化,同时能够减少散射源(例如孔隙)的数目,并能够在烧结过程中阻止晶界的快速迁移,抑制晶内气孔的形成,有利于获得晶粒细小,分布均匀且完全致密的陶瓷显微结构,提升其光学性能。

众所周知,正硅酸乙酯(teos)是制备yag透明陶瓷最常用的烧结助剂。这是因为高温下teos受热分解生成sio2,其会与yag基质反应生成液相,使扩散机制由固相扩散转变为液相扩散,其能够在降低烧结温度的同时大幅提升扩散速率,有利于促进透明陶瓷的致密化。然而,采用teos助剂制备的yag透明陶瓷晶粒尺寸普遍偏大,这样既不利于陶瓷的机械性能,也容易造成难以排除的晶内气孔。

mg助剂相对于teos助剂,因为mg2+的离子半径与yag晶格中六配位al3+离子半径相近,具有较高的固溶度,因此其能够有效地通过空位机制,提升扩散系数,有利于陶瓷在烧结过程中气孔的排除,提升其光学质量,降低散射损耗。此外,mg以其+2价态性质,有利于促进一些特定掺杂原子的高价态转化(如cr3+→cr4+,yb2+→yb3+)mg助剂能够在相对较低的烧结温度(低于1660℃)促进yag透明陶瓷的致密化,并能够在烧结温度1540℃和1660℃之间促进晶粒生长。在较低的致密化温度下,能够有效地扩大致密化温度区间,促进陶瓷的烧结和致密化,有利于进一步排除散射中心,结合非退火机制,能够有效地降低散射损耗,获得致密度高,光学性能优异的yag透明陶瓷。另外mg助剂相对于ca助剂,由于ca助剂在yag晶格中的固溶度只有300~400ppm,因此容易造成偏析,加剧光学损耗。

在mg助剂体系制备yag透明陶瓷的制备方面,文献1(x.qin,s.hu,g.zhou,h.zhang,j.zhang,ands.wang,raremetalmatereng,45(2016).240-243.)采用固相反应法,以mgo作为烧结助剂真空烧结制备了yag透明陶瓷,其1020nm处透过率为82%。文献2(z.lu,t.lu,n.wei,b.ma,w.zhang,f.li,y.guan,journalofwuhanuniversityoftechnology-mater.sci.ed.,28(2013),320-324.)采用共沉淀工艺结合真空烧结技术。采用mgo为烧结助剂制备了yb:yag透明陶瓷,其在1100nm处透过率仅80.6%;尽管文献3(z.lu,t.lu,n.wei,w.zhang,b.ma,j.qi,y.guan,x.chen,h.wu,y.zhao,optmater,47(2015),292-296.)通过改进文献4的制备技术,通过真空烧结结合热等静压烧结技术将该陶瓷的1100nm处透过率提升至83.5%,但距理论透过率仍有一定差距。

以上文献所报道的mg助剂体系yag基透明陶瓷普遍存在着透过率偏低等问题,远不及yag单晶的光学质量,无法满足固体激光应用需求,其主要原因在于相对于si助剂体系,mg剂体系更难以促进yag透明陶瓷的致密化,不利于提升透明陶瓷的光学质量。另外,上述文献均对真空烧结yag透明陶瓷进行退火处理,目的是为了消除真空烧结产生的氧空位,这样也同样导致陶瓷光学质量降低。这是因为尽管退火工艺有利于消除真空烧结导致的氧空位,但是陶瓷体内的残余微气孔容易在退火过程中由于高温作用,进一步扩散并融合,降低光学质量。不仅如此,对于mg助剂掺杂,由于mg掺杂离子取代yag基质离子,由于电荷补偿形成氧空位,进而捕获电子形成f+色心。在退火的过程中,这些色心易与mg离子融合形成[mg2+f+]色心,使光吸收范围扩大,进一步降低陶瓷光学质量。

另一方面,烧结助剂作为一种“外加杂质”,若其添加量过高,不利于陶瓷的光学均匀性,加剧光学散射。因此,在保证yag透明陶瓷良好光学质量的前提下,烧结助剂的添加量越少越好。尽管文献4(a.ikesue,y.l.aung,j.klimke,j.am.ceram.soc.100(2017)26-30.)在不添加任何烧结助剂的情况下制备了高质量yb:yag透明陶瓷,并成功实现激光输出。但采用制备方式为真空烧结结合热等静压烧结法。尽管相对于真空烧结,热等静压烧结技术能够通过外加压力,为陶瓷烧结提供了额外的致密化驱动力,但是热等静压烧结相对于真空烧结,其高压烧结环境对设备要求很高,不利于节约能源,且具有一定危险性。

因此,如果在非退火机制下,采用少量mg单一助剂剂在非退火机制下实现高质量yag透明陶瓷的制备,则它将为yag透明陶瓷晶粒尺寸的细化及光学质量的提升提供有效的参考。然而迄今为止,本领域尚未开发出在非退火机制下采用少量mg单一助剂体系直接在真空条件下制备具有良好光学质量及细晶粒的yag透明陶瓷材料及其制备方法。

因此,本领域迫切需要开发出一种在非退火机制下,既能满足固体激光应用需求,又能有效节约能源的少量mg单一助剂下制备具有良好光学质量及细晶粒分布的yag基透明陶瓷材料的方法。



技术实现要素:
:

针对现有的问题,本发明提供一种非退火机制下,基于少量mg单助剂真空烧结制备钇铝石榴石(y3al5o12,yag)透明陶瓷的方法,从而解决现有技术存在的问题。

本发明通过如下技术方案来实现:

本发明提供一种制备yag透明陶瓷的方法,该方法在非退火机制下,以mg为单烧结助剂,采用单步真空烧结法制备yag透明陶瓷,所制备的透明陶瓷组分应满足下列(1)式或者(2)式:

(rexy1-x)3al5o12(1)

y3(cryal1-y)5o12(2)

式中x的取值范围是0≤x≤0.6,y的范围是0≤y≤0.002,re为ce,nd,yb,er,ho,dy,pr,tm,sm,eu或tb的一种;mg的添加量为y、al、cr或y、al、re原料粉质量总和的0.005~0.018wt.%。

进一步的,上述制备方法包括如下步骤:

步骤一,原料选取:y原料选用市售纯度99.99%及以上的y2o3粉体,al原料选用市售纯度99.99%及以上的α-al2o3粉体,re原料选用市售纯度99.99%及以上的re2o3粉体或reo2粉体,cr原料选用市售纯度99.99%及以上的cr2o3粉体;将上述原料粉体按所需的金属元素的化学计量比称量后,置于球磨罐中,并加入mg助剂、分散剂和无水乙醇配置浆料。

步骤二,球磨及粉体处理:将步骤一配置的浆料置于球磨机中球磨6~25h得到乙醇基浆料;将上述浆料置于烘箱中以30~150℃下干燥5-48小时,并将干燥后的浆料研磨过筛。

步骤三:粉体成型:将步骤二中过筛后的粉体置于模具中,采用10mpa~100mpa压力使粉体成型;成型后的素坯置于密封袋中,于80mpa~350mpa压力下冷等静压成型;将上述冷等静压压制后的素坯置于马弗炉中,采用300~1100℃煅烧2~15h,随后降温至30~50℃。

步骤四:素坯烧结:将步骤三得到的煅烧后的陶瓷素坯置于真空烧结炉中,采用1680℃~1860℃真空烧结2~80h,随后降温至30~50℃;烧结后的yag陶瓷均进行机械加工处理,得到厚度为1~5mm的yag基透明陶瓷材料。

进一步的,本发明所制备的yag透明陶瓷材料在1064nm处线透过率高于84.0%~84.5%,厚度为1~5mm;陶瓷晶粒尺寸为2.0~40μm,粒径分布均匀。

进一步的,上述步骤一中球磨罐为高纯氧化铝球磨罐或尼龙球磨罐;mg原料为市售高纯(99.99%以上)mgo,mgco3,mgf2和mg(oh)2的一种或多种;所述分散剂为ds005,其添加量为y、al原料粉质量总和的0.03~1.5wt%;最终配置浆料固含量为20%~60%。

进一步的,上述步骤二中的球磨方式为行星球磨或卧式球磨,磨球采用高纯氧化铝球,高纯氧化锆球或玛瑙球的一种,球磨机转速为100~300r/min;干燥后的粉体过筛1~8次,筛孔目数为50~200目。

进一步的,上述步骤三中采用的模具为橡胶模具或不锈钢模具,冷等静压成型的保压时间为1~30min;素坯煅烧升温速率为0.5-20℃/min,降温速率为3~30℃/min,煅烧气氛为空气气氛或氧气气氛。

进一步的,上述步骤四的烧结真空度高于10-3pa,烧结升温速率为0.5-10℃/min,降温速率为1~50℃/min;所述机械加工包括磨砂减薄和抛光处理。

发明详述

一本发明提供了一种种在非退火机制下,采用少量mg单一助剂体系下真空烧结制备钇铝石榴石(y3al5o12,yag)基透明陶瓷的方法,其特征在于以少量mg为单烧结助剂,采用单步真空烧结法,在不加以后期退火处理的情况下,制备具有良好光学质量的yag透明陶瓷,所制备的透明陶瓷组分应满足下列(1)式或者(2)式:

(rexy1-x)3al5o12(1)

y3(cryal1-y)5o12(2)

式中x的取值范围是0≤x≤0.6,y的范围是0≤y≤0.05,re为ce,nd,yb,er,ho,dy,pr,tm,sm,eu或tb的一种。mg的添加量为为y、al、cr或y、al、re原料粉质量总和的0.003~0.018wt.%。最终制备的yag透明陶瓷1064nm处线透过率84.0~84.5%(1~5mm厚)。晶粒尺寸为2.0~40μm,粒径分布均匀。

具体步骤如下:

步骤一,原料选取:y原料选用市售高纯(99.99%及以上)y2o3粉体,al原料选用市售高纯(99.99%及以上)α-al2o3粉体,re原料选用市售高纯(99.99%及以上)re2o3粉体或reo2粉体,cr原料选用市售高纯(99.99%及以上)cr2o3粉体。将上述原料粉体按所需的金属元素的化学计量比称量后,置于球磨罐中,并加入mg助剂、分散剂和无水乙醇配置浆料。

步骤二,球磨及粉体处理:将步骤一配置的浆料置于球磨机中球磨6~25h得到乙醇基浆料。将上述浆料置于烘箱中以30~150℃下干燥5-48小时,并将干燥后的浆料研磨过筛。

步骤三:粉体成型:将步骤二中过筛后的粉体置于模具中,采用10mpa~100mpa压力使粉体成型。成型后的素坯置于密封袋中,于80mpa~350mpa压力下冷等静压成型。将上述冷等静压压制后的素坯置于马弗炉中,采用300~1100℃煅烧2~15h,随后降温至30~50℃。

步骤四:素坯烧结:将步骤三得到的煅烧后的陶瓷素坯置于真空烧结炉中,采用1680℃~1860℃真空烧结2~80h,随后降温至30~50℃。并不加以后期退火处理。烧结后的yag陶瓷均进行机械加工处理,得到厚度为1~5mm的yag基透明陶瓷材料。

进一步的,步骤一中球磨罐为高纯氧化铝球磨罐或尼龙球磨罐;mg原料为市售高纯(99.99%以上)mgo,mgco3,mgf2和mg(oh)2的一种或多种;其中mg元素添加量为y、al、cr或y、al、re原料粉质量总和的0.003~0.018wt.%;所述分散剂为ds005,其添加量为y、al原料粉质量总和的0.03~1.5wt%。最终配置浆料固含量为20%~60%。

进一步的,步骤二中球磨方式为行星球磨或卧式球磨,磨球采用高纯氧化铝球,高纯氧化锆球或玛瑙球的一种,球磨机转速为100~300r/min;干燥后的粉体过筛1~8次,筛孔目数为50~200目。

进一步的,,步骤三中采用的模具为橡胶模具或不锈钢模具,冷等静压成型的保压时间为1~30min;素坯煅烧升温速率为0.5-20℃/min,降温速率为3~30℃/min,煅烧气氛为空气气氛或氧气气氛。

进一步的,步骤四烧结真空度高于10-3pa,烧结升温速率为0.5-10℃/min,降温速率为1~50℃/min,所述机械加工包括磨砂减薄和抛光处理。

有益效果

本发明的制备方法,在非退火机制下,能够有效地抑制残余微气孔的扩散与融合,降低陶瓷散射损耗。mg掺杂能够在相对较低的烧结温度(低于1660℃)促进yag透明陶瓷的致密化,并能够在烧结温度1540℃和1660℃之间促进晶粒生长。在较低的致密化温度下,能够有效地扩大致密化温度区间,促进陶瓷的烧结和致密化,有利于进一步排除散射中心,结合非退火机制,能够有效地降低散射损耗,获得致密度高,光学性能优异的yag透明陶瓷。另外,在yag基质中掺入mg离子,由于mg2+的离子半径与yag晶格中六配位al3+离子半径相近,具有较高的固溶度,因此其能够有效地通过空位机制,提升扩散系数,有利于陶瓷在烧结过程中气孔的排除,提升其光学质量,降低散射损耗。此外,mg以其+2价态性质,有利于促进一些特定掺杂原子的高价态转化(如cr3+→cr4+,yb2+→yb3+)。

基于上述的特点,概括本发明的优势如下:

(1)本发明在非退火机制下,实现了少量mg单一助剂真空烧结制备高质量yag基透明陶瓷,在制备高质量yag透明陶瓷的同时,有效地减少了烧结助剂添加量。所制备的陶瓷致密度高、均匀性好,无偏析,无晶内以及晶间气孔,透过率高,满足作为激光增益介质的条件。

(2)本发明采用真空烧结法制备少量mg单一助剂体系yag透明陶瓷,无需气氛辅助和昂贵的压力烧结设备,设备简单,经济节能效果明显。

(3)本发明实现了yag透明陶瓷显微结构的可控,粒级配分布合理,无异常晶粒长大,有效解决了ca助剂体系易偏析问题。同时mg助剂通过其空位扩散机制,有利于降低陶瓷的散射损耗。

(4)该方法工艺简单,不需要昂贵的高压设备,其制备的陶瓷平均晶粒尺寸为2.0~40μm,粒径分布均匀,光学性能优异,其1064nm透过率可以达到84.5%,可用作固体激光器的增益介质;,制备周期短,有利于降低成本要求,实现技术推广和商业推广。

附图说明:

图1:按照实施例1,2,3,4所述的yag基透明陶瓷的的xrd图谱,均为纯yag相;

图2:按照实施例2,3述的yag基透明陶瓷的实物照片,说明陶瓷具有良好的透光性能,光学性能优异。

图3:按照实施例2,4所述的yag基透明陶瓷抛光断面sem图,表明该陶瓷具有完全的致密化结构

图4:按照实施例2所述的yag基透明陶瓷的光学显微镜明场图像,说明该陶瓷具有良好的光学均匀性。

图5:按照实施例2,4所述的yag基透明陶瓷表面sem图谱,表明该陶瓷晶粒尺寸均匀,无残余气孔存在,光学性能优异。

图6:按照实施例2,3所述的yag基透明陶瓷的线透过率曲线,表明该陶瓷具有较高的光学质量。

实施例1、

①将市售浓度为99.99%的y2o3,99.99%的al2o3和99.99%的ceo2按(ce0.01y0.99)3al5o12化学计量比称量后,置于尼龙球磨罐中,随后加入纯度为99.99%的mg(oh)2为烧结助剂(其中mg质量百分比为y、al、ce原料粉体质量总和的0.003wt.%),1wt%ds005作为分散剂,加入无水乙醇配置成固含量为60%的浆料。

②将步骤①中得到的浆料置于卧式球磨机上采用高纯氧化锆球球磨混合6小时,转速为300r/min,球磨后的浆料置于150℃下干燥5h,干燥后的前驱体进行过筛,采用50目网筛过筛8次。

③将步骤②所得到的过筛粉体置于橡胶模具中,采用10mpa干压压制成圆片,再经过350mpa冷等静压制得素坯,保压时间为1min。素坯于空气气氛中采用1100℃煅烧,保温2小时,并降温至30℃。煅烧升温速率为20℃/min,降温速率30℃/min。

③将步骤③所得到的煅烧后的素坯置于真空烧结炉中,采用1680℃真空烧结80h,真空度为10-3pa,随后降温至30℃。烧结升温速率0.5℃/min,降温速率1℃/min,得到致密的yag透明陶瓷,并不加以后期退火处理。并磨砂、抛光至1mm厚。陶瓷样品的xrd图谱(brukerd2)见图1,为纯yag相。晶粒尺寸2μm,1064nm处透过率为84.0%,光学性能优异。

实施例2、

①将市售浓度为99.999%的y2o3,99.999%的al2o3按y3al5o12化学计量比称量后,置于陶瓷球磨罐中,随后加入纯度为99.999%的mgo为烧结助剂(其中mg质量百分比为y、al原料粉体质量总和的0.018wt.%)。采用0.03wt%ds005作为分散剂,加入无水乙醇配置成固含量为30%的浆料。

②将步骤①中得到的浆料置于行星式球磨机上采用高纯氧化铝球球磨混合12小时,转速为200r/min,球磨后的浆料置于50℃下干燥30h,干燥后的前驱体进行过筛,采用100目网筛过筛4次。

③将步骤②所得到的过筛粉体置于不锈钢模具中,采用20mpa干压压制成圆片,再经过200mpa冷等静压制得素坯,保压时间为10min。素坯于空气气氛中采用800℃煅烧,保温4小时,并降温至30℃。煅烧升温速率为2℃/min,降温速率3℃/min。

④将步骤③所得到的煅烧后的素坯置于真空烧结炉中,采用1820℃真空烧结8h,真空度为10-5pa,随后降温至30℃。烧结升温速率2℃/min,降温速率5℃/min,得到致密的yag透明陶瓷,并不加以后期退火处理。并磨砂、抛光至3mm厚。陶瓷样品的xrd图谱见图1,为纯yag相;样品透过率图谱(lambda950)如图6所示,其在1064nm处线透过率为84.5%,表明样品具有良好的光学质量;样品的表面及断面sem图谱分别见图2和图3,表明该陶瓷具有完全的致密化显微结构,无气孔及晶间相存在,晶粒尺寸为22μm;。样品光学显微镜(axioscope.a1)图谱见图4,无散射中心存在,光学性能优异。

实施例3、

①将市售浓度为99.99%的y2o3,99.999%的al2o3和99.99%的cr2o3按(cr0.002y0.998)3al5o12化学计量比称量后,置于陶瓷球磨罐中,随后加入纯度为99.99%的mgco3为烧结助剂(其中mg质量百分比为y、al、cr原料粉体质量总和的0.012wt.%),0.2wt%ds005作为分散剂,加入无水乙醇配置成固含量为40%的浆料。

②将步骤①中得到的浆料置于行星式球磨机上采用氧化铝球磨混合18小时,转速为180r/min,球磨后的浆料置于110℃下干燥10h,干燥后的前驱体进行过筛,采用150目网筛过筛3次。

③将步骤②所得到的过筛粉体置于不锈钢模具中,采用100mpa干压压制成圆片,再经过280mpa冷等静压制得素坯,保压时间为5min。素坯于空气气氛中采用500℃煅烧,保温10小时,并降温至40℃。煅烧升温速率为5℃/min,降温速率15℃/min。

③将步骤③所得到的煅烧后的素坯置于真空烧结炉中,采用1740℃真空烧结50h,真空度为10-5pa,随后降温至40℃。烧结升温速率0.5℃/min,降温速率25℃/min,得到致密的yag透明陶瓷,并不加以后期退火处理。并磨砂、抛光至3mm厚。陶瓷样品的xrd图谱见图1,为纯yag相;样品的抛光表面图谱见图2,表明该陶瓷具有完全的致密化显微结构,无气孔及晶间相存在,晶粒尺寸细小,晶粒尺寸为40μm,样品透过率见图6,其1064nm处透过率为84.5%,光学性能优异。

实施例4、

①将市售浓度为99.99%的y2o3,99.99%的al2o3和99.999的yb2o3按(yb0.6y0.4)3al5o12化学计量比称量后,置于陶瓷球磨罐中,随后加入纯度为99.99%的mgf2为烧结助剂(其中mg质量百分比为y、al原料粉体质量总和的0.01wt%)。采用1.5wt%ds005作为分散剂,加入无水乙醇配置成固含量为20%的浆料。

②将步骤①中得到的浆料置于行星式球磨机上采用高纯玛瑙球磨混合25小时,转速为100r/min,球磨后的浆料置于30℃下干燥48h,干燥后的前驱体进行过筛,采用200目网筛过筛1次。

③将步骤②所得到的过筛粉体置于不锈钢模具中,采用100mpa干压压制成圆片,再经过80mpa冷等静压制得素坯,保压时间为30min。素坯于氧气气氛中采用300℃煅烧,保温15小时,并降温至50℃。煅烧升温速率为0.5℃/min,降温速率30℃/min。

④将步骤③所得到的煅烧后的素坯置于真空烧结炉中,采用1860℃真空烧结2h,真空度为10-4pa,随后降温至50℃。烧结升温速率10℃/min,降温速率50℃/min,得到致密的yag透明陶瓷,并不加以后期退火处理。并磨砂、抛光至5mm厚。陶瓷样品的xrd图谱见图1,为纯yag相;其1064nm处线透过率为84.2%,接近yag理论透过率,样品的断面及表面sem图谱分别见图3和图5,表明该陶瓷具有完全的致密化显微结构,无气孔及晶间相存在,晶粒尺寸为28μm;表明样品的光学性能优异。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1